首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated the fabrication of a two-level microfluidic device that can be easily integrated with existing electrophysiology setups. The two-level microfluidic device is fabricated using a two-step standard negative resist lithography process. The first level contains microchannels with inlet and outlet ports at each end. The second level contains microscale circular holes located midway of the channel length and centered along with channel width. Passive pumping method is used to pump fluids from the inlet port to the outlet port. The microfluidic device is integrated with off-the-shelf perfusion chambers and allows seamless integration with the electrophysiology setup. The fluids introduced at the inlet ports flow through the microchannels towards the outlet ports and also escape through the circular openings located on top of the microchannels into the bath of the perfusion. Thus the bottom surface of the brain slice placed in the perfusion chamber bath and above the microfluidic device can be exposed with different neurotransmitters. The microscale thickness of the microfluidic device and the transparent nature of the materials [glass coverslip and PDMS (polydimethylsiloxane)] used to make the microfluidic device allow microscopy of the brain slice. The microfluidic device allows modulation (both spatial and temporal) of the chemical stimuli introduced to the brain slice microenvironments.  相似文献   

2.
Vasculogenesis is an important morphogenetic event for vascular tissue engineering and ischemic disease treatment. Stem and progenitor cells can contribute to vasculogenesis via endothelial differentiation and direct participation in blood vessel formation. In this study, we developed an implantable microfluidic device to facilitate formation of three-dimensional (3D) vascular structures by human endothelial progenitor cells (hEPCs). The microfluidic device was made of biodegradable poly(lactic-co-glycolic acid) (PLGA) using a microchannel patterned silicon wafer made by soft lithography. A collagen type I (Col I) hydrogel containing hEPCs filled the microfluidic channels to reconstitute a 3D microenvironment for facilitating vascular structure formation by hEPCs. The device seeded with hEPCs was implanted into the subcutaneous space of athymic mice and retrieved one and four weeks after implantation. Histology and immunohistochemistry revealed that hEPCs formed a 3D capillary network expressing endothelial cell-specific proteins in the channel of the PLGA microfluidic device. This result indicates that a 3D microscale extracellular matrix reconstituted in the microchannel can promote the endothelial differentiation of hEPCs and in turn hEPC-mediated vasculogenesis. The PLGA microfluidic device reported herein may be useful as an implantable tissue-engineering scaffold for vascularized tissue reconstruction and therapeutic angiogenesis.  相似文献   

3.
This paper reports a new microfluidic device capable of performing optically induced flow cytometry (OIFC). This enables it to continuously count and to sort microparticles based on optically induced dielectrophoretic (ODEP) forces. Gravity was used to drive the particles instead of using syringe pumps. The particles were then focused inside a sample channel by the ODEP forces and then passed through a detection region. A pair of optical fibers were embedded into fiber channels to count the number of particles and analyze the particle size in real time. Using 20.9 and 9.7 microm polystyrene microparticles, the average light intensity were about 63.67 and 8.80 units, with a coefficient-of-variation (CV) of 7.46 and 25.57%, respectively. This demonstrated that these two particle sizes could be successfully distinguished. After detecting the number and size of the microparticles, an optically induced dynamic switch (ODS) was used to sort microparticles to downstream fluidic outlets. The ODS used ODEP forces generated by different illumination intensities or optical line widths. The ODS was composed of two virtual electrodes which controlled particle movement in two dimensions. The ODS can successfully sort microparticles with different sizes continuously. The development of the OIFC device is a major advancement in the design of microparticle counting and sorting devices. Applications in future biomedical applications for cell counting and manipulation are envisioned.  相似文献   

4.
Dielectrophoresis (DEP) is the phenomenon by which polarized particles in a non-uniform electric field undergo translational motion, and can be used to direct the motion of microparticles in a surface marker-independent manner. Traditionally, DEP devices include planar metallic electrodes patterned in the sample channel. This approach can be expensive and requires a specialized cleanroom environment. Recently, a contact-free approach called contactless dielectrophoresis (cDEP) has been developed. This method utilizes the classic principle of DEP while avoiding direct contact between electrodes and sample by patterning fluidic electrodes and a sample channel from a single polydimethylsiloxane (PDMS) substrate, and has application as a rapid microfluidic strategy designed to sort and enrich microparticles. Unique to this method is that the electric field is generated via fluidic electrode channels containing a highly conductive fluid, which are separated from the sample channel by a thin insulating barrier. Because metal electrodes do not directly contact the sample, electrolysis, electrode delamination, and sample contamination are avoided. Additionally, this enables an inexpensive and simple fabrication process.cDEP is thus well-suited for manipulating sensitive biological particles. The dielectrophoretic force acting upon the particles depends not only upon spatial gradients of the electric field generated by customizable design of the device geometry, but the intrinsic biophysical properties of the cell. As such, cDEP is a label-free technique that avoids depending upon surface-expressed molecular biomarkers that may be variably expressed within a population, while still allowing characterization, enrichment, and sorting of bioparticles.Here, we demonstrate the basics of fabrication and experimentation using cDEP. We explain the simple preparation of a cDEP chip using soft lithography techniques. We discuss the experimental procedure for characterizing crossover frequency of a particle or cell, the frequency at which the dielectrophoretic force is zero. Finally, we demonstrate the use of this technique for sorting a mixture of ovarian cancer cells and fluorescing microspheres (beads).  相似文献   

5.
Isolation of phenotypically-pure cell subpopulations from heterogeneous cell mixtures such as blood is a difficult yet fundamentally important task. Current techniques such as fluorescent activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) require pre-incubation with antibodies which lead to processing times of at least 15-60 min. In this study, we explored the use of antibody-coated microfluidic chambers to negative deplete undesired cell types, thus obtaining an enriched cell subpopulation at the outlet. We used human lymphocyte cell lines, MOLT-3 and Raji, as a model system to examine the dynamic cell binding behavior on antibody coated surfaces under shear flow. Shear stress ranging between 0.75 and 1.0 dyn/cm2 was found to provide most efficient separation. Cell adhesion was shown to follow pseudo-first order kinetics, and an anti-CD19 coated (Raji-depletion) device with approximately 2.6 min residence time was demonstrated to produce 100% pure MOLT-3 cells from 50-50 MOLT-3/Raji mixture. We have developed a mathematical model of the separation device based on the experimentally determined kinetic parameters that can be extended to design future separation modules for other cell mixtures. We conclude that we can design microfluidic devices that exploits the kinetics of dynamic cell adhesion to antibody coated surfaces to provide enriched cell subpopulations within minutes of total processing time.  相似文献   

6.
Sample flow switching techniques on microfluidic chips   总被引:1,自引:0,他引:1  
This paper presents an experimental investigation into electrokinetically focused flow injection for bio-analytical applications. A novel microfluidic device for microfluidic sample handling is presented. The microfluidic chip is fabricated on glass substrates using conventional photolithographic and chemical etching processes and is bonded using a high-temperature fusion method. The proposed valve-less device is capable not only of directing a single sample flow to a specified output port, but also of driving multiple samples to separate outlet channels or even to a single outlet to facilitate sample mixing. The experimental results confirm that the sample flow can be electrokinetically pre-focused into a narrow stream and guided to the desired outlet port by means of a simple control voltage model. The microchip presented within this paper has considerable potential for use in a variety of applications, including high-throughput chemical analysis, cell fusion, fraction collection, sample mixing, and many other applications within the micro-total-analysis systems field.  相似文献   

7.
A combination of sample manipulation and rheological characterization at the microscale is used to identify the gelation of poly(ethylene glycol)-heparin hydrogels over a wide range of compositions. A microfluidic device produces 50-100 droplet samples, each with a different composition. Multiple particle tracking microrheology is used to measure the rheological state of each sample. This combination requires little material and enables efficient and rapid screening of gelation conditions. The high resolution data identifies the gelation reaction percolation boundaries and a lower limit of the total hydrogelator concentration for gelation to occur, which can be used for the subsequent engineering, testing, and processing of these materials.  相似文献   

8.
We present a novel microfluidic system in which an aqueous two-phase laminar flow is stably formed, and the continuous partitioning of relatively large cells can be performed, eliminating the influence of gravity. In this study, plant cell aggregates whose diameters were 37-96 microm were used as model particles. We first performed cell partitioning using a simple straight microchannel having two inlets and two outlets and examined the effects of the flow rate and the phase width on partitioning efficiency. Second, by using a microchannel with a pinched segment, the partitioning efficiency was successfully improved. This microscale aqueous two-phase flow system can further be incorporated into micro total analysis systems (microTAS) or lab-on-a-chip technology, owing to its simplicity, applicability, and biocompatibility.  相似文献   

9.
Contactless dielectrophoresis (cDEP) devices are a new adaptation of dielectrophoresis in which fluid electrodes, isolated from the main microfluidic channel by a thin membrane, provide the electric field gradients necessary to manipulate cells. This work presents a continuous sorting device which is the first cDEP design capable of exploiting the Clausius-Mossotti factor at frequencies where it is both positive and negative for mammalian cells. Experimental devices are fabricated using a cost effective technique which can achieve 50 μm feature sizes and does not require the use of a cleanroom or specialized equipment. An analytical model is developed to evaluate cDEP devices as a network of parallel resistor-capacitor pairs. Two theoretical devices are presented and evaluated using finite element methods to demonstrate the effect of geometry on the development of electric field gradients across a wide frequency spectrum. Finally, we present an experimental device capable of continuously sorting human leukemia cells from dilute blood samples. This is the first cDEP device designed to operate below 100 kHz resulting in successful manipulation of human leukemia cells, while in the background red blood cells are unaffected.  相似文献   

10.
We present a protocol for building and operating a microfluidic device for mechanical immobilization of Caenorhabditis elegans in its physiologically active state. The system can be used for in vivo imaging of dynamic cellular processes such as cell division and migration, degeneration, aging and regeneration, as well as for laser microsurgery, Ca2+ imaging and three-dimensional microscopy. The device linearly orients C. elegans, and then completely restrains its motion by pressing a flexible membrane against the animal. This technique does not involve any potentially harmful anesthetics, gases or cooling procedures. The system can be installed on any microscope and operated using only one syringe and one external valve, making it accessible to most laboratories. The device fabrication begins by patterning photoresist structures on silicon wafers, which are then used to mold features in elastomeric layers that are thermally bonded to form the device. The system can be assembled within 3 d.  相似文献   

11.
Microfluidics can be integrated with standard electrophysiology techniques to allow new experimental modalities. Specifically, the motivation for the microfluidic brain slice device is discussed including how the device docks to standard perfusion chambers and the technique of passive pumping which is used to deliver boluses of neuromodulators to the brain slice. By simplifying the device design, we are able to achieve a practical solution to the current unmet electrophysiology need of applying multiple neuromodulators across multiple regions of the brain slice. This is achieved by substituting the standard coverglass substrate of the perfusion chamber with a thin microfluidic device bonded to the coverglass substrate. This was then attached to the perfusion chamber and small holes connect the open-well of the perfusion chamber to the microfluidic channels buried within the microfluidic substrate. These microfluidic channels are interfaced with ports drilled into the edge of the perfusion chamber to access and deliver stimulants. This project represents how the field of microfluidics is transitioning away from proof-of concept device demonstrations and into practical solutions for unmet experimental and clinical needs.  相似文献   

12.
A simple, automatic sample-changing device for commercially available gamma counters is described. Plastic heads, with centrally pierced orifices serve as holders (containers) for the radioactive samples. The principle of the device is based on sorting out the containers (i.e., the beads) by gravity-fed transmission into the counting chamber. Following the completion of counting, the samples are removed from the chamber and the cycle repeated. The successful operation of this device is demonstrated by its application to microscale polyacrylamide disc gel electrophoresis.  相似文献   

13.
A method and a microfluidic device for automated extraction and purification of nucleic acids from biological samples have been developed. The method involves disruption of bacterial cells and/or viral particles by combining enzymatic and chemical lysis procedures followed by solid-phase sorbent extraction and purification of nucleic acids. The procedure is carried out in an automated mode in a microfluidic module isolated from the outside environment, which minimizes contact of the researcher with potentially infectious samples and, consequently, decreases the risk of laboratory-acquired infections. The module includes reservoirs with lyophilized components for lysis and washing buffers; a microcolumn with a solid-phase sorbent; reservoirs containing water, ethanol, and water-ethanol buffer solutions for dissolving freeze-dried buffer components, rinsing the microcolumn, and eluting of nucleic acids; and microchannels and valves needed for directing fluids inside the module. The microfluidic module is placed into the control unit that delivers pressure, heats, mixes reagents, and flows solutions within the microfluidic module. The microfluidic system performs extraction and purification of nucleic acids with high efficiency in 40 min, and nucleic acids extracted can be directly used in PCR reaction and microarray assays.  相似文献   

14.
We describe a microfluidic device with microgrooved patterns for studying cellular behavior. This microfluidic platform consists of a top fluidic channel and a bottom microgrooved substrate. To fabricate the microgrooved channels, a top poly(dimethylsiloxane) (PDMS) mold containing the impression of the microfluidic channels was aligned and bonded to a microgrooved substrate. Using this device, mouse fibroblast cells were immobilized and patterned within microgrooved substrates (25, 50, 75, and 100 microm wide). To study apoptosis in a microfluidic device, media containing hydrogen peroxide, Annexin V, and propidium iodide was perfused into the fluidic channel for 2 hours. We found that cells exposed to the oxidative stress became apoptotic. These apoptotic cells were confirmed by Annexin V that bound to phosphatidylserine at the outer leaflet of the plasma membrane during the apoptosis process. Using this microfluidic device with microgrooved patterns, the apoptosis process was observed in real-time and analyzed by using an inverted microscope containing an incubation chamber (37 degrees C, 5% CO(2)). Therefore, this microfluidic device incorporated with microgrooved substrates could be useful for studying the cellular behavior and performing high-throughput drug screening.  相似文献   

15.
The use of microfabricated microfluidic devices offers significant advantages over current technologies including fast analysis time and small reagent requirements. In the context of proteomic research, the possibility of using affinity-based separations for prefractionation of samples using microfluidic devices has significant potential. We demonstrate the use of microscale devices to achieve affinity separations of proteins using a device fabricated from borosilicate glass wafers. Photolithography and wet etching are used to pattern individual glass wafers and the wafers are fusion bonded at 650°C to obtain enclosed channels. A polymer has been successfully polymerizedin situ and used either as a frit for packing beads or, when derivatized with Cibacron Blue 3GA, as a separation matrix. Both of these technologies are based onin situ UV photopolymerization of glycidyl methacrylate (GMA) and trimethylolpropane trimethacrylate (TRIM) in channels.  相似文献   

16.
This paper presents a microfluidic device capable of performing genetic analysis on dung samples to identify White Rhinoceros (Ceratotherium simum). The development of a microfluidic device, which can be used in the field, offers a portable and cost‐effective solution for DNA analysis and species identification to aid conservation efforts. Optimization of the DNA extraction processes produced equivalent yields compared to conventional kit‐based methods within just 5 minutes. The use of a color‐changing loop‐mediated isothermal amplification reaction for simultaneous detection of the cytochrome B sequence of C. simum enabled positive results to be obtained within as little as 30 minutes. Field testing was performed at Knowsley Safari to demonstrate real‐world applicability of the microfluidic device for testing of biological samples.  相似文献   

17.
In this article, we present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy. The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated distearoylphosphatidylcholine:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside G(T1b) or G(M1). The ganglioside-populated SLB arrays were then exposed to either cholera toxin B subunit or tetanus toxin C fragment. Binding was assayed on planar substrates by total internal reflection fluorescence microscopy down to 100 pM concentration for cholera toxin subunit B and 10 nM for tetanus toxin fragment C. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is influenced by the microenvironment of the SLB and the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions.  相似文献   

18.
In industrial‐scale biotechnological processes, the active control of the pH‐value combined with the controlled feeding of substrate solutions (fed‐batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small‐scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale‐up and scale‐down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small‐scale batches are typically performed highly parallel and in high throughput, large‐scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber‐optic online‐monitoring device for microtiter plates (MTPs)—the BioLector technology—together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed‐batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user‐friendly and can easily be transferred to a disposable single‐use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH‐controlled and fed‐batch conditions in shaken MTPs. Biotechnol. Bioeng. 2010;107: 497–505. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
The detection of atrazine using a novel optical immunosensing technique based on negative dielectrophoresis (n-DEP) in microfluidic channels is described. Atrazine is a toxic triazine herbicide within the most frequently used. Polystyrene microparticles (6 microm diameters) modified with bovine serum albumin conjugated with atrazine (atrazine-BSA) were manipulated and captured when subjected to intense n-DEP electric fields. Specifically, particles were trapped when AC voltages with amplitudes of 10 V(peak) and frequencies over 1 MHz were applied to the electrodes. The immunological reaction occurring on the particles for detecting atrazine is based on an indirect competitive assay using a secondary anti-mouse immunogloburin G (IgG) antibody labeled with fluorescein isothiocyanate. The microfluidic device, with three-dimensional microelectrodes, was fabricated comprising two caged areas, allowing two simultaneous measurements inside the same microfluidic channel. The performance of this n-DEP immunosensing technique was evaluated using wine samples. The immunodevice showed a limit of detection for atrazine in buffer samples of 0.11 microgL(-1) and in pre-treated wine samples of 6.8 microg L(-1); these detection limits are lower than the maximum residue level (MRL) established by the European Community for residues of this herbicide in wine (50 microg L(-1)). This methodology offers great promise for rapid, simple, cost effective, and on-site analysis of biological, foods and beverages, and environmental samples.  相似文献   

20.
This video describes the fabrication and use of a microfluidic device to culture central nervous system (CNS) neurons. This device is compatible with live-cell optical microscopy (DIC and phase contrast), as well as confocal and two photon microscopy approaches. This method uses precision-molded polymer parts to create miniature multi-compartment cell culture with fluidic isolation. The compartments are made of tiny channels with dimensions that are large enough to culture neurons in well-controlled fluidic microenvironments. Neurons can be cultured for 2-3 weeks within the device, after which they can be fixed and stained for immunocytochemistry. Axonal and somal compartments can be maintained fluidically isolated from each other by using a small hydrostatic pressure difference; this feature can be used to localize soluble insults to one compartment for up to 20 h after each medium change. Fluidic isolation enables collection of pure axonal fraction and biochemical analysis by PCR. The microfluidic device provides a highly adaptable platform for neuroscience research and may find applications in modeling CNS injury and neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号