首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of stem cells in skeletal and cardiac muscle repair.   总被引:15,自引:0,他引:15  
In postnatal muscle, skeletal muscle precursors (myoblasts) can be derived from satellite cells (reserve cells located on the surface of mature myofibers) or from cells lying beyond the myofiber, e.g., interstitial connective tissue or bone marrow. Both of these classes of cells may have stem cell properties. In addition, the heretical idea that post-mitotic myonuclei lying within mature myofibers might be able to re-form myoblasts or stem cells is examined and related to recent observations for similar post-mitotic cardiomyocytes. In adult hearts (which previously were not considered capable of repair), the role of replicating endogenous cardiomyocytes and the recruitment of other (stem) cells into cardiomyocytes for new cardiac muscle formation has recently attracted much attention. The relative contribution of these various sources of precursor cells in postnatal muscles and the factors that may enhance stem cell participation in the formation of new skeletal and cardiac muscle in vivo are the focus of this review. We concluded that, although many endogenous cell types can be converted to skeletal muscle, the contribution of non-myogenic cells to the formation of new postnatal skeletal muscle in vivo appears to be negligible. Whether the recruitment of such cells to the myogenic lineage can be significantly enhanced by specific inducers and the appropriate microenvironment is a current topic of intense interest. However, dermal fibroblasts appear promising as a realistic alternative source of exogenous myoblasts for transplantation purposes. For heart muscle, experiments showing the participation of bone marrow-derived stem cells and endothelial cells in the repair of damaged cardiac muscle are encouraging.  相似文献   

2.
LaBarge MA  Blau HM 《Cell》2002,111(4):589-601
Adult bone marrow-derived cells (BMDC) are shown to contribute to muscle tissue in a step-wise biological progression. Following irradiation-induced damage, transplanted GFP-labeled BMDC become satellite cells: membrane-ensheathed mononucleate muscle stem cells. Following a subsequent exercise-induced damage, GFP-labeled multinucleate myofibers are detected. Isolated GFP-labeled satellite cells are heritably myogenic. They express three characteristic muscle markers, are karyotypically diploid, and form clones that can fuse into multinucleate cells in culture or into myofibers after injection into mouse muscles. These results suggest that two temporally distinct injury-related signals first induce BMDC to occupy the muscle stem cell niche and then to help regenerate mature muscle fibers. The stress-induced progression of BMDC to muscle satellite cell to muscle fiber results in a contribution to as many as 3.5% of muscle fibers and is due to developmental plasticity in response to environmental cues.  相似文献   

3.
骨髓干细胞的可塑性研究进展   总被引:2,自引:0,他引:2  
成体干细胞在体内特定的微环境或体外人工培养条件下具有极强的可塑性分化潜能,其主要功能是负责组织细胞的生理性更新和病理性修复.骨髓组织中包括产生所有成熟血细胞系的造血干细胞(HSCs)、多潜能成体祖细胞和能分化为骨、软骨、脂肪的间充质干细胞(MSCs),这些细胞时还有向造血和骨髓以外的其他类型的成熟细胞分化如神经、肌肉、皮肤、心、肝、肾、肺等分化的能力.对最近几年国内外关于骨髓干细胞可塑性的实验研究进展作简要综述.  相似文献   

4.
Bone marrow (BM)-derived stem cells are reported to have cellular plasticity, which provoked many investigators to use of these cells in the regeneration of nonhematopoietic tissues. However, adult stem cell plasticity contradicts our classic understanding on progressive restriction of the developmental potential of a cell type. Many alternate mechanisms have been proposed to explain this phenomenon; the working hypotheses for elucidating the cellular plasticity of BM-derived stem cells are on the basis of direct differentiation and/or fusion between donor and recipient cells. This review dissects the different outcomes of the investigations on liver regeneration, which were performed with the use of BM-derived stem cells in experimental animals, and reveals some critical factors to explain cellular plasticity. It has been hypothesized that the competent BM-derived stem/progenitor cells, under the influence of liver-regenerating cues, can directly differentiate into hepatic cells. This differentiation takes place as a result of genetic reprogramming, which may be possible in the chemically induced acute liver injury model or at the stage of fetal liver development. Cellular plasticity emerges as an important phenomenon in cell-based therapies for the treatment of many liver diseases in which tissue regeneration is necessary.  相似文献   

5.
Two hypotheses explain the role of adult progenitor cells in myocardial regeneration. Stem cell plasticity which involves mobilization of stem cells from the bone marrow and other niches, homing to the area of tissue injury and transdifferentiation into functional cardiomyocytes. Alternative hypothesis is based on the observations that bone marrow harbors a heterogenous population of cells positive for CXCR4 - receptor for chemokine SDF-1. This population of non-hematopoietic cells expresses genes specific for early muscle, myocardial and endothelial progenitor cells (EPC). These tissue-committed stem cells circulate in the peripheral blood at low numbers and can be mobilized by hematopoietic cytokines in the setting of myocardial ischemia. Endothelial precursors capable of transforming into mature, functional endothelial cells are present in the pool of peripheral mononuclear cells in circulation. Their number significantly increases in acute myocardial infarction (AMI) with subsequent decrease after 1 month, as well as in patients with unstable angina in comparison to stable coronary heart disease (CHD). There are numerous physiological and pathological stimuli which influence the number of circulating EPC such as regular physical activity, medications (statins, PPAR-gamma agonists, estrogens), as well as numerous inflammatory and hematopoietic cytokines. Mobilization of stem cells in AMI involves not only the endothelial progenitors but also hematopoietic, non-hematopoietic stem cells and most probably the mesenchymal cells. In healthy subjects and patients with stable CHD, small number of circulating CD34+, CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cells can be detected. In patients with AMI, a significant increase in CD34+/CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cell number the in peripheral blood was demonstrated with parallel increase in mRNA expression for early cardiac, muscle and endothelial markers in peripheral blood mononuclear cells. The maximum number of stem cells was found early in ST-segment elevation myocardial infarction (<12 hours) with subsequent decrease through the 7-day follow-up and with concomitant changes in the levels of cytokines involved in the inflammatory response and stem cell recruitment. Moreover, peak expression of cardiac muscle and endothelial markers occurred at the same time as the most significant increase in CD34/CXCR4+ stem cell number. The SDF-1/CXCR-4 axis seems particularly important in stem/muscle progenitor cell homing, chemotaxis, engraftment and retention in ischaemic myocardium. The significance of autologous stem cells mobilization in terms of cardiac salvage and regeneration needs to be proved in humans but it seems to be a reparative mechanism triggered early in the course of acute coronary syndromes.  相似文献   

6.
7.
The anticipated therapeutic uses of neural stem cells depend on their ability to retain a certain level of developmental plasticity. In particular, cells must respond to developmental manipulations designed to specify precise neural fates. Studies in vivo and in vitro have shown that the developmental potential of neural progenitor cells changes and becomes progressively restricted with time. For in vitro cultured neural progenitors, it is those derived from embryonic stem cells that exhibit the greatest developmental potential. It is clear that both extrinsic and intrinsic mechanisms determine the developmental potential of neural progenitors and that epigenetic, or chromatin structural, changes regulate and coordinate hierarchical changes in fate-determining gene expression. Here, we review the temporal changes in developmental plasticity of neural progenitor cells and discuss the epigenetic mechanisms that underpin these changes. We propose that understanding the processes of epigenetic programming within the neural lineage is likely to lead to the development of more rationale strategies for cell reprogramming that may be used to expand the developmental potential of otherwise restricted progenitor populations.  相似文献   

8.
Circadian rhythms are common in many cell types but are reported to be lacking in embryonic stem cells. Recent studies have described possible interactions between the molecular mechanism of circadian clocks and the signaling pathways that regulate stem cell differentiation. Circadian rhythms have not been examined well in neural stem cells and progenitor cells that produce new neurons and glial cells during adult neurogenesis. To evaluate circadian timing abilities of cells undergoing neural differentiation, neurospheres were prepared from the mouse subventricular zone (SVZ), a rich source of adult neural stem cells. Circadian rhythms in mPer1 gene expression were recorded in individual spheres, and cell types were characterized by confocal immunofluorescence microscopy at early and late developmental stages in vitro. Circadian rhythms were observed in neurospheres induced to differentiate into neurons or glia, and rhythms emerged within 3–4 days as differentiation proceeded, suggesting that the neural stem cell state suppresses the functioning of the circadian clock. Evidence was also provided that neural stem progenitor cells derived from the SVZ of adult mice are self-sufficient clock cells capable of producing a circadian rhythm without input from known circadian pacemakers of the organism. Expression of mPer1 occurred in high frequency oscillations before circadian rhythms were detected, which may represent a role for this circadian clock gene in the fast cycling of gene expression responsible for early cell differentiation.  相似文献   

9.
Hirai H 《Human cell》2002,15(4):190-198
Stem cells have been defined as clonogenic cells that undergo both self-renewal and differentiation to more committed progenitors and functionally specialized mature cells. Of late years, stem cells have been identified in a variety of tissues of an adult body. Depending on the source, they have the potential to form one or more, or even all cell types of an organism. Stem cell research provided some outstanding contributions to our understanding of developmental biology and offered much hope for cell replacement therapies overcoming a variety of diseases. The establishment of human ES cell lines enabled us to generate all tissues we comprise. Recently, excitement has been evoked by the controversial evidence that adult stem cells have a much higher degree of developmental plasticity than previously imagined. More recently, the existence of multipotent somatic stem cells in bone marrow has been reported. Combined with these discoveries and achievements as well as the developing technologies, scientists are now trying to bring stem cell therapies to the clinic.  相似文献   

10.
Issues in stem cell plasticity   总被引:7,自引:0,他引:7  
Experimental biology and medicine work with stem cells more than twenty years. The method discovered for in vitro culture of human embryonal stem cells acquired at abortions or from?surplus” embryos left from in vitro fertilization, evoked immediately ideas on the posibility to aim development and differentiation of these cells at regeneration of damaged tissues. Recently, several surprising observations proved that even tissue‐specific (multipotent) stem cells are capable, under suitable conditions of producing a while spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This ability is frequently called stem cell plasticity but other authors also use different names ‐?non‐orthodox differentiation” or?transdifferentiation”. In this paper we wish to raise several important questions and problems related to this theme. Let us remind some of them: Is it possible to force cells of one‐type tissue to lool and act as cells of another tissue? Are these changes netural? Could these trans‐formations be used to treat diseases? What about the bioethic issue? However, the most serious task “still remains to be soloved ‐ how to detect, harvestand culture stem cells for therapy of certain diseases”.  相似文献   

11.
Most tissues contain cells capable of the self-renewal and differentiation necessary to maintain tissue and organ integrity. These somatic stem cells are generally thought to have limited developmental potential. The mechanisms that restrict cell fate decisions in somatic stem cells are only now being understood. This understanding will be important in the clinical exploitation of adult stem cells in tissue repair and replacement. Experiments performed over fifty years ago in Drosophila showed that developmental restriction could be relaxed in the proliferating larval cells that are destined to form the adult fly integument. This phenomenon, called transdetermination, can serve as a model for mechanisms of stem-cell commitment. A recent publication (1) sheds new light on the mechanism of transdetermination by demonstrating that loss of homeotic gene silencing leads to increased frequency of transdetermination. In addition, the authors link a specific signaling pathway induced by tissue regeneration to the relaxation of homeotic gene silencing. The data identify key mechanisms that control developmental homeostasis and cell fate restriction that could be manipulated to make somatic stem-cell engineering possible.  相似文献   

12.
Embryonic stem cells have revolutionised our understanding of normal and deregulated growth and development. The potential to produce cells and tissues as needed offers enormous therapeutic potential. The use of these cells, however, is accompanied by ongoing ethical, religious and biomedical issues. The expansion potential and plasticity of adult stem cells have therefore received much interest. Adult skeletal muscle is highly adaptable, responding to both the hypertrophic and degenerative stresses placed upon it. This extreme plasticity is in part regulated by resident stem cells. In addition to regenerating muscle, if exposed to osteogenic or adipogenic inducers, these cells spontaneously form osteoblasts or adipocytes. The potential for and heterogeneity of muscle stem cells is underscored by the observation that CD45+ muscle side population cells are capable of reconstituting bone marrow in lethally irradiated mice and of contributing to neo-vascularisation of regenerating muscle. Finally, first attempts to replace infarcted myocardium relied on injection of skeletal myoblasts into the heart. Cells successfully engrafted and cardiac function was improved. Harnessing their differentiation/trans-differentiation capacity provides enormous potential for adult stem cells. In this review, current understanding of the different stem cells within muscle will be discussed as will their potential utility for regenerative medicine.  相似文献   

13.
While not fulfilling the criterion of a "stem cell" in being capable of self-renewal, mature and fertilized oocytes are the original "toti-potent" cells, whose capacity for expansion and differentiation can only be approximated by stem cells of embryonic or adult origin in vitro. As such, the mechanisms by which oocytes acquire and manifest competence to support embryo development is of fundamental interest to efforts to control and re-specify somatic cell fate and toti-potency. This is underscored by the unparalleled capacity of oocyte cytoplasm to successfully re-specify the genetic program of animal development following cell nuclear replacement (i.e., cloning). Thus, the knowledge gained by understanding the acquisition of oocyte developmental competence could ultimately facilitate the creation of adult stem cells in vitro from terminally differentiated cells, ex ovo. In this paper, we review the concept of oocyte developmental competence, and focus on our own research and that of others implicating a role for neurotrophins in this process, and that of oocyte cell survival. Lastly we propose a role for neurotrophin signalling in embryo stem cell survival.  相似文献   

14.
Knock out of intestinal Cdx2 produces different effects depending upon the developmental stage at which this occurs. Early in development it produces histologically ordered stomach mucosa in the midgut. Conditional inactivation of Cdx2 in adult intestinal epithelium, as well as specifically in the Lgr5-positive stem cells, of adult mice allows long-term survival of the animals but fails to produce this phenotype. Instead, the endodermal cells exhibit cell-autonomous expression of gastric genes in an intestinal setting that is not accompanied by mesodermal expression of Barx1, which is necessary for gastric morphogenesis. Cdx2-negative endodermal cells also fail to express Sox2, a marker of gastric morphogenesis. Maturation of the stem cell niche thus appears to be associated with loss of ability to express positional information cues that are required for normal stomach development. Cdx2-negative intestinal crypts produce subsurface cystic vesicles, whereas untargeted crypts hypertrophy to later replace the surface epithelium. These observations are supported by studies involving inactivation of Cdx2 in intestinal crypts cultured in vitro. This abolishes their ability to form long-term growing intestinal organoids that differentiate into intestinal phenotypes. We conclude that expression of Cdx2 is essential for differentiation of gut stem cells into any of the intestinal cell types, but they maintain a degree of cell-autonomous plasticity that allows them to switch on a variety of gastric genes.  相似文献   

15.
Tissue engineering with muscle-derived stem cells   总被引:7,自引:0,他引:7  
Tissue engineering and cell therapy approaches aim to take advantage of the repopulating ability and plasticity of multipotent stem cells to regenerate lost or diseased tissue. Researchers continue to investigate stem cells in mature tissues and demonstrate the potential ability of organ-specific cells to differentiate into multiple lineages. One stem cell that displays such promise is the muscle-derived stem cell (MDSC). Data supporting the existence of MDSCs have emerged as part of investigations to improve myoblast cell transplantation for the treatment of muscular dystrophies. As these efforts continue, the potential for MDSC-based therapy for other musculoskeletal injuries, as well as for cardiac and smooth muscle injuries, is currently being explored.  相似文献   

16.
One of the most contentious issues in biology today concerns the existence of stem cell plasticity. The term "plasticity" refers to the capacity of tissue-derived stem cells to exhibit a phenotypic potential that extends beyond the differentiated cell phenotypes of their resident tissue. Although evidence of stem cell plasticity has been reported by multiple laboratories, other scientists have not found the data persuasive and have remained skeptical about these new findings. This review will provide an overview of the stem cell plasticity controversy. We will examine many of the major objections that have been made to challenge the stem cell plasticity data. This controversy will be placed in the context of the traditional view of stem cell potential and cell phenotypic diversification. What the implications of cell plasticity are, and how its existence may modulate our present understanding of stem cell biology, will be explored. In addition, we will examine a topic that is usually not included within a discussion of stem cell biology--the direct conversion of one differentiated cell type into another. We believe that these observations on the transdifferentiation of differentiated cells have direct bearing on the issue of stem cell plasticity, and may provide insights into how cell phenotypic diversification is realized in the adult and into the origin of cell phenotypes during evolution.  相似文献   

17.
The ability to selectively produce one or more differentiated cell types at will from totipotent stem cells would be of profound clinical importance, as it would enable the specific replacement of damaged/dysfunctional cell types within the body, potentially curing numerous diseases. Until recently, it was thought that the only cells that possessed sufficient immaturity to be capable of giving rise to more than one tissue type in vitro and in vivo were the embryonic stem cells. However, recent studies have now provided compelling evidence that the adult bone marrow, brain and skeletal muscle contain stem cells that possess the remarkable ability to trans-differentiate and give rise to progeny of alternate embryologic derivations. These recent findings have shattered the existing dogma that the stages of embryologic development are irreversible. In this review, we present a brief summary of the most significant findings in the field of stem cell plasticity, emphasizing studies involving the hematopoietic system, discussing the models used thus far, and finishing with our findings on human stem cell plasticity using the fetal sheep model.  相似文献   

18.
The haemopoietic stem cell (HSC) has long been regarded as an archetypal, tissue specific, stem cell, capable of completely regenerating haemopoiesis after myeloablation. It has proved relatively easy to harvest HSC, from bone marrow or peripheral blood. In turn, isolation of these cells has allowed therapeutic stem cell transplantation protocols to be developed, that capitalise on their prodigious self renewal and proliferative capabilities. Ex vivo approaches have been described to isolate, genetically manipulateand expand pluripotent stem cell subsets. These techniques have been crucial to the development of gene therapy, and may allow adults to enjoy the potential advantages of cord blood transplantation. Recently, huge conceptual changes have occurred in stem cell biology. In particular, the dogma that, in adults, stem cells are exclusively tissue restricted has been questioned and there is great excitement surrounding the potential plasticity of these cells, with the profound implications that this has, for developing novel cellular therapies. Mesenchymal stem cells, multipotent adult progenitor cells and embryonic stem cells are potential sources of cells for transplantation purposes. These cells may be directed toproduce HSC, in vitro and in the future may be used for therapeutic, or drug development, purposes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
20.
Regenerative medicine opens new avenues and promises towards more effective therapies for autoimmune disorders. Current therapeutic strategies for type I diabetes focus on three major directions, with distinct advantages and disadvantages: arrest of autoimmunity, islet transplantation and generation of neoislets. There is mounting evidence that candidate stem cells residing in the hematopoietic compartments participate in regeneration of pancreatic islets following chemical and autoimmune injury in vivo. The apparent major mechanisms include immunomodulation, revascularization, support of endogenous beta-cell regeneration and differentiation into insulin-producing cells. Review of the current evidence suggests that some divergent observations depend primarily on the experimental design, which both limits and accentuates developmental events. The flood of publications reporting negative results appears to reflect primarily suboptimal experimental conditions for differentiation of putative stem cells, rather than limited developmental plasticity. Stem cells modulate the course of autoimmune diabetes through multiple mechanisms, including de novo generation of units capable to sense, produce and secrete insulin. Therefore, the charged debate over controversies surrounding developmental plasticity should not impede attempts to design curative therapies for this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号