首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of the p75 neurotrophin receptor leads to a variety of effects within the nervous system, including neuronal apoptosis. Both c-Jun N-terminal kinase (JNK) and the tumor suppressor p53 have been reported to be critical for this receptor to induce cell death; however, the mechanisms by which p75 activates these pathways is undetermined. Here we report that the neurotrophin receptor interacting factor (NRIF) is necessary for p75-dependent JNK activation and apoptosis. Upon nerve growth factor withdrawal, nrif-/- sympathetic neurons underwent apoptosis, whereas p75-mediated death was completely abrogated. The lack of cell death correlated with a lack of JNK activation in the nrif-/- neurons, suggesting that NRIF is a selective mediator for p75-dependent JNK activation and apoptosis. Moreover, we document that NRIF expression is sufficient to induce cell death through a mechanism that requires p53. Taken together, these results establish NRIF as an essential component of the p75 apoptotic pathway.  相似文献   

2.
Amyloid-like fibrils have been associated with the pathogenesis of human prion diseases. Prion peptide of aa 106-126 (PrP106-126) exhibits many PrP(Sc)-like biochemical features, forming amyloid-like fibrils in vitro. Here, we found that the recombinant yeast-derived molecular chaperon Hsp104 inhibited significantly the fibril assembly of the synthetic PrP106-126 peptide by dynamic ThT assays in vitro. EM assays revealed almost no fibril-like structure after incubation of the synthetic PrP106-126 peptides with Hsp104 for 12h. Circular dichroism assays identified that treatment of Hsp104 shifted the secondary structure of PrP106-126 fibrils from β-sheet to a random coil. MTT tests confirmed that interaction of PrP106-126 with Hsp104 maintained the toxicity of PrP106-126 on human neuroblastoma cell line SK-N-SH. Additionally, Hsp104 was able to disassemble the mature PrP106-126 fibrils in vitro, leading to recovering the cytotoxicity of PrP106-126 on SK-N-SH cells. Our study provides the molecular evidences that the yeast-derived Hsp104 can interfere in the fibril assembly and disassembly of human PrP106-126 segment.  相似文献   

3.
Transmissible spongiform encephalopathies, also called prion diseases, are characterized by neuronal loss linked to the accumulation of PrP(Sc), a pathologic variant of the cellular prion protein (PrP(C)). Although the molecular and cellular bases of PrP(Sc)-induced neuropathogenesis are not yet fully understood, increasing evidence supports the view that PrP(Sc) accumulation interferes with PrP(C) normal function(s) in neurons. In the present work, we exploit the properties of PrP-(106-126), a synthetic peptide encompassing residues 106-126 of PrP, to investigate into the mechanisms sustaining prion-associated neuronal damage. This peptide shares many physicochemical properties with PrP(Sc) and is neurotoxic in vitro and in vivo. We examined the impact of PrP-(106-126) exposure on 1C11 neuroepithelial cells, their neuronal progenies, and GT1-7 hypothalamic cells. This peptide triggers reactive oxygen species overflow, mitogen-activated protein kinase (ERK1/2), and SAPK (p38 and JNK1/2) sustained activation, and apoptotic signals in 1C11-derived serotonergic and noradrenergic neuronal cells, while having no effect on 1C11 precursor and GT1-7 cells. The neurotoxic action of PrP-(106-126) relies on cell surface expression of PrP(C), recruitment of a PrP(C)-Caveolin-Fyn signaling platform, and overstimulation of NADPH-oxidase activity. Altogether, these findings provide actual evidence that PrP-(106-126)-induced neuronal injury is caused by an amplification of PrP(C)-associated signaling responses, which notably promotes oxidative stress conditions. Distorsion of PrP(C) signaling in neuronal cells could hence represent a causal event in transmissible spongiform encephalopathy pathogenesis.  相似文献   

4.
Prion diseases are transmissible and fatal neurodegenerative disorders which involve infiltration and activation of mononuclear phagocytes at the brain lesions. A 20-aa acid fragment of the human cellular prion protein, PrP(106-126), was reported to mimic the biological activity of the pathologic isoform of prion and activates mononuclear phagocytes. The cell surface receptor(s) mediating the activity of PrP(106-126) is unknown. In this study, we show that PrP(106-126) is chemotactic for human monocytes through the use of a G protein-coupled receptor formyl peptide receptor-like 1 (FPRL1), which has been reported to interact with a diverse array of exogenous or endogenous ligands. Upon stimulation by PrP(106-126), FPRL1 underwent a rapid internalization and, furthermore, PrP(106-126) enhanced monocyte production of proinflammatory cytokines, which was inhibited by pertussis toxin. Thus, FPRL1 may act as a "pattern recognition" receptor that interacts with multiple pathologic agents and may be involved in the proinflammatory process of prion diseases.  相似文献   

5.
The aetiological agent of prion disease is proposed to be an aberrant isoform of the cell surface glycoprotein known as the prion protein (PrPc). This pathological isoform (PrPSc) is abnormally deposited in the extracellular space of diseased CNS. Neurodegeneration in these disease has been shown to be associated with accumulation of PrPSc in affected tissue. To investigate the possible uptake mechanisms that may be required for PrPSc-induced neurodegeneration we studied the cellular trafficking of the neurotoxic fragment, PrP106-126. We were able to detect, by fluorescence microscopy, PrP106-126 inclusions in murine neurones, astrocytes and microglia in vitro. These inclusions were abundant after 24 hour exposure and still present 48h post-exposure. Shorter exposure times yielded only occasional cells with inclusions. Large extracellular aggregates of PrP106-126 could also be detected, which appeared in a time dependent manner. The appearance of inclusions or aggregates was not dependent on PrPc expression as determined by exposure of peptides from PrP-null mice. Using transmission electron microscopy and gold particle detection, positively labelled osmiophilic inclusions of peptide could be detected in the cytoplasm of exposed cells. These results demonstrate that cultured cells are capable of sequestering PrP106-126 and may indicate uptake pathways for PrPSc in various cell types. Toxicity of PrP106-126 may thus be mediated via a sequestration pathway that is not effective for this peptide in PrP-null cells.  相似文献   

6.
The cytotoxicity of aged PrP(106-126) was examined using an immortalized prion protein (PrP) gene-deficient neuronal cell line. The N-terminal half of the hydrophobic region (HR) but not the octapeptide repeat (OR) of PrP was required for aged PrP(106-126) neurotoxicity, suggesting that neurotoxic signals of aged PrP(106-126) are mediated by this region.  相似文献   

7.
Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and by the accumulation of the pathogenic form of prion protein, designated PrPSc. Recently, we have shown that PrP106–126 induces endoplasmic reticulum (ER) stress, leading to mitochondrial cytochrome c release, caspase 3 activation and apoptotic death. In order to further clarify the role of mitochondria in ER stress-mediated apoptotic pathway triggered by the PrP peptide, we investigated the effects of PrP106–126 on the Ntera2 human teratocarcinoma cell line that had been depleted of their mitochondrial DNA, termed NT2 ρ0 cells, characterized by the absence of functional mitochondria, as well as on the parental NT2 ρ+ cells. In this study, we show that PrP106–126 induces ER stress in both cell lines, given that ER Ca2+ content is low, glucose-regulated protein 78 levels are increased and caspase 4 is activated. Furthermore, in parental NT2 ρ+ cells, PrP106–126-activated caspase 9 and 3, induced poly (ADP-ribose) polymerase cleavage and increased the number of apoptotic cells. Dantrolene was shown to protect NT2 ρ+ from PrP106–126-induced cell death, demonstrating the involvement of Ca2+ release through ER ryanodine receptors. However, in PrP106–126-treated NT2 ρ0 cells, apoptosis was not able to proceed. These results demonstrate that functional mitochondria are required for cell death as a result of ER stress triggered by the PrP peptide, and further elucidate the molecular mechanisms involved in the neuronal loss that occurs in prion disorders.  相似文献   

8.
The fibrillogenic peptide corresponding to the residues 106-126 of the prion protein sequence (PrP 106-126) is largely used to explore the neurotoxic mechanisms underlying the prion disease. However, whether the neuronal toxicity of PrP 106-126 is caused by a soluble or fibrillar form of this peptide is still unknown. The aim of this study was to correlate the structural state of this peptide with its neurotoxicity. Here we show that the two conserved Gly114 and Gly119 residues, in force of their intrinsic flexibility, prevent the peptide assuming a structured conformation, favouring its aggregation in amyloid fibrils. The substitution of both Gly114 and Gly119 with alanine residues (PrP 106-126 AA mutated peptide) reduces the flexibility of this prion fragment and results in a soluble, beta-structured peptide. Moreover, PrP 106-126 AA fragment was highly toxic when incubated with neuroblastoma cells, likely behaving as a neurotoxic protofibrillar intermediate of the wild-type PrP 106-126. These data further confirm that the fibrillar aggregation is not necessary for the induction of the toxic effects of PrP 106-126.  相似文献   

9.
The low affinity neurotrophin receptor (p75NTR) has been shown to mediate the apoptosis signaling to neural cells. However, the specific mechanisms of intracellular signal transduction of this process are largely unknown. To understand p75NTR-mediated signal transduction, we previously identified a protein that interacts with the intracellular domain of p75NTR, and we named it p75NTR-associated cell death executor (NADE). To elucidate further the signaling mechanisms utilized by p75NTR and NADE, we screened for NADE-binding protein(s) with the yeast two-hybrid method, and we identified 14-3-3epsilon as a NADE-binding protein in vivo. To examine whether 14-3-3epsilon affects the induction of p75NTR-mediated apoptosis, wild type or various deletion mutant forms of 14-3-3epsilon were co-expressed in HEK293, PC12nnr5, and oligodendrocytes. Interestingly, transient expression of the mutant form of 14-3-3epsilon lacking the 208-255 amino acid region blocked nerve growth factor-dependent p75NTR/NADE-mediated apoptosis, although this mutant form of 14-3-3epsilon continued to associate with NADE. These results suggest that 14-3-3epsilon plays an important role in the modulation of nerve growth factor-dependent p75NTR/NADE-mediated apoptosis.  相似文献   

10.
11.
In prion-related encephalopathies, the cellular prion protein (PrP(C)) undergoes a change in conformation to become the scrapie prion protein (PrP(Sc)) which forms infectious deposits in the brain. Conceivably, the conformational transition of PrP(C) to PrP(Sc) might be linked with posttranslational alterations in the covalent structure of a fraction of the PrP molecules. We tested a synthetic peptide corresponding to residues 106-126 of human PrP for the occurrence of spontaneous chemical modifications. The only asparagine residue, Asn108, was deamidated to aspartic acid and isoaspartic acid with a half-life of about 12 days. The same posttranslational modifications were found in recombinant murine full-length protein. On aging, 0.8 mol of isoaspartyl residue per mole of protein was detected by the protein-l-isoaspartyl methyltransferase assay (t(1/2) approximately 30 days). Mass spectrometry and Edman degradation of Lys-C fragments identified Asn108 in the amino-terminal flexible part of the protein to be partially converted to aspartic acid and isoaspartic acid. A second modification was the partial isomerization of Asp226' which is only present in rodents.  相似文献   

12.
Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75NTR), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75NTR and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75NTR and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75NTR/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75NTR or TrkA. Interestingly, immunoreactivity to anti-p75NTR antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75NTR, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75NTR is turned on.  相似文献   

13.
Glucagon-like peptide-1 receptor is involved in learning and neuroprotection   总被引:19,自引:0,他引:19  
Glucagon-like peptide-1 (GLP-1) is a gut peptide that, together with its receptor, GLP-1R, is expressed in the brain. Here we show that intracerebroventricular (i.c.v.) GLP-1 and [Ser(2)]exendin(1-9) (HSEGTFTSD; homologous to a conserved domain in the glucagon/GLP-1 family) enhance associative and spatial learning through GLP-1R. [Ser(2)]exendin(1-9), but not GLP-1, is also active when administered peripherally. GLP-1R-deficient mice have a phenotype characterized by a learning deficit that is restored after hippocampal Glp1r gene transfer. In addition, rats overexpressing GLP-1R in the hippocampus show improved learning and memory. GLP-1R-deficient mice also have enhanced seizure severity and neuronal injury after kainate administration, with an intermediate phenotype in heterozygotes and phenotypic correction after Glp1r gene transfer in hippocampal somatic cells. Systemic administration of [Ser(2)]exendin(1-9) in wild-type animals prevents kainate-induced apoptosis of hippocampal neurons. Brain GLP-1R represents a promising new target for both cognitive-enhancing and neuroprotective agents.  相似文献   

14.
The low affinity neurotrophin receptor p75NTR can mediate cell survival as well as cell death of neural cells by NGF and other neurotrophins. To elucidate p75NTR-mediated signal transduction, we screened p75NTR-associated proteins by a yeast two-hybrid system. We identified one positive clone and named NADE (p75NTR-associated cell death executor). Mouse NADE has marked homology to the human HGR74 protein. NADE specifically binds to the cell-death domain of p75NTR. Co-expression of NADE and p75NTR induced caspase-2 and caspase-3 activities and the fragmentation of nuclear DNA in 293T cells. However, in the absence of p75NTR, NADE failed to induce apoptosis, suggesting that NADE expression is necessary but insufficient for p75NTR-mediated apoptosis. Furthermore, p75NTR/NADE-induced cell death was dependent on NGF but not BDNF, NT-3, or NT-4/5, and the recruitment of NADE to p75NTR (intracellular domain) was dose-dependent. We obtained similar results from PC12 cells, nnr5 cells, and oligodendrocytes. Taken together, NADE is the first signaling adaptor molecule identified in the involvement of p75NTR-mediated apoptosis induced by NGF, and it may play an important role in the pathogenesis of neurogenetic diseases.  相似文献   

15.
16.
SIRT6 is a NAD+-dependent histone deacetylase and has been implicated in the regulation of genomic stability, DNA repair, metabolic homeostasis and several diseases. The effect of SIRT6 in cerebral ischemia and oxygen/glucose deprivation (OGD) has been reported, however the role of SIRT6 in oxidative stress damage remains unclear. Here we used SH-SY5Y neuronal cells and found that overexpression of SIRT6 led to decreased cell viability and increased necrotic cell death and reactive oxygen species (ROS) production under oxidative stress. Mechanistic study revealed that SIRT6 induced autophagy via attenuation of AKT signaling and treatment with autophagy inhibitor 3-MA or knockdown of autophagy-related protein Atg5 rescued H2O2-induced neuronal injury. Conversely, SIRT6 inhibition suppressed autophagy and reduced oxidative stressinduced neuronal damage. These results suggest that SIRT6 might be a potential therapeutic target for neuroprotection.  相似文献   

17.
The synthetic peptide PrP-(106-126) has previously been shown to be neurotoxic. Here, for the first time, we report that it induces apoptosis in the human neuroblastoma cell line SH-SY5Y. The earliest detectable apoptotic event in this system is the rapid depolarization of mitochondrial membranes, occurring immediately upon treatment of cells with PrP-(106-126). Subsequent to this, cytochrome c release and caspase activation were observed. Caspase inhibitors demonstrated that while the peptide activates caspases they are not an absolute requirement for apoptosis. Parallel to caspase activation, PrP-(106-126) was also observed to trigger a rise in intracellular calcium through release of mitochondrial calcium stores. This leads to the activation of calpains, another family of proteases. A calpain inhibitor demonstrated that while calpains are activated by the peptide they also are not an absolute requirement for apoptosis. Interestingly a combination of caspase and calpain inhibitors significantly inhibited apoptosis. This illustrates alternative pathways leading to apoptosis via caspases and calpains and that blocking both pathways is required to inhibit apoptosis. These results implicate the mitochondrion as a primary site of action of PrP-(106-126).  相似文献   

18.
Heegaard PM  Pedersen HG  Flink J  Boas U 《FEBS letters》2004,577(1-2):127-133
The prion protein (PrP) peptide 106-126 forms amyloid aggregates in vitro and this sequence is speculated to be involved in the formation of amyloid fibrils by the abnormally folded PrP protein (PrPSc) found in spongiform encephalopathies. It is shown here by incubation experiments in water using Thioflavin T (ThT) as a fluorescent probe for amyloid formation that changes in C-terminal charge, oxidation state and conformational stabilisation lead to large changes in amyloid forming behaviour (amyloidogenicity) of this peptide. Amyloid formation is favoured by a charged C-terminus and is strongly inhibited by oxidation. Furthermore, cationic dendrimers are shown to perturb peptide fibrillation in a process dependent on the nature of the charged groups on the dendrimer surface.  相似文献   

19.
Kouadir M  Yang L  Tan R  Shi F  Lu Y  Zhang S  Yin X  Zhou X  Zhao D 《PloS one》2012,7(1):e30756
Microglial activation is a characteristic feature of the pathogenesis of prion diseases. The molecular mechanisms that underlie prion-induced microglial activation are not very well understood. In the present study, we investigated the role of the class B scavenger receptor CD36 in microglial activation induced by neurotoxic prion protein (PrP) fragment 106-126 (PrP(106-126)). We first examined the time course of CD36 mRNA expression upon exposure to PrP(106-126) in BV2 microglia. We then analyzed different parameters of microglial activation in PrP(106-126)-treated cells in the presence or not of anti-CD36 monoclonal antibody (mAb). The cells were first incubated for 1 h with CD36 monoclonal antibody to block the CD36 receptor, and were then treated with neurotoxic prion peptides PrP(106-126). The results showed that PrP(106-126) treatment led to a rapid yet transitory increase in the mRNA expression of CD36, upregulated mRNA and protein levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α), increased iNOS expression and nitric oxide (NO) production, stimulated the activation of NF-κB and caspase-1, and elevated Fyn activity. The blockade of CD36 had no effect on PrP(106-126)-stimulated NF-κB activation and TNF-α protein release, abrogated the PrP(106-126)-induced iNOS stimulation, downregulated IL-1β and IL-6 expression at both mRNA and protein levels as well as TNF-α mRNA expression, decreased NO production and Fyn phosphorylation, reduced caspase-1 cleavage induced by moderate PrP(106-126)-treatment, but had no effect on caspase-1 activation after treatment with a high concentration of PrP(106-126). Together, these results suggest that CD36 is involved in PrP(106-126)-induced microglial activation and that the participation of CD36 in the interaction between PrP(106-126) and microglia may be mediated by Src tyrosine kinases. Our findings provide new insights into the mechanisms underlying the activation of microglia by neurotoxic prion peptides and open perspectives for new therapeutic strategies for prion diseases by modulation of CD36 signaling.  相似文献   

20.
Kurganov B  Doh M  Arispe N 《Peptides》2004,25(2):217-232
To compare both the peptide molecular self-aggregation and the interaction with membrane lipids of the Alzheimer's amyloid beta (Abeta)40, Abeta42 peptides, and the cytotoxic peptides human amylin and prion (106-126) peptides, we applied a liposome aggregation technology. The kinetics of the changes in the optical density (DeltaOD) of liposome suspensions generated by the aggregation of liposomes induced by these peptides, allowed us to comparatively analyze their phospholipid affinity and self-aggregation. The kinetic curves showed an initial nonlinear region where d(DeltaOD)/dt followed first order kinetics corresponding to the binding of the peptides to the membrane of the liposome, a linear region where d(DeltaOD)/dt was constant, corresponding to the interaction between two membrane-bound peptide molecules, and a final slower increasing nonlinear region that corresponds to nucleation or seeding of aggregation. The analysis of the aggregation curves demonstrated that amylin and prion peptides also showed affinity for the acidic phospholipid phosphatidylserine (PS), as it has previously been shown for the Alzheimer's Abeta40, Abeta42 peptides. Abeta42 showed the highest, and amylin the lowest, affinity for the liposome membrane. When bound to the membrane of the liposomes, all the peptides preserved the self-aggregation characteristics observed in solution. Aging the Abeta40 and Abeta42 peptide solutions that permit molecular self-aggregation reduced their capacity to induce liposome aggregation. The self-aggregation of membrane-bound prion molecules was several orders of magnitude higher than that observed for the other toxic peptides. Incorporation of the ganglioside GM1 into the membrane of liposomes enhanced the peptide-induced liposome aggregation. Kinetic analysis revealed that this enhancement was due to facilitation of the formation of bridges between membrane-bound peptide molecules, demonstrating that the peptide-membrane interaction and the peptide amyloidogenesis are independent functions performed at separate molecular regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号