首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite more than a 10-fold increase in T cell numbers in G-CSF-mobilized peripheral blood stem cell (PBSC) grafts, incidence and severity of acute graft-vs-host disease (GVHD) are comparable to bone marrow transplantation. As CD1d-restricted, Valpha24+Vbeta11+ NKT cells have pivotal immune regulatory functions and may influence GVHD, we aimed to determine whether G-CSF has any effects on human NKT cells. In this study, we examined the frequency and absolute numbers of peripheral blood NKT cells in healthy stem cell donors (n = 8) before and following G-CSF (filgrastim) treatment. Effects of in vivo and in vitro G-CSF on NKT cell cytokine expression profiles and on responsiveness of NKT cell subpopulations to specific stimulation by alpha-galactosylceramide (alpha-GalCer) were assessed. Contrary to the effects on conventional T cells, the absolute number of peripheral blood NKT cells was unaffected by G-CSF administration. Furthermore, responsiveness of NKT cells to alpha-GalCer stimulation was significantly decreased (p < 0.05) following exposure to G-CSF in vivo. This hyporesponsiveness was predominantly due to a direct effect on NKT cells, with a lesser contribution from G-CSF-mediated changes in APC. G-CSF administration resulted in polarization of NKT cells toward a Th2, IL-4-secreting phenotype following alpha-GalCer stimulation and preferential expansion of the CD4+ NKT cell subset. We conclude that G-CSF has previously unrecognized differential effects in vivo on NKT cells and conventional MHC-restricted T cells, and effects on NKT cells may contribute to the lower than expected incidence of GVHD following allogeneic peripheral blood stem cell transplantation.  相似文献   

2.
Allogeneic stem cell transplantation (SCT) is the treatment of choice for a large number of hematologic malignancies. Its major advantage over conventional chemotherapy lies in the graft-versus-leukemia (GVL) effects mediated by allo- or tumor-reactive donor lymphocytes given in the course of SCT or post transplantation as donor lymphocyte infusions (DLI). The benefits of cell-mediated immunotherapy over myeloablative radiochemotherapy have also made it possible to reduce the intensity of conditioning regimens. Mobilized peripheral blood has proved preferable to bone marrow (BM) as a source of stem cells for transplantation, since it provides a larger number of stem cells on the one hand and immunologically competent lymphocytes on the other. The use of granulocyte colony stimulating factor (G-CSF), which is necessary to mobilize and increase the number of stem cells, may down-regulate the GVL effect by suppression of donor effector T lymphocytes by inducing Th1Th2 cytokine switch. It has previously been shown that GVL effects may be amplified by both in vivo and in vitro activation of donor lymphocytes with human recombinant interleukin-2 (rIL-2). Our studies using a leukemic murine model prepared for transplantation with low intensity conditioning prior to infusion of G-CSF-mobilized peripheral blood stem cells (PBSC) have demonstrated that mobilization of blood cells with G-CSF and in vivo treatment with rIL-2 following low-intensity conditioning enhances the GVL effects and prolongs survival of recipients inoculated with BCL1. Activation of donor lymphocytes with rIL-2 may thus be useful for amplifying GVL effects following mobilization with G-CSF.  相似文献   

3.
Joo YD  Lee WS  Won HJ  Lee SM  Choi JH  Lee SM  Han KH  Park SG  Choi IW  Seo SK 《Cytokine》2011,54(1):36-42
Granulocyte colony-stimulating factor (G-CSF) mobilized peripheral blood stem cells (PBSCs) are more frequently used as the cellular source in allogeneic hematopoietic stem cell transplantation (HSCT) than bone marrow stem cells (BMSCs) because they promote more rapid engraftment and immune reconstitution. However, the underlying mechanism for this is not fully understood. Here, we investigated the role of Toll-like receptor 2 (TLR2) on PBSCs in promoting rapid engraftment after allogeneic HSCT. We found that PBSCs highly expressed TLR2 in comparison to BMSCs, and TLR2 was directly induced by G-CSF signaling. Treatment with the TLR2 ligand, Pam(3)CSK(4) (PAM), more efficiently induced myeloid differentiation of PBSCs than BMSCs. Similarly, endogenous TLR2 ligands from the serum of recipients of allogeneic transplantation more rapidly stimulated myeloid differentiation of PBSCs compared with BMSCs. PAM treatment of TLR2(-/-) syngeneic recipient mice transplanted with PBSCs resulted in significantly elevated numbers of PBSC-derived myeloid cells and spleen colony formation compared with controls. Our results demonstrate that TLR2 signaling in PBSCs correlates with their ability to rapidly differentiate into myeloid cells, resulting in improved engraftment. Thus, TLR2 may be a novel target for increasing the efficiency of allogeneic HSCT by overcoming engraftment failure or delayed engraftment.  相似文献   

4.
Allogeneic bone marrow or blood stem call transplantation (BMT) represents an important therapeutic tool for the treatment of otherwise incurable malignant and non-malignant diseases. Until recently, autologous and allogeneic bone marrow and mobilized blood stem cell transplantations were used primarily to replace malignant, genetically abnormal or deficient immunohematopoietic compartments, and therefore highly toxic myeloablative regimens were considered to be mandatory for the effective eradication of all undesirable host-derived hematopoietic elements. Our preclinical and ongoing clinical studies have indicated that much more effective eradication of the host immunohematopoietic system cells can be achieved by adoptive allogeneic cell therapy with donor lymphocyte infusion following BMT. Thus, eradication of blood cancer cells, especially in patients with chronic myeloid leukemia and, less frequently, in patients with other hematologic malignancies, can frequently be accomplished despite the complete resistance of such tumor cells to maximally tolerated doses of chemoradiotherapy. Our cumulative experience has suggested that graft-vs.-leukemia (GVL) effects might be a useful tool for the eradication of otherwise resistant tumor cells of host origin. Based on the cumulative clinical experience and experimental data in animal models of human diseases, it appears that the induction of host-vs.-graft tolerance as an initial step may allow the durable engraftment of donor immunocompetent lymphocytes, which may be used for the induction of effective biologic warfare against host-type immunohematopoietic cells that need to be replaced, including malignant, genetically abnormal or self-reactive cells. Based on the aforementioned rationale, we speculated that the therapeutic benefit of BMT may be improved by using safer conditioning as part of the transplant procedure, with the goal being to induce host-vs.-graft tolerance to enable subsequent induction of GVL, possibly graft-vs.-tumor or even graft-vs.-autoimmunity effects, rather than attempting to eliminate host cells with hazardous myeloablative chemoradiotherapy. This hypothesis suggested that effective BMT procedures could be accomplished without lethal conditioning of the host, using new well-tolerated non-myeloablative regimens, thus possibly minimizing immediate and late side-effects related to the myeloablative procedures until recently considered to be mandatory for the conditioning of BMT recipients. Recent clinical data presented in this review suggest that effective BMT procedures may be accomplished with well-tolerated non-myeloablative stem cell transplantation (NST) regimens, with no major toxicity. Thus, new NST approaches may offer the feasibility of safer BMT procedures for a large spectrum of clinical indications in children and elderly individuals, without lower or upper age limits, while minimizing procedure-related toxicity and mortality. Taken together, our data suggest that high-dose chemotherapy and radiation therapy may be successfully replaced by a more effective biologic tool, alloreactive donor lymphocytes, thus setting the stage for innovative therapeutic procedures for safer and more effective treatment of patients in need of BMT.  相似文献   

5.
Graft-versus-leukemia (GVL) response after allogeneic bone marrow transplantation (BMT) represents one of the most potent forms of immunotherapy against malignant diseases. Antigen-presenting cells (APCs) are crucial for the induction of graft-versus-host disease (GVHD), the most serious complication of allogeneic BMT, but their role in GVL responses is unclear. Using a series of clinically relevant mouse GVL tumor models, we found that APCs and alloantigen expression on tumors are crucial for GVL. Moreover, APCs of host origin predominated in GVL responses although donor APCs contributed as the acuity of tumor burden decreased.  相似文献   

6.
Graft-vs-host disease (GVHD) is the leading cause of treatment-related death in allogeneic bone marrow (BM) transplantation. Immunosuppressive strategies to control GVHD are only partially effective and often lead to life-threatening infections. We previously showed that engraftment of MHC-mismatched BM is enhanced and GVHD abrogated in recipients homozygous for a germline SHIP mutation. In this study, we report the development of a genetic model in which SHIP deficiency can be induced in adult mice. Using this model, we show that the induction of SHIP deficiency in adult mice leads to a rapid and significant expansion of myeloid suppressor cells in peripheral lymphoid tissues. Consistent with expansion of myeloid suppressor cells, splenocytes and lymph node cells from adult mice with induced SHIP deficiency are significantly compromised in their ability to prime allogeneic T cell responses. These results demonstrate that SHIP regulates homeostatic signals for these immunoregulatory cells in adult physiology. Consistent with these findings, induction of SHIP deficiency before receiving a T cell-replete BM graft abrogates acute GVHD. These findings indicate strategies that target SHIP could increase the efficacy and utility of allogeneic BM transplantation, and thereby provide a curative therapy for a wide spectrum of human diseases.  相似文献   

7.
Autologous and allogeneic bone marrow transplantations have evolved as important cancer therapy modalities. For both indications, peripheral blood has been shown to have distinct advantages over bone marrow as the stem cell source. Cytokine combinations for mobilization have enhanced stem cell yield and accelerated engraftment. However, novel mobilizing agents and strategies are needed to further improve clinical outcomes. Within the donor graft, the dynamic equilibrium between T cells and stem cells critically influences engraftment and transplantation results. IL-17 is a cytokine produced almost exclusively from activated T cells. IL-17 was expressed in vivo with adenovirus technology. Here, proof-of-principle studies demonstrate that IL-17 effectively mobilizes hemopoietic precursor cells (CFU-granulocyte-erythrocyte-macrophage-monocyte, CFU-high proliferative potential) and primitive hemopoietic stem cells (Lin(-/low)c-kit(+)Sca1(+)). Moreover, mouse IL-17 adenovirus-mobilized peripheral blood stem cells rescued lethally irradiated mice. Bone marrow was found to be 45-75% of donor origin at 1 year. In secondary recipients, donor-derived bone marrow cells ranged from 45 to 95%. These data show that IL-17 mobilizes stem cells in mice with short- and long-term reconstituting capacity. Additional comparative studies are needed as well as studies in tumor models to refine distinct potential clinical applications for IL-17-mobilized peripheral blood stem cells.  相似文献   

8.
In utero bone marrow transplantation to fetuses offers the potential advantage of ameliorating the effects of genetic disorders by transplanting allogeneic hematopoietic stem cells into recipients who are immunoincompetent and require no preparative regimen. Therefore, we undertook studies to examine the feasibility of in utero bone marrow transplantation of unrelated allogeneic adult bone marrow into fetal baboons. Thirty-one baboon fetuses were transplanted between the ages of 60 and 160 days gestation (normal gestation, 182 days) with unrelated allogeneic adult bone marrow containing a different isozyme of glucose-phosphate isomerase (GPI). Approximately one third of the 80-day fetuses demonstrated engraftment 1 month after transplantation. Three of three of the initial chimeras died in utero 45 to 80 days after transplantation and the remaining chimeras lost their graft. Furthermore, 80-day fetal baboons were able to recognize donor cells, maternal cells, and other adult baboon peripheral blood cells in a mixed lymphocyte culture (MLC) reaction but still could engraft with allogeneic bone marrow. In contrast all nonchimeric animals survived to term. These data suggest that fetal transplantation of primates is feasible using techniques employed in these studies and that transplantation of younger fetuses who are immunocompetent should be attempted.  相似文献   

9.
YD Joo  WS Lee  HJ Won  SM Lee  HR Kim  JK Park  SG Park  IW Choi  I Choi  SK Seo 《Cytokine》2012,60(1):277-283
The immunoregulatory effects of granulocyte colony-stimulating factor (G-CSF) on allogeneic peripheral blood cell transplantation (PBCT) have been demonstrated to reduce acute graft-versus-host disease (GVHD). However, the underlying mechanism is still not clear. In this study, we focused on the direct effects of G-CSF on donor CD4(+) T cell responses after transplantation. We observed that lethally irradiated B6D2F1 recipient mice that are transplanted with CD4(+) T cells from G-CSF-treated B6 donors showed mild attenuations in severity and mortality compared with recipients transplanted with PBS-treated CD4(+) T cells. Notably, skin GVHD was significantly reduced, but no such reduction was observed in other organs. Although there was no difference with respect to alloreactive expansion or Foxp3(+) Treg induction, the use of G-CSF-treated CD4(+) T cells significantly reduced the numbers of IL-17-producing and RORγt-expressing cells in the secondary lymphoid organs of allogeneic recipients after transplantation compared with the use of the control cells. Finally, we found that the suppressor of cytokine signaling-3 (SOCS3) expression in G-CSF-treated donor CD4(+) T cells was much higher than that in control CD4(+) T cells. Our results demonstrate that the inhibition of Th17 cell differentiation by SOCS3 induction is associated with the immunoregulatory role of G-CSF in CD4(+) T cell-mediated acute GVHD.  相似文献   

10.
Background aimsThe purpose of this study was to observe the outcome of co-transfusion of umbilical cord multipotent stromal cells (UC-MSC) and allogeneic hematopoietic stem cells in the treatment of heavily-transfused patients with severe aplastic anemia.MethodsOf the 22 patients, eight cases received haploidentical hematopoietic stem cells from granulocyte colony-stimulating factor–primed bone marrow and peripheral blood grafts; the other patients received granulocyte colony-stimulating factor–mobilized peripheral blood grafts from human leukocyte antigen–matched related (six cases) and unrelated donors (eight cases). MSCs were intravenously infused at a mean dose of 1.2 × 106/ kg (range, 0.27–2.5 × 106/kg). Fludarabine-based conditioning was conducted, and graft-versus-host disease prophylaxis containing cyclosporine A, methotrexate and mycophenolate mofetil with or without addition of anti-CD25 monoclonal antibody was performed. Hematopoietic engraftment, the occurrence of graft-versus-host disease (GVHD) and infections and overall survival were documented.ResultsAll patients had rapid engraftment; mean time for neutrophil and platelet recovery was 13.95 d and 20.27 d, respectively. No acute toxicity associated with UC-MSC transfusion was observed. Acute GVHD developed in seven cases (grade I–II), and none had development of chronic GVHD. Cytomegalovirus reactivation was observed in 11 cases. One patient died of pulmonary complication 6 months after transplantation. Twenty-one patients are currently alive, at a median follow-up of 15 months; they are transfusion-independent and reached full donor chimerism at the time of reporting.ConclusionsUC-MSC infusion might be an alternative option to promote hematopoietic engraftment and reduce the occurrence of GHVD in hematopoietic stem cell transplantation in the treatment of heavily transfused patients with severe aplastic anemia.  相似文献   

11.
Donor T cells are able to effect a graft-vs-leukemia (GVL) response but also induce graft-vs-host disease (GVHD) after allogeneic bone marrow transplantation. We used an AKR leukemia murine transplant model, analogous to human acute lymphoblastic leukemia, in which donor T cells expressed a thymidine kinase suicide gene, to test whether separation of GVL and graft-vs-host (GVH) responses was feasible by selectively eliminating alloactivated donor T cells at defined time points posttransplant. Under experimental conditions where untreated mice could not be cured of disease without dying from GVHD, mice transplanted with thymidine kinase-positive T cells and subsequently administered ganciclovir (GCV) could eliminate leukemia without lethal GVHD. Timing of GCV administration, donor T cell dose, and preexisting leukemia burden were observed to be critical variables. Eradication of leukemia without lethal GVHD in GCV-treated mice implied that the kinetics of GVL and GVH responses were asynchronous and could therefore be temporally dissociated by timely GCV administration. That this strategy was feasible in a murine leukemia model in which GVHD and GVL reactivity are tightly linked suggests that this approach may be relevant to the treatment of selected human leukemias where similar constraints exist. This strategy represents an alternative approach to separating GVL and GVH reactivity and challenges the current paradigm that separation of these responses is dependent upon the administration of donor T cells with restricted specificity for leukemia as opposed to host Ags.  相似文献   

12.
Treatment with myeloablative chemotherapy and autologous peripheral blood stem cell (PBSC) transplantation followed by vaccination with autologous dendritic cells (DCs) treated with tumor antigens is a promising therapeutic strategy for several types of cancer. Obtaining sufficient numbers of both PBSCs and DCs is central to this approach. Previously, it has been shown that administration of Flt-3-Ligand (FL) combined with either G-CSF or GM-CSF mobilizes large numbers of PBSCs in patients with cancer. In the current study, we sought to determine whether these same cytokines could simultaneously mobilize DCs into the PBSC leukapheresis collection. DCs were analysed in PBSC leukapheresis samples obtained from five patients with high-risk breast cancer who received G-CSF alone as priming prior to leukapheresis, four patients who received FL+G-CSF and five patients who received FL+GM-CSF. DCs were defined as cells with a lin(dim/-) HLA-DR+ CD11c+ phenotype. The proportions of DCs in the FL+G-CSF and FL+GM-CSF samples were significantly higher than in pre-mobilization peripheral blood and G-CSF leukapheresis samples. The mean yield of DCs/kg in the FL+GM-CSF samples was also significantly higher than the mean yield of DCs in the G-CSF samples. The FL+G-CSF and FL+GM-CSF mobilized DCs were immature by morphologic and phenotypic criteria but stimulated allogeneic T-cells at levels similar to DCs generated in culture from PBMCs. Overnight culture?of the immature DCs obtained from patients receiving either FL+G-CSF or FL+GM-CSF in TNF-alpha?resulted in the generation of mature DCs. In summary, administration of FL in combination with GM-CSF and G-CSF to patients with breast cancer can mobilize large numbers of immature DCs into PBSC leukapheresis collections.  相似文献   

13.
《Cytotherapy》2022,24(10):1013-1025
Background aimsIn allogeneic stem cell transplantation, unrelated donors are chosen in cases where appropriate related donors are not available. Peripheral blood stem cells (PBSCs) are more often selected as a graft source than bone marrow (BM). However, the prognostic benefits of PBSCs versus BM transplants from unrelated donors have not been carefully examined in patients with acute myeloid leukemia (AML). This study compared outcomes of adult AML patients who underwent unrelated PBSC and BM transplantation, evaluating post-transplant complications, including engraftment, graft-versus-host disease (GVHD) and infections, and determined subgroups of patients who are most likely to benefit from unrelated PBSCs compared with BM transplants.MethodsThe authors analyzed 2962 adult AML patients who underwent unrelated PBSC or BM transplants between 2011 and 2018 (221 PBSC and 2741 BM) using the Japanese nationwide registry database, in which graft source selection is not skewed toward PBSCs.ResultsIn 49.7% of patients, disease status at transplantation was first complete remission (CR1). In 57.1% of cases, HLA-matched donors were selected. Myeloablative conditioning was performed in 75.1% of cases, and anti-thymocyte globulin (ATG) was added to conditioning in 10.5%. Multivariate analyses showed a trend toward favorable non-relapse mortality (NRM) in PBSC recipients compared with BM recipients (hazard ratio [HR], 0.731, P = 0.096), whereas overall survival (OS) (HR, 0.959, P = 0.230) and disease-free survival (DFS) (HR, 0.868, P = 0.221) were comparable between PBSC and BM recipients. Although the rate of chronic GVHD (cGVHD) was significantly higher in PBSC patients (HR, 1.367, P = 0.016), NRM was not increased, mainly as a result of significantly reduced risk of bacterial infections (HR, 0.618, P = 0.010), reflecting more prompt engraftments in PBSC recipients. Subgroup analyses revealed that PBSC transplantation was advantageous in patients transplanted at CR1 and in those without ATG use. PBSC recipients experienced significantly better OS and/or DFS compared with BM recipients in this patient group.ConclusionsThe authors' results confirmed the overall safety of unrelated PBSC transplantation for adult AML patients and suggested an advantage of PBSCs, especially for those in CR1. Further optimization of the prophylactic strategy for cGVHD is required to improve the overall outcome in transplantation from unrelated PBSC donors.  相似文献   

14.
《Cytotherapy》2023,25(4):423-431
Background aimsIn a previous pilot study of HLA-matched sibling donor hematopoietic cell transplantation (HCT), the authors determined the feasibility of day 4 versus day 5 granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood stem cell (PBSC) collection compared with a historical cohort. Given identified differences in the PBSC product (day 4 cohort with significantly lower infused total nucleated, mononuclear and CD3 cells compared with other collection cohorts), the authors performed a follow-up study to determine long-term post-HCT outcomes, including detailed characterization of chronic graft-versus-host disease (GVHD).MethodsThis was a prospective observational study, and the authors collected data on chronic GVHD, staging, sites of involvement and treatments. Performance status, incidence of relapse, overall survival and duration of immunosuppressive therapy (IST) were also evaluated. Data were examined retrospectively. To account for differences in length of follow-up among cohorts, the authors also determined performance status and chronic GVHD staging, sites and treatment at 2 years post-HCT.ResultsAt 2 years post-HCT, the overall survival rate was 71.7% in the day 4 cohort compared with 61.5%, 52% and 56% in the day 5, 2-day and historical cohorts, respectively (P = 0.283). The cumulative incidence of chronic GVHD was 65.2% in the day 4 cohort versus 46.4% in the day 5 cohort, 51.1% in the 2-day cohort and 65% in the historical cohort (P = 0.26). There was no significant difference in the maximum overall stage of chronic GVHD (P = 0.513), median number of sites involved (P = 0.401) or cumulative incidence of discontinuation of IST (P = 0.32). Death from chronic GVHD was less common in the day 4 and day 5 cohorts compared with the 2-day and historical cohorts, though this did not reach statistical significance.ConclusionsThe authors’ preliminary results demonstrated that collection of allogeneic matched sibling donor PBSCs on day 4 of G-CSF was feasible, reduced donor exposure to growth factor and was associated with an initial cost savings. Importantly, the authors now demonstrate that transplantation of day 4 mobilized PBSCs is not associated with any adverse outcomes post-HCT, including late effects such as chronic GVHD. Further investigation of donor G-CSF collection algorithms is merited in other HCT settings, including unrelated and mismatched related donors.  相似文献   

15.
Allogenic bone marrow transplantation (BMT), an important treatment for hematological malignancies, is often complicated by graft-versus-host disease (GVHD). Suppression of GVHD is associated with the unwanted diminishment of the graft-versus-leukemia (GVL) response. The aim of this study was to maintain the benefits of GVL during GVHD suppression through isolated blockade of T-cell migration factors. To this end, we developed a murine model of B-cell leukemia, which was treated with BMT to induce GVHD. Within this model, functional blockade of MIP-2/CXCR2 was analyzed by observing proteomic, histologic and clinical variables of GVHD manifestation. Luminex assay of collected tissue identified several cytokines [granulocyte colony-stimulating factor (G-CSF), keratinocyte-derived chemokine (KC), macrophage inflammatory protein-2 (MIP-2), and interleukin-23 (IL-23)] that were upregulated during GHVD, but reduced by neutralizing the MIP-2/CXCR2 axis. In addition, donor T-cell blockade of CXCR2 combined with recipient administration of anti-MIP-2 caused a significant decrease in GVHD while preserving the GVL response. We propose that blocking the MIP-2/CXCR2 axis represents a novel strategy to separate the toxicity of GVHD from the beneficial effects of GVL after allogenic BMT.  相似文献   

16.
We studied engraftment in a murine model of allogeneic bone marrow (BM) transplantation. Recipient C57BL/6 (H-2b) mice were conditioned with single-dose (9 or 7.5 Gy) total body irradiation (TBI), fractionated (4 X 3.3 Gy) TBI, hyperfractionated (8 X 1.65 Gy) TBI, 2 X 120 mg/kg cyclophosphamide (CY) followed by 7.5 Gy TBI, or 300 mg/kg CY followed by 9 Gy total lymphoid irradiation (TLI). Conditioned mice were transplanted with BALB/c (H-2d) BM supplemented with splenocytes (BMS) to facilitate graft-vs-host disease (GVHD). Ex vivo T cell depletion of the BMS with anti-Thy-1.2 antibody and complement protected recipients from lethal GVHD. Engraftment was measured in transplanted animals by serotyping peripheral blood mononuclear cells with anti-H-2-specific antibodies and complement. Mice that were given a T cell-depleted BMS transplant after conditioning with 9 Gy TBI, fractionated TBI, or CY plus TBI showed a 99 to 100% incidence of engraftment. However, if the T cell-depleted graft was given to mice conditioned with hyperfractionated TBI, 7.5 Gy TBI, or CY plus TLI, only 3 to 32% of the animals engrafted. BM which was not T cell-depleted engrafted in 63 to 100% of the mice regardless of the conditioning used. Nonengrafted mice tested with anti-host type antibody demonstrated autologous recovery. We conclude that engraftment or failure/rejection of BM in transplanted mice is determined in part by a dynamic equilibrium between T cells present in the donor graft and the surviving hemopoietic cells in the conditioned recipient. More intensive conditioning of the recipient allows engraftment of T cell-depleted, mismatched BMS. Such conditioning is not limited to a single modality, but can be achieved with single-dose TBI, fractionated TBI, or with TBI combined with CY. These findings have timely and important implications for the current understanding of engraftment in human allogeneic BM transplantation following T cell depletion.  相似文献   

17.
18.
Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation.  相似文献   

19.
The opposing problems of graft-vs-host disease (GVHD) and failure of alloengraftment present major obstacles to the application of bone marrow transplantation (BMT) across complete MHC barriers. The addition of syngeneic T-cell-depleted (TCD) bone marrow (BM) to untreated fully allogeneic marrow inocula in lethally irradiated mice has been previously shown to provide protection from GVHD. We have used this model to study the effects of allogeneic T cells on levels of chimerism in recipients of mixed marrow inocula. The results indicate that T cells in allogeneic BM inocula eliminate both coadministered recipient-strain and radioresistant host hematopoietic elements to produce complete allogeneic chimerism without clinical GVHD. To determine the role of GVH reactivity in this phenomenon, we performed similar studies in an F1 into parent combination, in which the genetic potential for GVHD is lacking. The presence of T cells in F1 marrow inocula led to predominant repopulation with F1 lymphocytes in such chimeras, even when coadministered with TCD-recipient-strain BM. These results imply that the ability of allogeneic BM cells removed by T cell depletion to increase levels of allochimerism may be mediated by a population which is distinct from that which produces GVHD. These results may have implications for clinical BM transplantation.  相似文献   

20.
The number of umbilical cord blood transplants is increasing worldwide. The purpose of Eurocord is to evaluate the results and to compare the outcome of umbilical cord blood transplants with allogeneic bone marrow transplants. Data have been reported to Eurocord by multiple transplant centers. Close links have been established with the cord blood banks through Netcord. Bone marrow transplant data have been provided by transplant centers and also through the European Group for Blood and Marrow Transplantation (EBMT) and International Bone Marrow Transplant Registries (IBMTR). Eurocord has analyzed the outcome of unrelated umbilical cord blood transplants from 121 transplant centers and 29 countries. The results showed that survival with unrelated mismatched umbilical cord blood transplants was comparable to that with unrelated bone marrow transplants. Engraftment with cord blood was delayed, resulting in an increased incidence of early transplant complications. The incidence of acute and chronic graft-vs.-host disease was reduced with cord blood grafts even in human leukocyte antigen (HLA)-mismatched transplants and in adults. In patients with leukemia, the rate of relapse was similar to the rate of relapse after bone marrow transplant. The overall event-free survival with umbilical cord blood transplantation was not statistically different when compared to bone marrow transplants. This large registry study confirms the potential benefit of using umbilical cord blood hematopoietic stem cells for allogeneic transplants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号