首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic or environmentally-induced alterations in protein structure interfere with the correct folding, assembly and trafficking of proteins. In the lung the expression of misfolded proteins can induce a variety of pathogenetic effects. Cystic fibrosis (CF) and alpha-1 antitrypsin (AAT) deficiency are two major clinically relevant pulmonary disorders associated with protein misfolding. Both are genetic diseases the primary causes of which are expression of mutant alleles of the cystic fibrosis transmembrane conductance regulator (CFTR) and SERPINA1, respectively. The most common and best studied mutant forms of CFTR and AAT are ΔF508 CFTR and the Glu342Lys mutant of AAT called ZAAT, respectively. Non-genetic mechanisms can also damage protein structure and induce protein misfolding in the lung. Cigarette-smoke contains oxidants and other factors that can modify a protein's structure, and is one of the most significant environmental causes of protein damage within the lung. Herein we describe the mechanisms controlling the folding of wild type and mutant versions of CFTR and AAT proteins, and explore the consequences of cigarette-smoke-induced effects on the protein folding machinery in the lung.  相似文献   

2.
Angel L. Pey 《Amino acids》2013,45(6):1331-1341
Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.  相似文献   

3.
A hallmark of diseases of protein conformation and aging is the appearance of protein aggregates associated with cellular toxicity. We posit that the functional properties of the proteostasis network (PN) protect the proteome from misfolding and combat the proteotoxic events leading to cellular pathology. In this study, we have identified new components of the proteostasis network that can suppress aggregation and proteotoxicity, by performing RNA interference (RNAi) genetic screens for multiple unrelated conformationally challenged cytoplasmic proteins expressed in Caenorhabditis elegans. We identified 88 suppressors of polyglutamine (polyQ) aggregation, of which 63 modifiers also suppressed aggregation of mutant SOD1(G93A). Of these, only 23 gene-modifiers suppressed aggregation and restored animal motility, revealing that aggregation and toxicity can be genetically uncoupled. Nine of these modifiers were shown to be effective in restoring the folding and function of multiple endogenous temperature-sensitive (TS) mutant proteins, of which five improved folding in a HSF-1-dependent manner, by inducing cytoplasmic chaperones. This triage screening strategy also identified a novel set of PN regulatory components that, by altering metabolic and RNA processing functions, establish alternate cellular environments not generally dependent on stress response activation and that are broadly protective against misfolded and aggregation-prone proteins.  相似文献   

4.
In this work, the relationship between stability and propensity to misfold was probed for a series of purified variants of the polytopic integral membrane protein diacylglycerol kinase. It was observed that there was a strong correlation between stability and folding efficiency. The most common mutations that promoted misfolding were those which also destabilized the protein. These results imply that by targeting unstable membrane proteins for degradation, cellular protein folding quality control can eliminate proteins that have a high intrinsic propensity to misfold into aberrant structures. Moreover, the more rare class of amino acid mutations that promote misfolding without perturbing stability may be particularly dangerous because the mutant proteins may evade the surveillance of cellular quality control systems.  相似文献   

5.
Advances in connecting phenotype to genotype have led to new insights regarding the basis of human disease. Many inherited diseases are now known to arise due to specific mutations within a gene that then lead to a protein product unable to assume a stable conformation within the cell. Cellular machineries serving as "quality control monitors" recognize and target such abnormally folded proteins for rapid destruction. As a consequence, specific biochemical pathways requiring the protein of interest are adversely affected and lead to the disease phenotype. Yet in other cases, upon its misfolding the particular protein quickly aggregates, leading to the formation of inclusion bodies that eventually lead to cell demise. In what follows I discuss some classic examples of human diseases known to arise due to mutations that lead to altered protein folding, abnormal protein maturation and/or protein aggregation. In many cases simply altering the protein folding environment within the cell, via molecular or pharmacological approaches, can effectively rescue the maturation and stability of the mutant protein and thereby reduce the onset and/or progression of the disease phenotype. These new insights regarding the mechanisms underlying the disease phenotype, as well as new approaches to correct the protein folding defect, will undoubtedly prove to have a tremendous impact on clinical medicine.  相似文献   

6.
7.
The stability of heterologous proteins secreted by gram-positive bacteria is greatly influenced by the microenvironment on the trans side of the cytoplasmic membrane, and secreted heterologous proteins are susceptible to rapid degradation by host cell proteases. In Bacillus subtilis, degradation occurs either as the proteins emerge from the presecretory translocase and prior to folding into their native conformation or after the native conformation has been reached. The former process generally involves membrane- and/or cell wall-bound proteases, while the latter involves proteases that are released into the culture medium. The identification and manipulation of factors that influence the folding of heterologous proteins has the potential to improve the yield of secreted heterologous proteins. Recombinant anthrax protective antigen (rPA) has been used as a model secreted heterologous protein because it is sensitive to proteolytic degradation both before and after folding into its native conformation. This paper describes the influence of the microenvironment on the trans side of the cytoplasmic membrane on the stability of rPA. Specifically, we have determined the influence of net cell wall charge and its modulation by the extent to which the anionic polymer teichoic acid is D-alanylated on the secretion and stability of rPA. The potential role of the dlt operon, responsible for D-alanylation, was investigated using a Bacillus subtilis strain encoding an inducible dlt operon. We show that, in the absence of D-alanylation, the yield of secreted rPA is increased 2.5-fold. The function of D-alanylation and the use of rPA as a model protein are evaluated with respect to the optimization of B. subtilis for the secretion of heterologous proteins.  相似文献   

8.
Carbonyl modified proteins in cellular regulation, aging, and disease   总被引:21,自引:0,他引:21  
The oxidative modification of proteins by reactive species is implicated in the etiology or progression of a panoply of disorders and diseases. The level of these modified molecules can be quantitated by measurement of the protein carbonyl content, which has been shown to increase in a variety of diseases and processes, notably during aging. For the most part, oxidatively modified proteins are not repaired and must be removed by proteolytic degradation, a process which normally proceeds very efficiently, from microorganisms to mammals. In eukaryotes, removal is usually carried out by the proteosome, which selectively degrades oxidatively modified proteins, whether they be damaged by reactive oxygen species or specifically oxidized by cellular regulatory processes. The molecular deficiencies that cause accumulation of oxidatively modified proteins are not identified, but regardless of cause, the accumulation is likely to disrupt normal cellular function.  相似文献   

9.
Exportable proteins that have significant defects in nascent polypeptide folding or subunit assembly are frequently retained in the endoplasmic reticulum and subject to endoplasmic reticulum-associated degradation by the ubiquitin-proteasome system. In addition to this, however, there is growing evidence for post-endoplasmic reticulum quality control mechanisms in which mutant or non-native exportable proteins may undergo anterograde transport to the Golgi complex and post-Golgi compartments before intracellular disposal. In some instances, these proteins may undergo retrograde transport back to the endoplasmic reticulum with re-targeting to the endoplasmic reticulum-associated degradation pathway; in other typical cases, they are targeted into the endosomal system for degradation by vacuolar/lysosomal proteases. Such quality control targeting is likely to involve recognition of features more commonly expressed in mutant proteins, but may also be expressed by wild-type proteins, especially in cells with perturbation of local environments that are essential for normal protein trafficking and stability in the secretory pathway and at the cell surface .  相似文献   

10.
The vesicular stomatitis virus glycoprotein (G protein) is an integral membrane protein which assembles into noncovalently associated trimers before transport from the endoplasmic reticulum. In this study we have examined the folding and oligomeric assembly of twelve mutant G proteins with alterations in the cytoplasmic, transmembrane, or ectodomains. Through the use of conformation-specific antibodies, we found that newly synthesized G protein folded into a conformation similar to the mature form within 1-3 min of synthesis and before trimer formation. Mutant proteins not capable of undergoing correct initial folding did not trimerize, were not transported, and were found in large aggregates. They had, as a rule, mutations in the ectodomain, including several with altered glycosylation patterns. In contrast, mutations in the cytoplasmic domain generally had little effect on folding and trimerization. These mutant proteins, whose ectodomains were identical to the wild-type by several assays, were either transported to the cell surface slowly or not at all. We concluded that while correct ectodomain folding and trimer formation are prerequisites for transport, they alone are not sufficient. The results suggest that the cytoplasmic domain of the wild-type protein may facilitate rapid, efficient transport from the ER, which can be easily affected or eliminated by tail mutations that do not detectably affect the ectodomain.  相似文献   

11.
Fan JQ  Ishii S 《The FEBS journal》2007,274(19):4962-4971
Protein misfolding is recognized as an important pathophysiological cause of protein deficiency in many genetic disorders. Inherited mutations can disrupt native protein folding, thereby producing proteins with misfolded conformations. These misfolded proteins are consequently retained and degraded by endoplasmic reticulum-associated degradation, although they would otherwise be catalytically fully or partially active. Active-site directed competitive inhibitors are often effective active-site-specific chaperones when they are used at subinhibitory concentrations. Active-site-specific chaperones act as a folding template in the endoplasmic reticulum to facilitate folding of mutant proteins, thereby accelerating their smooth escape from the endoplasmic reticulum-associated degradation to maintain a higher level of residual enzyme activity. In Fabry disease, degradation of mutant lysosomal alpha-galactosidase A caused by a large set of missense mutations was demonstrated to occur within the endoplasmic reticulum-associated degradation as a result of the misfolding of mutant proteins. 1-Deoxygalactonojirimycin is one of the most potent inhibitors of alpha-galactosidase A. It has also been shown to be the most effective active-site-specific chaperone at increasing residual enzyme activity in cultured fibroblasts and lymphoblasts established from Fabry patients with a variety of missense mutations. Oral administration of 1-deoxygalactonojirimycin to transgenic mice expressing human R301Q alpha-galactosidase A yielded higher alpha-galactosidase A activity in major tissues. These results indicate that 1-deoxygalactonojirimycin could be of therapeutic benefit to Fabry patients with a variety of missense mutations, and that the active-site-specific chaperone approach using functional small molecules may be broadly applicable to other lysosomal storage disorders and other protein deficiencies.  相似文献   

12.
Accumulation of amyloid-like aggregates is a hallmark of numerous neurodegenerative disorders such as Alzheimer's and polyglutamine disease. Yet, whether the amyloid inclusions found in these diseases are toxic or cytoprotective remains unclear. Various studies suggest that the toxic culprit in the amyloid folding pathway is actually a soluble oligomeric species which might interfere with normal cellular function by a multifactorial mechanism including aberrant protein-protein interactions. Molecular chaperones suppress toxicity of amyloidogenic proteins by inhibiting aggregation of non-native disease substrates and targeting them for refolding or degradation. Paradoxically, recent studies also suggest a protective action of chaperones in their promotion of the assembly of large, tightly packed, benign aggregates that sequester toxic protein species.  相似文献   

13.
Osteopetrosis is a genetic bone disease characterized by increased bone density and fragility. The R444L missense mutation in the human V-ATPase a3 subunit (TCIRG1) is one of several known mutations in a3 and other proteins that can cause this disease. The autosomal recessive R444L mutation results in a particularly malignant form of infantile osteopetrosis that is lethal in infancy, or early childhood. We have studied this mutation using the pMSCV retroviral vector system to integrate the cDNA construct for green fluorescent protein (GFP)-fused a3(R445L) mutant protein into the RAW 264.7 mouse osteoclast differentiation model. In comparison with wild-type a3, the mutant glycoprotein localized to the ER instead of lysosomes and its oligosaccharide moiety was misprocessed, suggesting inability of the core-glycosylated glycoprotein to traffic to the Golgi. Reduced steady-state expression of the mutant protein, in comparison with wild type, suggested that the former was being degraded, likely through the endoplasmic reticulum-associated degradation pathway. In differentiated osteoclasts, a3(R445L) was found to degrade at an increased rate over the course of osteoclastogenesis. Limited proteolysis studies suggested that the R445L mutation alters mouse a3 protein conformation. Together, these data suggest that Arg-445 plays a role in protein folding, or stability, and that infantile malignant osteopetrosis caused by the R444L mutation in the human V-ATPase a3 subunit is another member of the growing class of protein folding diseases. This may have implications for early-intervention treatment, using protein rescue strategies.  相似文献   

14.
Protein aggregation or misfolding in the cell is connected with many genetic diseases and can result from substitutions in proteins. Substitutions can influence the protein stability and folding rates in both intermediate and native states. The equilibrium urea-induced unfolding was studied for mutant apomyoglobins carrying substitutions of the conserved nonfunctional residues Val10, Trp14, Ile111, Leu115, Met131, and Leu135 with Ala. Conformational transitions were monitored by intrinsic Trp fluorescence and far-UV circular dichroism. Free energy changes upon transition from the native to the intermediate state and from the intermediate to the unfolded state were determined. All substitutions considerably decreased the stability of native apomyoglobin, whereas the effect on the stability of the intermediate state was essentially smaller.  相似文献   

15.
Protein folding disorders comprise a rapidly growing group of diseases that involve virtually every organ system and affect individuals of all ages. Their principal pathology is the inability of a protein to acquire or maintain its physiological three-dimensional structure. In cells, this generally results in one of three outcomes: accumulation of misfolded protein aggregates, cell death, or recognition by cellular quality control machinery and rapid degradation. Large-scale screening efforts to identify and design small molecules that either repair the folding defect or enable the protein to escape degradation have been encouraging. However, most compounds identified to date restore only a small fraction of molecules to the normal folding pathway, and hence are relatively poor therapeutic candidates. Results published by Wang et al. in this issue of the Biochemical Journal show that, for mutant forms of two ABC (ATP-Binding-Cassette) transporters, P-glycoprotein and CFTR (cystic fibrosis transmembrane conductance regulator), modest correction of trafficking by single agents can be additive when multiple compounds are used in combination. These findings raise the intriguing possibility that corrector molecules acting at different steps along the folding pathway might provide a multidrug approach to human protein folding disorders.  相似文献   

16.
From unicellular organisms to humans, cells have evolved elegant systems to facilitate careful folding of proteins and the maintenance of protein homeostasis. Key modulators of protein homeostasis include a large, conserved family of proteins known as molecular chaperones, which augment the folding of nascent polypeptides and temper adverse consequences of cellular stress. However, errors in protein folding can still occur, resulting in the accumulation of misfolded proteins that strain cellular quality-control systems. In some cases, misfolded proteins can be targeted for degradation by the proteasome or via autophagy. Nevertheless, protein misfolding is a feature of many complex, genetically and clinically pleiotropic diseases, including neurodegenerative disorders and cancer. In recent years, substantial progress has been made in unraveling the complexity of protein folding using model systems, and we are now closer to being able to diagnose and treat the growing number of protein-folding diseases. To showcase some of these important recent advances, and also to inspire discussion on approaches to tackle unanswered questions, Disease Models & Mechanisms (DMM) presents a special collection of reviews from researchers at the cutting-edge of the field.KEY WORDS: Chaperones, Neurodegeneration, Protein folding  相似文献   

17.
Johnson AE 《FEBS letters》2005,579(4):916-920
During protein biosynthesis, a nascent protein is exposed to multiple environments and proteins both inside and outside the ribosome that influence nascent chain folding and trafficking. Fluorescence resonance energy transfer between two dyes incorporated into a single nascent chain using aminoacyl-tRNA analogs can directly and selectively monitor changes in nascent chain conformation. This approach recently revealed the existence and functional ramifications of ribosome-mediated folding of nascent membrane proteins inside the ribosome and can be extended to characterize the effects of chaperones and other proteins and ligands on nascent protein folding, interactions, assembly, and avoidance of misfolding and degradation.  相似文献   

18.
Cells maintain a healthy proteome through continuous evaluation of the quality of each of their proteins. Quality control requires the coordinated action of chaperones and proteolytic systems. Chaperones identify abnormal or unstable conformations in proteins and often assist them to regain stability. However, if repair is not possible, the aberrant protein is eliminated from the cellular cytosol to prevent undesired interactions with other proteins or its organization into toxic multimeric complexes. Autophagy and the ubiquitin/proteasome system mediate the complete degradation of abnormal protein products. In this article, we describe each of these proteolytic systems and their contribution to cellular quality control. We also comment on the cellular consequences resulting from the dysfunction of these systems in common human protein conformational disorders and provide an overview on current therapeutic interventions based on the modulation of the proteolytic systems.  相似文献   

19.
Quality control of protein folding represents a fundamental cellular activity. Early steps of protein N-glycosylation involving the removal of three glucose and some specific mannose residues in the endoplasmic reticulum have been recognized as being of importance for protein quality control. Specific oligosaccharide structures resulting from the oligosaccharide processing may represent a glycocode promoting productive protein folding, whereas others may represent glyco-codes for routing not correctly folded proteins for dislocation from the endoplasmic reticulum to the cytosol and subsequent degradation. Although quality control of protein folding is essential for the proper functioning of cells, it is also the basis for protein folding disorders since the recognition and elimination of non-native conformers can result either in loss-of-function or pathological-gain-of-function. The machinery for protein folding control represents a prime example of an intricate interactome present in a single organelle, the endoplasmic reticulum. Here, current views of mechanisms for the recognition and retention leading to productive protein folding or the eventual elimination of misfolded glycoproteins in yeast and mammalian cells are reviewed.  相似文献   

20.
Protein-folding diseases are an ongoing medical challenge. Many diseases within this group are genetically determined, and have no known cure. Among the examples in which the underlying cellular and molecular mechanisms are well understood are diseases driven by misfolding of transmembrane proteins that normally function as cell-surface ion channels. Wild-type forms are synthesized and integrated into the endoplasmic reticulum (ER) membrane system and, upon correct folding, are trafficked by the secretory pathway to the cell surface. Misfolded mutant forms traffic poorly, if at all, and are instead degraded by the ER-associated proteasomal degradation (ERAD) system. Molecular chaperones can assist the folding of the cytosolic domains of these transmembrane proteins; however, these chaperones are also involved in selecting misfolded forms for ERAD. Given this dual role of chaperones, diseases caused by the misfolding and aberrant trafficking of ion channels (referred to here as ion-channel-misfolding diseases) can be regarded as a consequence of insufficiency of the pro-folding chaperone activity and/or overefficiency of the chaperone ERAD role. An attractive idea is that manipulation of the chaperones might allow increased folding and trafficking of the mutant proteins, and thereby partial restoration of function. This Review outlines the roles of the cytosolic HSP70 chaperone system in the best-studied paradigms of ion-channel-misfolding disease – the CFTR chloride channel in cystic fibrosis and the hERG potassium channel in cardiac long QT syndrome type 2. In addition, other ion channels implicated in ion-channel-misfolding diseases are discussed.KEY WORDS: Chaperone, Cystic fibrosis, Long QT syndrome, Degradation, Intracellular trafficking, Protein folding  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号