首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tomas Roslin 《Ecography》2001,24(5):511-524
Recent modelling work shows that the composition of local communities can be influenced by the configuration of the surrounding landscape, but many of these models assume that all community members display the same type of extinction‐colonization dynamics. I use Aphodius dung beetles to test the hypothesis that interspecific differences in habitat selection and dispersal capacity may translate into differences in spatial population dynamics, even among closely related species coexisting on the same resource. If this is true, then groups of species with different characteristics would show different responses to landscape configuration. I first divided the area of Finland into a grid, and used collection records to describe regional variation in the Aphodius fauna of open cattle pastures. I then sampled dung beetles on 131 cattle farms, to examine whether the subset of species found on each farm was related to the density of pastures in the surrounding grid square. Finally, I used historical records to analyze changes in dung beetle communities during the last century, when there was great loss of pasture. Overall, I found no relationship between landscape characteristics and the total proportion of the regional species pool that was found on each farm. However, the distribution of species among guilds with different habitat specificity did relate to the configuration of the landscape, and the pattern was most pronounced in a specialists species with limited dispersal. Associations between community structure and landscape configuration were superimposed on two much larger and stronger patterns: a large‐scale latitudinal gradient in regional species richness, and a decelerating gain of species to local communities with an increasing regional species pool. I conclude that ecological variation among community members is a crucial factor in the analysis of local community composition, and that local species richness should always be conditioned on regional richness.  相似文献   

2.
Helena Rosenlew  Tomas Roslin 《Oikos》2008,117(11):1659-1666
To understand how current patterns of habitat loss and fragmentation will ultimately affect ecosystem functioning, we need to match experimental manipulations of community structure with real changes occurring in the landscapes of today. In this study, we examine the consequences of habitat fragmentation on a key function: the decomposition of dung by invertebrates. In a microcosm experiment, we use previous observations of dung beetle assemblage structure in fragmented and intact landscapes to create realistic differences in assemblages of small, dung‐dwelling species in the genus Aphodius. We ask whether such differences will affect ecosystem functioning, and how their effects compare to those of removing full functional groups: dung‐dwelling Aphodius, tunnelling Geotrupes stercorarius, and/or earthworms. As measured by changes in dung fresh weight, we observe an overriding impact of removing G. stercorarius, with the amount of dung remaining at any one time doubling if the species is excluded. Compared to this major effect, there seem to be less effects of removing Aphodius, ambiguous effects of excluding earthworms, and no detectable effects of relatively minor changes in Aphodius assemblages as induced by current levels of fragmentation. Overall, our results support the general notion that different species contribute highly unevenly to overall ecosystem functioning. Most importantly though, our findings suggest that the functional consequences of habitat loss will depend on taxon‐specific responses to landscape modification. Only by addressing these responses may we predict the actual consequences of habitat loss.  相似文献   

3.
Dung beetle movements at two spatial scales   总被引:5,自引:0,他引:5  
Tomas Roslin 《Oikos》2000,91(2):323-335
To understand the dynamics of spatially structured populations, we need to know the level of movements at different spatial scales. This paper reports on Aphodius dung beetle movements at two scales: movements between dung pats within pastures, and movements between pastures. First, I test an assumption common to many recent models of spatially structured populations – that the probability of an individual moving between habitat patches decreases exponentially with distance. For dung beetles, I find sufficient evidence to reject this assumption. The distribution of dispersal distances was clearly leptokurtic, with more individuals moving short and long distances than expected on the basis of an exponential function. In contrast, the data were well described by a power function. I conclude that dung beetle movements include an element of non-randomness not captured by the simplistic exponential model. The power function offers a promising alternative, but the actual mechanisms behind the pattern need to be clarified. Second, I compare several species of Aphodius to each other. Although these species occur in the same network of habitat patches, their movement patterns are different enough to result in a mixture of different spatial population structures. Movements between pastures were more frequent the larger the species, the more specific its occurrence in relation to pat age, and the more specialized it is on cow dung and open pasture habitats. Within pastures, all species form "patchy" populations, with much movement among individual pats.  相似文献   

4.
Aim To determine whether the effect of habitat fragmentation and habitat heterogeneity on species richness at different spatial scales depends on the dispersal ability of the species assemblages and if this results in nested species assemblages. Location Agricultural landscapes distributed over seven temperate Europe countries covering a range from France to Estonia. Methods We sampled 16 local communities in each of 24 agricultural landscapes (16 km2) that differ in the amount and heterogeneity of semi‐natural habitat patches. Carabid beetles were used as model organisms as dispersal ability can easily be assessed on morphological traits. The proximity and heterogeneity of semi‐natural patches within the landscape were related to average local (alpha), between local (beta) and landscape (gamma) species richness and compared among four guilds that differ in dispersal ability. Results For species assemblages with low dispersal ability, local diversity increased as the proximity of semi‐natural habitat increased, while mobile species showed an opposite trend. Beta diversity decreased equally for all dispersal classes in relation to proximity, suggesting a homogenizing effect of increased patch isolation. In contrast, habitat diversity of the semi‐natural patches affected beta diversity positively only for less mobile species, probably due to the low dispersal ability of specialist species. Species with low mobility that persisted in highly fragmented landscapes were consistently present in less fragmented ones, resulting in nested assemblages for this mobility class only. Main conclusions The incorporation of dispersal ability reveals that only local species assemblages with low dispersal ability show a decrease of richness as a result of fragmentation. This local species loss is compensated at least in part by an increase in species with high dispersal ability, which obscures the effect of fragmentation when investigated across dispersal groups. Conversely, fragmentation homogenizes the landscape fauna for all dispersal groups, which indicates the invasion of non‐crop habitats by similar good dispersers across the whole landscape. Given that recolonization of low dispersers is unlikely, depletion of these species in modern agricultural landscapes appears temporally pervasive.  相似文献   

5.
Agriculture changes the aquatic and terrestrial habitats used by animals, affecting their responses to matrix permeability. Here, we evaluated the impacts that resulted from the replacement of native vegetation with pastures on habitat occupancy, colonisation and local extinction of two Neotropical frogs with contrasting ecological strategies, Leptodactylus bufonius and L. chaquensis. We conducted fieldwork during two reproductive seasons in 50 temporary ponds in the Brazilian Chaco. We used site occupancy models in a multi-scale approach to identify landscape changes affecting population parameters and to determine the scale of interaction between species and the landscape. At local (10 m) and scales ≤400 m, increased pasture proportion limited the availability of bare soil required by males of L. bufonius to build mud chambers for reproduction and decreased proportion of shrublands affecting Lchaquensis occupancy. At larger spatial scales (>400 m), landscape modification limited dispersal of the smaller species L. bufonius. We found that the amount of habitat available is important in maintaining population parameters such as occupancy. However, our results highlight that the spatial distribution of habitats may also play an important role in the persistence and mobility of frogs in agricultural landscapes and that it is possible to identify a scale of effect in such anthropic landscapes. We recommend the consideration of reproductive and dispersal requirements of amphibian species, along with body size, as predictors of the spatial scale for management of populations in farmlands.  相似文献   

6.
In landscape ecology, correlational approaches are typically used to analyse links between local population abundance, and the surrounding habitat amount to estimate biologically-relevant landscape size (extent) for managing endangered or pest populations. The direction, strength, and spatial extent of the correlations are then sometimes interpreted in terms of species population parameters. Here we simulated the population dynamics of generalized species across spatially explicit landscapes that included two distinct habitat types. We investigated how characteristics of a landscape (structure), including the variation in habitat quality and spatial aggregation of the habitat, and the precise population-dynamic properties of the simulated species (dispersal and growth rates) affect the correlation between population abundance and amount of surrounding favourable habitat in the landscape. To evaluate these spatial extents of correlation, proportions of favourable habitat were calculated within several circles of increasing diameter centred on sampling patches of favourable habitat where population abundance was recorded.We found that the value of the correlation coefficients between population abundance and amount of surrounding favourable habitat depended on both population dynamic parameters and landscape characteristics. Coefficients of correlation increased with the variation in habitat quality and the aggregation of favourable habitat in the landscape, but decreased with the dispersal distance. The distance at which the correlation was maximized was sensitive to an interaction between the level of aggregation of the habitat and the dispersal distance; whereas the greatest distance at which a significant correlation occurred was more sensitive to the variation in habitat quality. Our results corroborate the view that correlational analyses do provide information on the local population dynamics of a species in a given habitat type and on its dispersal rate parameters. However, even in simplified, model frameworks, direct relationships are often difficult to disentangle and global landscape characteristics should be reported in any studies intended to derive population-dynamic parameters from correlations. Where possible, replicated landscapes should be examined in order to control for the interaction between population dynamics and landscape structure. Finally, we recommend using species-specific, population-dynamic modelling in order to interpret correctly the observed patterns of correlation in the landscape.  相似文献   

7.
Aim To analyse how the dung beetles (Scarabaeinae) respond to a modified, variegated landscape, taking into account the biogeographical peculiarities of the Mexican Transition Zone. Location This study covers cloud forest (CF) of the Sierra Norte de Puebla mountain range and part of the Sierra Madre Oriental mountain range (Mexico). Methods We applied proportional sampling based on the landscape variegation model with Scarabaeinae as the indicator group, and using two approaches: structural units (vegetation type) and spatial units (windows). We used two measures – richness and Shannon diversity – and applied multiplicative diversity partitioning to obtain independent alpha and beta diversities for the landscape, windows and vegetation types. We grouped species by biogeographical distribution pattern for the biogeographical analysis and by whether they were originally from CF. Results The transformation of CF into secondary forest, pastures and other types of vegetation increases the Scarabaeinae diversity of the landscape, in vegetation types and windows. This increase is the result of species arriving from the tropical lowlands. However, the original dung beetle community of the CF dominates at different scales in the number of species, abundance and biomass. With increasing habitat modification, beta diversity increases in the windows, and species with the Tropical Palaeoamerican distribution pattern increase in abundance in vegetation types and windows. Main conclusions The variegated character of the landscape explains well the distribution and diversity of this dung beetle community. The peculiar characteristics of the Mexican Transition Zone have an effect owing to the overlap of fauna with different biogeographical origins. The conversion of fragmented landscapes to variegated landscapes could be a conservation goal in human‐modified mountain landscapes. Sampling proportional to the area of different types of vegetation and the use of windows offer an alternative experimental design in variegated landscapes.  相似文献   

8.
Aim  Landscape structure influences the distribution of animals, altering their movements and their ability to reach habitat patches. We analysed the spatial patterns of dung beetle species diversity in three differently structured natural landscapes in a Mediterranean protected area in the centre of the Iberian Peninsula.
Location  Cabañeros National Park, Central Spain.
Methods  Diversity components within (α) and among (β) the three main vegetation types in the reserve were compared by using a hierarchical nested design. These were forests, scrublands and grasslands embedded in three different landscapes, where each was the most dominant and structurally connected habitat.
Results  Species richness of grassland habitat did not vary across landscapes, but forest habitat showed lower species richness in the grassland-dominated landscape. Scrubland was the least species-rich habitat, but here again there was no significant variation across landscapes. However, in all cases, there was a significant influence of habitat context (configuration of habitat patches within landscape matrix) on similarity of species composition. These tended to be more similar to the dominant landscape matrix where they were embedded, rather than to the same habitat type in other landscapes. Additive partitioning of diversity showed higher than expected values of β in all landscapes, which indicated a structured response. Highest values of β in the grassland-dominated landscape suggest that this was the least connected landscape for dung beetles.
Main conclusions  Our results suggest that in homogeneous conditions of climate and trophic resources, landscape structure may well be more important than habitat type as a determinant of dung beetle distribution in the Mediterranean.  相似文献   

9.
Interactions between two species competing for space were studied using stochastic spatially explicit lattice-based simulations as well as pair approximations. The two species differed only in their dispersal strategies, which were characterized by the proportion of reproductive effort allocated to long-distance (far) dispersal versus short-distance (near) dispersal to adjacent sites. All population dynamics took place on landscapes with spatially clustered distributions of suitable habitat, described by two parameters specifying the amount and the local spatial autocorrelation of suitable habitat. Whereas previous results indicated that coexistence between pure near and far dispersers was very rare, taking place over only a very small region of the landscape parameter space, when mixed strategies are allowed, multiple strategies can coexist over a much wider variety of landscapes. On such spatially structured landscapes, the populations can partition the habitat according to local conditions, with one species using pure near dispersal to exploit large contiguous patches of suitable habitat, and another species using mixed dispersal to colonize isolated smaller patches (via far dispersal) and then rapidly exploit those patches (via near dispersal). An improved mean-field approximation which incorporates the spatially clustered habitat distribution is developed for modeling a single species on these landscapes, along with an improved Monte Carlo algorithm for generating spatially clustered habitat distributions.   相似文献   

10.
Adults of many closely related coral reef fish species are segregated along gradients of depth or habitat structure. Both habitat selection by new settlers and subsequent competitive interactions can potentially produce such patterns, but their relative importance is unclear. This study examines the potential roles of habitat selection and aggression in determining the spatial distribution of adults and juveniles of four highly aggressive damselfishes at Lizard Island, northern Great Barrier Reef. Dischistodus perspicillatus, D. prosopotaenia, D. melanotus, and D. pseudochrysopoecilus maintain almost non-overlapping distributions across reef zones, with adults of one species dominating each reef zone. Juveniles exhibit slightly broader distributional patterns suggesting that subsequent interactions reduce overlap among species. Although habitat choice experiments in aquaria suggest that associations between juveniles and substrata types in the field are partly due to habitat selection, large overlaps in the use of substrata by the different species were also found, suggesting that substratum selection alone is insufficient in explaining the discrete spatial distributions of adults. The strength of aggressive interactions among all four species was tested by a "bottle" experiment, in which an adult or juvenile of each species was placed in the territories of adult fish on the reef. The greatest levels of interspecific aggression were directed against adults and juveniles of neighbouring species. The highest levels of aggression were associated with species exhibiting the greatest levels of overlap in resource use. Evidently both habitat selection and interspecific aggression combine to determine the adult distributions of these species.  相似文献   

11.
The aim of this study is to analyze the effects of habitat loss and forest replacement by cattle pasture on the alpha and beta diversity, abundance, biomass and species composition of dung beetles with different dispersal ability. Dung beetles were captured in 19 forest fragments and neighbouring pastures. Forest fragment area ranged from 3.7 to 4825 ha and in this study were grouped into four categories: small, medium, large and control forest. A total of 35,048 dung beetles representing 101 species were collected. Forest fragments had the highest richness with 81 species, followed by pasture with 58 species. Replacement of forest by pasture reduced species richness; however, due to the proximity and connectivity of these areas with Cerrado patches, pastures also had high species richness, but species composition was independent of adjacent fragments. Small fragments had lower abundance and species richness than our other habitat categories, even pastures. Our results highlight that proximity and connectivity with Cerrado areas influenced the patterns of alpha and beta diversity of dung beetles in fragments and pastures. We highlight that the ability to cross the pasture matrix is a strong adaptive trait for species living in human-modified landscapes. Consequently, species with these abilities are less susceptible to the effects of forest fragmentation and local extinction. Our results reinforce the importance of considering the biogeographic location and distribution pattern of species in forest fragmentation studies.  相似文献   

12.
Comparison of dispersal rates of the bog fritillary butterfly between continuous and fragmented landscapes indicates that between patch dispersal is significantly lower in the fragmented landscape, while population densities are of the same order of magnitude. Analyses of the dynamics of the suitable habitat for the butterfly in the fragmented landscape reveal a severe, non linear increase in spatial isolation of patches over a time period of 30 years (i.e. 30 butterfly generations), but simulations of the butterfly metapopulation dynamics using a structured population model show that the lower dispersal rates in the fragmented landscape are far above the critical threshold leading to metapopulation extinction. These results indicate that changes in individual behaviour leading to the decrease of dispersal rates in the fragmented landscape were rapidly selected for when patch spatial isolation increased. The evidence of such an adaptive answer to habitat fragmentation suggests that dispersal mortality is a key factor for metapopulation persistence in fragmented landscapes. We emphasise that landscape spatial configuration and patch isolation have to be taken into account in the debate about large-scale conservation strategies.  相似文献   

13.
Most of the European grassland butterfly species are dependent on species rich grasslands shaped by low intensity farming. Conservation of these specialist species in agricultural landscapes relies on knowledge of their essential resources and the spatial distribution of these resources. In The Netherlands, the dusky large blue Phengaris (Maculinea) nausithous butterflies were extinct until their reintroduction in 1990. In addition, a spontaneous recolonization of road verges in an agricultural landscape occurred in 2001 in the southern part of The Netherlands. We analyzed the use of the essential resources, both host plants and host ants, of the latter population during the summers of 2003 and 2005. First we tested whether the distribution of the butterflies during several years could be explained by both the presence of host plants as well as host ants, as we expected that the resource that limits the distribution of this species can differ between locations and over time. We found that oviposition site selection was related to the most abundant resource. While in 2003, site selection was best explained by the presence of the host ant Myrmica scabrinodis, in 2005 it was more strongly related to flowerhead availability of the host plant. We secondly compared the net displacement of individuals between the road verge population and the reintroduced population in the Moerputten meadows, since we expected that movement of individuals depends on the structure of their habitat. On the road verges, butterflies moved significantly shorter distances than on meadows, which limits the butterflies in finding their essential resources. Finally we analyzed the availability of the two essential resources in the surroundings of the road verge population. Given the short net displacement distances and the adverse landscape features for long-distance dispersal, this landscape analysis suggests that the Phengaris population at the Posterholt site is trapped on the recently recolonized road verges. These results highlight the importance of assessing the availability of essential resources across different years and locations relative to the movement of the butterflies, and the necessity to careful manage these resources for the conservation of specialist species in agricultural landscapes, such as this butterfly species.  相似文献   

14.
Both habitat heterogeneity and species’ life-history traits play important roles in driving population dynamics, yet there is little scientific consensus around the combined effect of these two factors on populations in complex landscapes. Using a spatially explicit agent-based model, we explored how interactions between habitat spatial structure (defined here as the scale of spatial autocorrelation in habitat quality) and species life-history strategies (defined here by species environmental tolerance and movement capacity) affect population dynamics in spatially heterogeneous landscapes. We compared the responses of four hypothetical species with different life-history traits to four landscape scenarios differing in the scale of spatial autocorrelation in habitat quality. The results showed that the population size of all hypothetical species exhibited a substantial increase as the scale of spatial autocorrelation in habitat quality increased, yet the pattern of population increase was shaped by species’ movement capacity. The increasing scale of spatial autocorrelation in habitat quality promoted the resource share of individuals, but had little effect on the mean mortality rate of individuals. Species’ movement capacity also determined the proportion of individuals in high-quality cells as well as the proportion of individuals experiencing competition in response to increased spatial autocorrelation in habitat quality. Positive correlations between the resource share of individuals and the proportion of individuals experiencing competition indicate that large-scale spatial autocorrelation in habitat quality may mask the density-dependent effect on populations through increasing the resource share of individuals, especially for species with low mobility. These findings suggest that low-mobility species may be more sensitive to habitat spatial heterogeneity in spatially structured landscapes. In addition, localized movement in combination with spatial autocorrelation may increase the population size, despite increased density effects.  相似文献   

15.
Simple analytical models assuming homogeneous space have been used to examine the effects of habitat loss and fragmentation on metapopulation size. The models predict an extinction threshold, a critical amount of suitable habitat below which the metapopulation goes deterministically extinct. The consequences of non-random loss of habitat for species with localized dispersal have been studied mainly numerically. In this paper, we present two analytical approaches to the study of habitat loss and its metapopulation dynamic consequences incorporating spatial correlation in both metapopulation dynamics as well as in the pattern of habitat destruction. One approach is based on a measure called metapopulation capacity, given by the dominant eigenvalue of a "landscape" matrix, which encapsulates the effects of landscape structure on population extinctions and colonizations. The other approach is based on pair approximation. These models allow us to examine analytically the effects of spatial structure in habitat loss on the equilibrium metapopulation size and the threshold condition for persistence. In contrast to the pair approximation based approaches, the metapopulation capacity based approach allows us to consider species with long as well as short dispersal range and landscapes with spatial correlation at different scales. The two methods make dissimilar assumptions, but the broad conclusions concerning the consequences of spatial correlation in the landscape structure are the same. Our results show that increasing correlation in the spatial arrangement of the remaining habitat increases patch occupancy, that this increase is more evident for species with short-range than long-range dispersal, and that to be most beneficial for metapopulation size, the range of spatial correlation in landscape structure should be at least a few times greater than the dispersal range of the species.  相似文献   

16.
Spatial configuration of habitats influences genetic structure and population fitness whereas it affects mainly species with limited dispersal ability. To reveal how habitat fragmentation determines dispersal and dispersal-related morphology in a ground-dispersing insect species we used a bush-cricket (Pholidoptera griseoaptera) which is associated with forest-edge habitat. We analysed spatial genetic patterns together with variability of the phenotype in two forested landscapes with different levels of fragmentation. While spatial configuration of forest habitats did not negatively affect genetic characteristics related to the fitness of sampled populations, genetic differentiation was found higher among populations from an extensive forest. Compared to an agricultural matrix between forest patches, the matrix of extensive forest had lower permeability and posed barriers for the dispersal of this species. Landscape configuration significantly affected also morphological traits that are supposed to account for species dispersal potential; individuals from fragmented forest patches had longer hind femurs and a higher femur to pronotum ratio. This result suggests that selection pressure act differently on populations from both landscape types since dispersal-related morphology was related to the level of habitat fragmentation. Thus observed patterns may be explained as plastic according to the level of landscape configuration; while anthropogenic fragmentation of habitats for this species can lead to homogenization of spatial genetic structure.  相似文献   

17.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

18.
Dispersal may be strongly influenced by landscape and habitat characteristics that could either enhance or restrict movements of organisms. Therefore, spatial heterogeneity in landscape structure could influence gene flow and the spatial structure of populations. In the past decades, agricultural intensification has led to the reduction in grassland surfaces, their fragmentation and intensification. As these changes are not homogeneously distributed in landscapes, they have resulted in spatial heterogeneity with generally less intensified hedged farmland areas remaining alongside streams and rivers. In this study, we assessed spatial pattern of abundance and population genetic structure of a flightless grasshopper species, Pezotettix giornae, based on the surveys of 363 grasslands in a 430‐km² agricultural landscape of western France. Data were analysed using geostatistics and landscape genetics based on microsatellites markers and computer simulations. Results suggested that small‐scale intense dispersal allows this species to survive in intensive agricultural landscapes. A complex spatial genetic structure related to landscape and habitat characteristics was also detected. Two P. giornae genetic clusters bisected by a linear hedged farmland were inferred from clustering analyses. This linear hedged farmland was characterized by high hedgerow and grassland density as well as higher grassland temporal stability that were suspected to slow down dispersal. Computer simulations demonstrated that a linear‐shaped landscape feature limiting dispersal could be detected as a barrier to gene flow and generate the observed genetic pattern. This study illustrates the relevance of using computer simulations to test hypotheses in landscape genetics studies.  相似文献   

19.
Dispersal is a central process determining community structure in heterogeneous landscapes, and species interactions within habitats may be a major determinant of dispersal. Although the effects of species interactions on dispersal within habitats have been well studied, how species interactions affect the movement of individuals between habitats in a landscape has received less attention. We conducted two experiments to assess the extent to which predation risk affects dispersal from an aquatic habitat by a flight-capable semi-aquatic insect (Notonecta undulata). Exposure to non-lethal (caged) fish fed conspecifics increased dispersal rates in N. undulata. Moreover, dispersal rate was positively correlated with the level of risk imposed by the fish; the greater the number of notonectids consumed by the caged fish, the greater the dispersal rate from the habitat. These results suggest that risk within a habitat can affect dispersal among habitats in a landscape and thus affect community structure on a much greater scale than the direct effect of predation itself.  相似文献   

20.
Lennart Hansson 《Oecologia》2002,130(2):259-266
Geographically varying rodent dynamics may be due to specific landscape effects or to regional variation. Two common vole species (Clethrionomys glareolus and Microtus agrestis), their main predators and their impact on some important food items were monitored in Sweden on forest clearcuts in two different landscape types, situated in two different regions with different climatic conditions. Censuses, with 10-16 clearcuts in each landscape and both landscapes in the two regions, were designed to permit analyses of variance of the effects of landscape composition and region on dynamics and species interactions. Region had a far greater influence than landscape on vole numbers, on the proportions of generalist and specialist predators and on the winter browsing of bark of indigenous and experimental woody plants as well on seed consumption in experimental supplies. The findings indicated an influence of the depth and quality of the snow cover on the predation rates by generalist and specialist predators. However, there were also clear signs of food limitation in the snow-rich areas. Such areas had fewer generalist predators, which probably meant less directly density-dependent predation. Thus, lack of high-quality food may put a brake on population growth in climatically harsh regions, permitting increasing populations of specialist predators such as small mustelids to subsequently over-utilise their main prey and potentially cause prolonged low densities. Snow conditions may affect numbers and interactions both within habitats, landscapes and regions. Thus, to more fully understand rodent dynamics, small-scale movements and interactions of individuals in relation to the main large-scale factor(s) of various regions need to be examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号