首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 852 毫秒
1.
The optimization of process parameters for high inulinase production by the marine yeast strain Cryptococcus aureus G7a in solid-state fermentation (SSF) was carried out using central composite design (CCD), one of the response surface methodologies (RSMs). We found that moisture, inoculation size, the amount ratio of wheat bran to rice husk, temperature and pH had great influence on inulinase production by strain G7a. Therefore, the CCD was used to evaluate the influence of the five factors on the inulinase production by strain G7a. Then, five levels of the five factors above were further optimized using the CCD. Finally, the optimal parameters obtained with the RSM were the initial moisture 61.5%, inoculum 2.75%, the amount ratio of wheat bran to rice husk 0.42, temperature 29 °C, pH 5.5. Under the optimized conditions, 420.9 U g−1 of dry substrate of inulinase activity was reached in the solid-state fermentation culture of strain G7a within 120 h whereas the predicted maximum inulinase activity of 436.2 U g−1 of inulinase activity of 436.2 U g−1 of dry weight was derived from the RSM regression. This is the highest inulinase activity produced by the yeast strain reported so far. A large amount of monosaccharides and oligosaccharides were detected after inulin hydrolysis by the crude inulinase.  相似文献   

2.
This article deals with the optimization of the various parameters for production of phytase using Achromobacter sp. PB‐01 in submerged fermentation (SmF). A semisynthetic medium containing ingredients of phytase screening media (PSM) supplemented with 2% (w/v) sucrose, 1% (w/v) peptone, and 10% (w/v) wheat bran was found to be the best production medium among the various combinations tried. Among various surfactants added to SmF, Triton X‐100 (0.1%) exhibited a 16% increase in phytase activity. An overall 11.2 fold enhancement in enzyme activity (0.79 U/mL→8.84 U/mL) was attained when SmF was carried out using 0.5% (v/v) inoculum of a 15 h old culture of Achromobacter sp. PB‐01 at an initial pH of 5.5, temperature 30°C and allowed to grow for 48 h. Presence of accessory hydrolytic enzymes in the crude extract further added value as feed additive by mediating efficient degradation of non‐starch polysaccharides (NSP). In addition, we also investigated the efficacy of phytase on different agro‐industrial residues using in vitro experiments that simulated the conditions of the digestive tract. Results indicate that phytase from our source hydrolyze phytate efficiently with the concomitant liberation of inorganic phosphate, protein, reducing sugar, and calcium. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

3.
In order to isolate inulinase overproducers of the marine yeast Pichia guilliermondii, strain 1, cells were mutated by using UV light and LiCl2. One mutant (M-30) with enhanced inulinase production was obtained. Response surface methodology (RSM) was used to optimize the medium compositions and cultivation conditions for inulinase production by the mutant in solid-state fermentation. The initial moisture, inoculum, the amount ratio of wheat bran to rice bran, temperature, pH for the maximum inulinase production by the mutant M-30 were found to be 60.5%, 2.5%, 0.42, 30°C and 6.50, respectively. Under the optimized conditions, 455.9 U/grams of dry substrate (gds) of inulinase activity was reached in the solid state fermentation culture of the mutant M-30 whereas the predicted maximum inulinase activity of 459.2 U/gds was derived from RSM regression. Under the same conditions, its parent strain only produced 291.0 U/gds of inulinase activity. This is the highest inulinase activity produced by the yeast strains reported so far.  相似文献   

4.
Ten different strains of Thermomyces lanuginosus, isolated from composting soils were found to produce phytase when grown on PSM medium. The wild type strain CM was found to produce maximum amount ofphytase (4.33 units/g DW substrate). Culturing T. lanuginosus strain CM on medium containing wheat bran and optimizing other culture conditions (carbon source, media type, nitrogen source, level of nitrogen, temperature, pH, inoculum age, inoculum level and moisture), increased the phytase yield to 13.26 units/g substrate. This culture was further subjected to UV mutagenesis for developing phytase hyperproducing mutants. The mutant (TL-7) showed 2.29-fold increase in phytase activity as compared to the parental strain. Employing Box-Behnken factor factorial design of response surface methodology resulted in optimized phytase production (32.19 units/g of substrate) by mutant TL-7. A simple two-step purification (40.75-folds) ofphytase from mutant TL-7 was achieved by anion exchange and gel filtration chromatography. The purified phytase (approximately 54 kDa) was characterized to be optimally active at pH 5.0 and temperature 70 degrees C, though the enzyme showed approximately 70% activity over a wide pH and temperature range (2.0-10.0 and 30-90 degrees C, respectively). The phytase showed broad substrate specificity with activity against sodium phytate, ADP and riboflavin phosphate. The phytase from T. lanuginosus was thermoacidstable as it showed up to 70% residual activity after exposure to 70 degrees C at pH 3.0 for 120 min. The enzyme showed Km 4.55 microM and Vmax 0.833 microM/min/mg against sodium phytate as substrate.  相似文献   

5.
Combination of physical and chemical mutagenesis was used to isolate hyper secretory strains of Aspergillus niger NCIM 563 for phytase production. Phytase activity of mutant N-1 and N-79 was about 17 and 47% higher than the parent strain. In shake flask the productivity of phytase in parent, mutant N-1 and N-79 was 6,181, 7,619 and 9,523 IU/L per day, respectively. Up scaling of the fermentation from shake flask to 3 and 14 L New Brunswick fermenter was studied. After optimizing various fermentation parameters like aeration, agitation and carbon source in fermentation medium the fermentation time to achieve highest phytase activity was reduced considerably from 14 days in shake flask to 8 days in 14 L fermenter. Highest phytase activity of 80 IU/ml was obtained in 1% rice bran–3.5% glucose containing medium with aeration 0.2 vvm and agitation 550 rpm at room temperature on 8th day of fermentation. Addition of either bavistin (0.1%), penicillin (0.1%), formalin (0.2%) and sodium chloride (10%) in fermented broth were effective in retaining 100% phytase activity for 8 days at room temperature while these reagents along with methanol (50%) and ethanol (50%) confer 100% stability of phytase activity at 4°C till 20 days. Among various carriers used for application of phytase in feed, wheat bran and rice bran were superior to silica and calcium carbonate. Thermo stabilization studies indicate 100% protection of phytase activity in presence of 12% skim milk at 70°C, which will be useful for its spray drying.  相似文献   

6.
Solid state fermentation was conducted for the production of L-glutaminase by Trichoderma koningii Oud.aggr. using different agro-industrial byproducts inlcuding wheat bran, groundnut residues, rice hulls, soya bean meal, corn steep, sesamum oil cake, cotton seed residues and lentil industrial residues as solid substrates. Wheat bran was the best substrate for induction of L-glutaminase (12.1 U/mg protein) by T. koningii. The maximum productivity (23.2 U/mg protein) and yield (45.0 U/gds) of L-glutaminase by T. koningii occurred using wheat bran of 70% initial moisture content, initial pH 7.0, supplemented with D-glucose (1.0%) and L-glutamine (2.0% w/v), inoculated with 3 ml of 6 day old fungal culture and incubated at 30°C for 7 days. After optimization, the productivity of L-glutaminase by the solid cultures of T. koningii was increased by 2.2 fold regarding to the submerged culture.  相似文献   

7.
The process parameters were optimized to obtain enhanced enzyme activity from the fungus Phoma herbarum isolate KU4 using rice straw and saw dust as substrate under solid-state fermentation using Response surface methodology (RSM). Genetic algorithm was used to validate the RSM for maximum laccase production. Six variables, viz., pH of the media, initial moisture content, copper sulphate concentration, concentration of tannic acid, inoculum concentration and incubation time were found to be effective and optimized for enhanced production. Maximum laccase production was achieved by RSM at pH 5·0 and 86% of initial moisture content of the culture medium, 150 µmol l−1 of CuSO4, 1·5% tannic acid and 0·128 g inoculum g−1 dry substrate inoculum size on the fourth day of fermentation. The highest laccase activity was observed as 79 008 U g−1, which is approximately sixfold enhanced production compared to the unoptimized condition (12 085·26 U g−1).  相似文献   

8.
Aspergillus niger produced high levels of naringinase using easily available, inexpensive industrial waste residues such as rice bran, wheat bran, sugar cane bagasse, citrus peel, and press mud in solid‐state fermentation (SSF). Among these, rice bran was found to be the best substrate. Naringinase production was highest after 96 h of incubation at 27°C and at a substrate‐to‐moisture ratio of 1:1 w/v. Supplementation of the medium with 10% naringin caused maximum induction. An inoculum age of 72 h and an inoculum level of 15% resulted in maximum production of naringinase. Enzyme production was stimulated by the addition of nutrients such as naringin and peptone. Thus, A. niger produced a very high level of naringinase within a short time in solid‐state fermentation using inexpensive agro‐residues, a level that is much higher than reported for any other microbes.  相似文献   

9.
黑曲霉固态发酵及酶解玉米皮   总被引:2,自引:0,他引:2  
以玉米提取淀粉后的玉米皮渣为主要原料,采用黑曲霉固态发酵法产酶再酶解的二步法降解玉米皮中纤维素类物质。经Plackett-Burman法及响应面设计优化发酵条件得:温度30℃,接种量10%,初始水分体积分数60%,物料厚度2.47 cm,初始pH 5.79,发酵时间6 d;滤纸比酶活可达11.01 U/g,较原始酶活提高了40.61%;产酶结束后加入pH 4.8醋酸-醋酸钠缓冲液,置于50℃下酶解144 h,中性洗涤纤维与酸性洗涤纤维降解率分别为46.09%、48.82%,还原糖质量分数达到9.02%。  相似文献   

10.
The production of extracellular α-amylase by thermotolerant Bacillus subtilis was studied in solid state fermentation (SSF). The effect of wheat bran (WB) and rice husk (RH) was examined. The appropriate incubation period, moisture level, particle size and inoculum concentration was determined. Maximum yields of 159,520 and 21,760 U g−1 were achieved by employing WB and RH as substrates in 0.1 M phosphate buffer at pH 7 with 30% initial moisture content at 24 and 48 h. Particle size and inoculum concentration were found to be 1000 μm, 20% and 500 μm, 15% for WB and RH, respectively. Enzyme yield was 7.3-fold higher with WB medium compared with RH.  相似文献   

11.
Aspergillus oryzae CFTRI 1480, an isolate from a spoiled moist sample of casein, produced 59,105 units of an extracellular proteinase/g dry mouldy bran (DMB) at 72 h in an arbitrarily formulated wheat bran medium in a solid state fermentation system. The enzyme production was significantly affected by mineral salt content and pH of the liquid used for moistening the wheat bran. Enzyme titres were enhanced 1.34-fold with the addition of 0.4% corn starch. Optimization of key parameters, i.e., initial moisture content, age and size of inoculum, increased the enzyme production to 191,869 units/g DMB and reduced the fermentation time to 48 h. Such high titres in a simple medium, surpassing most of the literature reports, indicate the industrial importance of the culture. The properties of acetone-precipitated enzyme, viz, the optimum pH of 10.0, more than 95% activity between pH 7.0 and 10.0, temperature optimum at 55° C and more than 90% activity between 10 and 27°C, are similar to those of commercially available fungal proteinases employed in animal feed, leather and other industries. Correspondence to: B. K. Lonsane  相似文献   

12.
Phytase production by Aspergillus niger NCIM 563 was optimized by using wheat bran in solid state fermentation (SSF). An integrated statistical optimization approach involving the combination of Placket–Burman design (PBD) and Box–Behnken design (BBD) was employed. PBD was used to evaluate the effect of 11 variables related to phytase production, and five statistically significant variables, namely, glucose, dextrin, NaNO3, distilled water, and MgSO4·7H2O, were selected for further optimization studies. The levels of five variables for maximum phytase production were determined by a BBD. Phytase production improved from 50 IU/g dry moldy bran (DMB) to 154 IU/g DMB indicating 3.08-fold increase after optimization. A simultaneous reduction in fermentation time from 7 to 4 days shows a high productivity of 38,500 IU/kg/day. Scaling up the process in trays gave reproducible phytase production overcoming industrial constraints of practicability and economics. The culture extract also had 133.2, 41.58, and 310.34 IU/g DMB of xylanase, cellulase, and amylase activities, respectively. The partially purified phytase was optimally active at 55°C and pH 6.0. The enzyme retained ca. 75% activity over a wide pH range 2.0–9.5. It also released more inorganic phosphorus from soybean meal in a broad pH range from 2.5 to 6.5 under emulated gastric conditions. Molecular weight of phytase on Sephacryl S-200 was approximately 87 kDa. The K m and V max observed were 0.156 mM and 220 μm/min/mg. The SSF phytase from A. niger NCIM 563 offers an economical production capability and its wide pH stability shows its suitability for use in poultry feed.  相似文献   

13.
植酸酶产生菌的选育及固态产酶条件研究   总被引:11,自引:0,他引:11  
植酸酶催化植酸,并将其盐类水解成肌醇和磷酸,因此植酸酶的使用可以提高植酸磷的吸收利用率,降低饲料成本,同时还可保护生态环境.经分离和亚硝基胍诱变选育,得到一株植酸酶高产菌株绿色木霉LH374,并对该菌株固态发酵产植酸酶的条件和扩大生产进行了研究.结果表明,固态发酵的最佳条件:稻草和米糠的比例为8:2,培养基起始pH为6.5,最适温度为30℃,最适培养时间为96 h,含水量为60%,硫酸铵的流加量为2%.绿色木霉LH37在上述最适条件下生产植酸酶平均可达1 580 U·g-1.  相似文献   

14.
Abstract

The current study evaluated the production and characterization of β-glucosidase by the thermophilic fungus Thermomucor indicae-seudaticae in solid-state fermentation of wheat bran. Isolated fungi have significant amounts of β-glucosidase, an enzyme that may be applied to different industrial processes, such as the production of fuels, food, and other chemical compounds. Maximal enzyme activity occurred in pH 3.5–4.5 and at 70?°C. The enzyme exhibited high thermostability, for 1?h, up to 60?°C, and good tolerance to glucose (10?mM) and ethanol (10%). The optimization of fermentative parameters on the production of β-glucosidase was carried out by evaluating the best supplementary nutrient source, pH of nutrient solution, initial substrate moisture and fermentation temperature. The optimization of the above fermentation parameters increased enzyme activity by 120.0%. The highest enzymatic activity (164.0?U/g) occurred with wheat bran containing 70% initial moisture, supplemented with 1.0% (NH4)2SO4 solution at pH 5.5–6.0 and fungus incubated at 40?°C. A more detailed study of β-glucosidase suggested that Sulfur is an important component of the main amino acid present in this enzyme. The enhancer of the enzyme activity occurred when the fungus was grown on wheat bran supplemented with a sulfur-containing solution. In fact, increasing the concentration of sulfur in the solution increased its activity.  相似文献   

15.
In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8?g:10?g:2?g yielded the highest enzyme production of 201.6?U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5?×?106 spores/mL inoculum, which gave the highest enzyme activity of 389.5?U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2?g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300?g raw cassava chips/L with cane molasses.  相似文献   

16.
Comparisons were made for phytase production using wheat bran (WB) and oilcakes as substrates in solid-state fermentation (SSF) by Mucor racemosus NRRL 1994. WB was also used as mixed substrate with oil cakes. Sesame oil cake (SOC) served as the best carbon source for phytase synthesis by the fungal strain as it gave the highest enzyme titres (30.6 U/gds). Groundnut oil cake (GOC) also produced a reasonably good quantity of enzyme (24.3 U/gds). Enzyme production on WB was surprisingly much less (almost 3.5 times less in comparison to SOC). Mixing WB with SOC (1:1 ratio) resulted in better phytase activity (32.2 U/gds). Optimization of various process parameters such as incubation time, initial moisture content and inoculum concentration was carried out using the single variable mode optimization technique. Under optimized conditions, the production of phytase reached 44.5 U/gds, which was almost 1.5-fold higher than the highest yield obtained with any individual substrate used in this study and was more than 4-fold higher than that obtained from WB.  相似文献   

17.
Summary Phytase production byAspergillus ficuum was studied using solid state cultivation on several cereal grains and legume seeds. The microbial phytase was used to hydrolyze the phytate in soybean meal and cotton seed meal. Wheat bran, soybean meal, cottonseed meal and corn meal supported good fungal growth and yielded a high level of phytase when an adequate amount of moisture was present. The level of phytase production on solid substrate was higher than that obtained by submerged liquid fermentation. Higher levels of phosphorus (more than 10 mg Pi/100 g substrate) in the growth medium (static culture) inhibited phytase synthesis, and the degree of phosphorus inhibition was less apparent in semisolid medium than in liquid medium. A static cultivation on semisolid substrate produced a higher level of phytase (2-20-fold) than that obtained by agitated cultivation. The minimal amount of water required for growth and enzyme production on those substrates was about 15%, while the optimum level for phytase production was between 25 and 35% and that for cell growth was above 50%. Optimum pH for phytase production was between 4 and 6.A ficuum grew well on raw (unheated) substrate containing a minimal amount of water and produced as much phytase as on heated substrate. About half of the phytic acid in soybean meal and cottonseed meal was hydrolyzed by treatment withA. ficuum phytase.  相似文献   

18.
A thermophilic fungus, Rhizomucor pusillus, isolated from composting soil, was studied for phytase production using solid-state fermentation. The optimization of phytase production was carried out by Box–Behnken design of experiments, using three independent variables (pH of medium, culture age and incubation period), resulting in a maximal level of phytase (9.18 units/g substrate). The partially purified phytase was optimally active at 70 °C and pH 5.4, though the enzyme showed 80% activity over a wide pH range, 3.0–8.0. The phytase was found to have broad substrate specificity.  相似文献   

19.
β-Exoglucanase production on the lignocellulosic material, wheat bran, by Aspergillus niger under solid state fermentation (SSF) on a laboratory scale was investigated. Different fermentation parameters, such as moisture content, initial pH, temperature, depth of the substrate, and inoculum size on exoglucanase production were optimized. Moisture content of 40 %, pH of 7.0, substrate depth of 1.0 cm, inoculum size of 2?×?106 spores/g of wheat bran, and temperature at 30 °C were optimal for maximum production of exoglucanase. Maximum yields of exoglucanase with 28.60 FPU/g of wheat bran were obtained within 3 days of incubation under optimal conditions.  相似文献   

20.
Cellulase production from lignocellulosic materials was studied in solid-state cultivation by both static and mixed techniques under nonaseptic conditions. The effects of fermentation conditions, such as moisture content, pH, temperature, and aeration, on cellulase production by Trichoderma harzianum using a mixture of wheat straw (80%) and bran (20%) were investigated. With a moisture content of 74% and a pH of 5.8., 18 IU filter paper activity and 198 IU endoglucanase activity/g initial substrate content were obtained in 66 h. The extension from static column cultivation to stirred tank reactor of 65 L capacity gave similar yields of cellulase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号