首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
粘红酵母和酿酒酵母联合处理味精废水   总被引:1,自引:0,他引:1  
为了解决味精废水中高NH4+浓度抑制油脂微生物的生长和油脂积累问题,采用粘红酵母和酿酒酵母联合处理味精废水的方法:首先利用酿酒酵母降解味精废水(MSG)中NH4+,然后将处理后的废水进一步发酵培养合成油脂。研究结果表明:用经酿酒酵母预处理过的味精废水作为粘红酵母的培养基发酵时,粘红酵母的生物量为33.3 g/L,油脂产率为18.16%,COD降解率为50.6%,NH4+的降解率为93.9%。比粘红酵母单独处理味精废水,NH4+的降解率提高了6.14倍,生物量、油脂产率和COD降解率分别提高了8.1%、30.06%和9.58%。  相似文献   

2.
基于降低微生物类胡萝卜素生产成本的考虑,采用番茄渣、豆粕的纤维素酶酶解产物培养胶红酵母,以单位体积发酵液中的总类胡萝卜素浓度增量作为优化目标,先后运用逐步单因素法和均匀设计法系统性地考查了胶红酵母的总类胡萝卜素产量和增量与各个相关因素之间的关系。实验获得的总类胡萝卜素最大产量以及扣除了番茄渣中的类胡萝卜素含量而计算得到的增量分别为12.25 mg/L和10.25 mg/L。实验结果证明设计的生产工艺能够以较低的成本生产出富含类胡萝卜素的饲料,因而是经济可行的。  相似文献   

3.
An extracellular β-fructofuranosidase from the yeast Rhodotorula dairenensis was characterized biochemically. The enzyme molecular mass was estimated to be 680 kDa by analytical gel filtration and 172 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of which the N -linked carbohydrate accounts for 16% of the total mass. It displays optimum activity at pH 5 and 55–60 °C. The enzyme shows broad substrate specificity, hydrolyzing sucrose, 1-kestose, nystose, leucrose, raffinose and inulin. Although the main reaction catalyzed by this enzyme is sucrose hydrolysis, it also exhibits transfructosylating activity that, unlike other microbial β-fructofuranosidases, produces a varied type of prebiotic fructooligosaccharides containing β-(2→1)- and β-(2→6)-linked fructose oligomers. The maximum concentration of fructooligosaccharides was reached at 75% sucrose conversion and it was 87.9 g L−1. The 17.0% (w/w) referred to the total amount of sugars in the reaction mixture. At this point, the amounts of 6-kestose, neokestose, 1-kestose and tetrasaccharides were 68.9, 10.6, 2.6 and 12.7 g L−1, respectively.  相似文献   

4.
Yeast Saccharomyces cerevisiae is the most significant source of enzyme invertase. It is mainly used in the food industry as a soluble or immobilized enzyme. The greatest amount of invertase is located in the periplasmic space in yeast. In this work, it was isolated into two forms of enzyme from yeast S. cerevisiae cell, soluble and cell wall invertase (CWI). Both forms of enzyme showed same temperature optimum (60°C), similar pH optimum, and kinetic parameters. The significant difference between these biocatalysts was observed in their thermal stability, stability in urea and methanol solution. At 60°C, CWI had 1.7 times longer half-life than soluble enzyme, while at 70°C CWI showed 8.7 times longer half-life than soluble enzyme. After 2-hr of incubation in 8?M urea solution, soluble invertase and CWI retained 10 and 60% of its initial activity, respectively. During 22?hr of incubation of both enzymes in 30 and 40% methanol, soluble invertase was completely inactivated, while CWI changed its activity within the experimental error. Therefore, soluble invertase and CWI have not shown any substantial difference, but CWI showed better thermal stability and stability in some of the typical protein-denaturing agents.  相似文献   

5.
6.
Strains of Saccharomyces cerevisiae transformed with a multicopy expression vector bearing both the Escherichia coli beta-galactosidase gene under the control of the upstream activating sequence of the GAL1-10 genes and the GAL4 activator gene release part of beta-galactosidase in the growth medium. This release is due to cell lysis of the older mother cells; the enzyme maintains its activity in buffered growth media. Fermentation studies with transformed yeast strains showed that the release of beta-galactosidase allowed an efficient growth on buffered media containing lactose as carbon source as well as on whey-based media. The transformed strains utilized up to 95% of the lactose and a high growth yield was obtained in rich media. High productions of ethanol were also observed in stationary phase after growth in lactose minimal media.  相似文献   

7.
啤酒酵母代谢工程研究进展   总被引:1,自引:0,他引:1  
啤酒工业上应用的啤酒酵母菌株在生产中都会存在着某些方面的缺陷。通过分析啤酒酵母某些代谢产物的代谢途径,寻找改变其代谢流量的方法,然后用分子生物学手段对其代谢流量加以改变,来调节啤酒酵母某些产物的代谢水平已经成为啤酒酵母育种的新方式。对酵母的底物利用、可操作性、控制有害副产物的产量及改善啤酒风味等方面的研究成果进行了综述。  相似文献   

8.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

9.
The total yield of ergosterol produced by the fermentation of the yeast Saccharomyces cerevisiae depends on the final amount of yeast biomass and the ergosterol content in the cells. At the same time ergosterol purity—defined as percentage of ergosterol in the total sterols in the yeast—is equally important for efficient downstream processing. This study investigated the development of both the ergosterol content and ergosterol purity in different physiological (metabolic) states of the microorganism S. cerevisiae with the aim of reaching maximal ergosterol productivity. To expose the yeast culture to different physiological states during fermentation an on‐line inference of the current physiological state of the culture was used. The results achieved made it possible to design a new production strategy, which consists of two preferable metabolic states, oxidative‐fermentative growth on glucose followed by oxidative growth on glucose and ethanol simultaneously. Experimental application of this strategy achieved a value of the total efficiency of ergosterol production (defined as product of ergosterol yield coefficient and volumetric productivity), 103.84 × 10?6 g L?1h?1, more than three times higher than with standard baker's yeast fed‐batch cultivations, which attained in average 32.14 × 10?6 g L?1h?1. At the same time the final content of ergosterol in dry biomass was 2.43%, with a purity 86%. These results make the product obtained by the proposed control strategy suitable for effective down‐stream processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:838–848, 2017  相似文献   

10.
从八二酒曲及酿造崇明老白酒过程中分离纯化得到1株白色酵母菌和1株红色酵母菌,采用分子生物学方法进行鉴定,并对其酿造老白酒的特性进行了分析。结果显示,八二酒曲及崇明老白酒酿造过程中的优势酵母菌为酿酒酵母(Saccaromyces cerevisiae),从酿酒过程中分离的红色酵母菌为粘红酵母(Rhodotorula mucilaginosa)。采用粘红酵母和米根霉曲酿造的酒液的酒精度为11.9%vol,残余还原糖含量为11.2 g/100 m L,总酸含量为4.59 g/L,总酯含量为4.42 g/L。纯化的酿酒酵母和米根霉曲酿成的酒液口味醇和爽口,酒曲的纯化有助于开发出口感更爽口的老白酒。混合酵母和米根霉曲酿造的酒液呈典型的崇明老白酒风味,粘红酵母的参与对崇明老白酒口味风格的形成有一定的作用。  相似文献   

11.
陈叶福  沈世超  王艳  肖冬光 《微生物学报》2008,48(12):1609-1615
【目的】在不影响酵母正常代谢前提下,构建亚硫酸盐分泌量提高的基因工程菌株,增加二氧化硫生成量,有效地解决啤酒老化问题。【方法】以适量高产二氧化硫工业啤酒酵母突变株M8总DNA为模板,PCR方法得到带有不同长度5′端非编码区的基因片段SSU1-1、SSU1-2,以大肠杆菌-酿酒酵母穿梭质粒YEp352构建表达载体pSU1和pSU2,转化实验室酵母YS58,验证SSU1多克隆表达对其二氧化硫生成量的影响。进而将pSU2转化工业啤酒酵母M8,利用亚硫酸盐抗性筛选转化子,并对其二氧化硫和硫化氢生成量及其啤酒抗老化性能进行测定和分析。【结果】实验室酵母转化子pSU1-4和pSU2-3二氧化硫生成量较原株明显提高而硫化氢生成量基本不变,工业啤酒酵母转化子Y2二氧化硫生成量比原株M8提高74.4%,TBA值下降14.9%,DPPH自由基清除率提高38.2%,硫化氢生成量基本不变。【结论】SSU1基因的多拷贝表达有效提高了亚硫酸盐转运蛋白Ssu1p表达量,增加了亚硫酸盐分泌量,啤酒抗氧化能力得到明显增强,而对酵母硫代谢途径中亚硫酸盐还原为硫化物代谢过程没有影响。  相似文献   

12.
Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N‐acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L‐tryptophan hydroxylase, a 5‐hydroxy‐L‐tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O‐methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co‐factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L?1 in a 76h fermentation using simulated fed‐batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin.  相似文献   

13.
AIMS: Recombinant Saccharomyces cerevisiae strains harbouring different levels of xylulokinase (XK) activity and effects of XK activity on utilization of xylulose were studied in batch and fed-batch cultures. METHODS AND RESULTS: The cloned xylulokinase gene (XKS1) from S. cerevisiae was expressed under the control of the glyceraldehyde 3-phosphate dehydrogenase promoter and terminator. Specific xylulose consumption rate was enhanced by the increased specific XK activity, resulting from the introduction of the XKS1 into S. cerevisiae. In batch and fed-batch cultivations, the recombinant strains resulted in twofold higher ethanol concentration and 5.3- to six-fold improvement in the ethanol production rate compared with the host strain S. cerevisiae. CONCLUSIONS: An effective conversion of xylulose to xylulose 5-phosphate catalysed by XK in S. cerevisiae was considered to be essential for the development of an efficient and accelerated ethanol fermentation process from xylulose. SIGNIFICANCE AND IMPACT OF THE STUDY: Overexpression of the XKS1 gene made xylulose fermentation process accelerated to produce ethanol through the pentose phosphate pathway.  相似文献   

14.
15.
S-Adenosyl-l -methionine (SAM) is an important small molecule compound widely used in treating various diseases. Although l -methionine is generally used, the low-cost dl -methionine is more suitable as the substrate for industrial production of SAM. However, d -methionine is inefficient for SAM formation due to the substrate-specificity of SAM synthetase. In order to increase the utilization efficiency of dl -methionine, intracellular conversion of d -methionine to l -methionine was investigated in the type strain Saccharomyces cerevisiae BY4741 and an industrial strain S. cerevisiae HDL. Firstly, via disruption of HPA3 encoding d -amino acid-N-acetyltransferase, d -methionine was accumulated in vivo and no N-acetyl-d -methionine production was observed. Further, codon-optimized d -amino acid oxidase (DAAO) gene from Trigonopsis variabilis (Genbank MK280686) and l -phenylalanine dehydrogenase gene (l -PheDH) from Rhodococcus jostii (Genbank MK280687) were introduced to convert d -methionine to l -methionine, SAM concentration and content was increased by 110% and 72.1% in BY4741 (plasmid borne) and increased by 38.2% and 34.1% in HDL (genome integrated), by feeding 0.5 g/L d -methionine. Using the recently developed CRISPR tools, the DAAO and l -PheDH expression cassettes were integrated into the HPA3 and SAH1 loci while SAM2 expression was integrated into the SPE2 and GLC3 loci of HDL, and the resultant strain HDL-R2 accumulated 289% and 192% more SAM concentration and content, respectively, by feeding 0.5 g/L dl -methionine. Further, in a 10 L fed-batch fermentation process, 10.3 g/L SAM were accumulated with the SAM content of 242 mg/g dry cell weight by feeding 16 g/L dl -methionine. The strategies used here provided a promising approach to enhance SAM production using low-cost dl -methionine.  相似文献   

16.
【目的】异麦芽糖酶IMA1在充分利用含有α-1,6-O-糖苷键的低聚糖中起着关键作用。【方法】在本研究中,对来自4株酿酒酵母菌株(包括3株嗜酸性菌株)来源的异麦芽糖酶IMA1进行克隆、表达、纯化和表征。【结果】研究发现,4种异麦芽糖酶IMA1表现出类似的pH和温度依赖性,但表现出不同的动力学参数和热稳定性。IMA1-A对α-MG(α-甲基葡糖苷)表现出最高的结合亲和力、转换数、催化效率和热稳定性。结构和序列分析表明,2个远离活性位点和底物结合位点的氨基酸的差异对异麦芽糖酶IMA1的动力学参数和热稳定性有重要影响。【结论】本研究结果对进一步研究异麦芽糖酶IMA1的结构-功能关系奠定了基础。  相似文献   

17.
18.
【目的】过表达酿酒酵母肌醇合成关键酶基因INO1,促进肌醇合成,构建能够分泌肌醇的基因工程菌株。【方法】构建r DNA介导的INO1基因多拷贝整合表达载体p URIH,电转化酿酒酵母Y01菌株,构建工程菌株YI2-1和YI2-2,荧光定量PCR方法分析INO1基因表达量。敲除Kan MX抗性基因,HPLC检测重组菌发酵液中肌醇含量。【结果】获得INO1基因过表达菌株YI2-1和YI2-2,YI2-1的INO1基因表达量是出发菌Y01的16.235倍。敲除Kan MX抗性基因的菌株命名为YI2-1△KP,初步检测YI2-1△KP产肌醇量为627 mg/L。【结论】r DNA介导的INO1基因多拷贝整合表达载体p URIH能够有效地过表达目的基因;过表达菌株合成的肌醇不仅能满足自身的需要,而且能够向胞外分泌,具有潜在的工业应用价值。  相似文献   

19.
木糖的有效利用是木质纤维素生产生物燃料或化学品经济性转化的基础.30年来,通过理性代谢改造和适应性进化等工程策略,显著提高了传统乙醇发酵微生物——酿酒酵母Saccharomyces cerevisiae的木糖代谢能力.因此,近年来在酿酒酵母中利用木糖生产化学品的研究逐步展开.研究发现,酿酒酵母分别以木糖和葡萄糖为碳源时...  相似文献   

20.
The laboratory strain of S. cerevisiae, IM1-8b, showed pectolytic activity in the presence of either glucose, fructose, or sucrose as the carbon source, but not with galactose. The enzyme activity was rapidly lost with shaking. The optimum pH and temperature for activity were 4.5 and 45°C, respectively. The enzyme was an endopolygalacturonase, since it preferentially hydrolysed pectate over pectin and decreased the viscosity of a 5% polygalacturonic solution by about 30% in 30min producing oligogalacturonic acid and digalacturonic acid as end-products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号