首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. S. Seshadri 《Biotropica》2014,46(5):615-623
Vast areas of tropical evergreen forests have been selectively logged in the past, and many areas continue to be logged. The impacts of such logging on amphibians are poorly understood. I examined the response of anuran communities to historical selective logging in a wet evergreen forest in south India. Anuran assemblages in unlogged forest were compared with assemblages in selectively logged forest. Forty 10 m × 10 m quadrats in forest, riparian zones, and streams of unlogged and selectively logged forests were searched at night for anurans. Species richness did not appear to be affected by logging. However, anuran density varied significantly and was 42 percent lower in selectively logged forests compared to unlogged forests. Anuran densities also varied significantly across microhabitats, with highest densities in streams of both selectively logged and unlogged forests. Patterns of niche overlap varied with selective logging as niche breadth either expanded, contracted, or remained neutral for different species. Ordination analysis explained 95 percent of the variation in species assemblage across selectively logged and unlogged forests. The assemblage in selectively logged forest was nested within unlogged forest. Among the habitat characteristics, litter thickness and water depth had the highest influence on the assemblage. This was followed by litter/water temperature, air temperature, and lastly relative humidity. It appears that species richness and composition of anurans in selectively logged forests is converging with unlogged forests, but the effects of historical logging seem to persist on anuran densities and their niche characteristics even ca 40 yr since logging ceased.  相似文献   

2.

Background

Today the majority of wild great ape populations are found outside of the network of protected areas in both Africa and Asia, therefore determining if these populations are able to survive in forests that are exploited for timber or other extractive uses and how this is managed, is paramount for their conservation.

Methodology/Principal Findings

In 2007, the “Kinabatangan Orang-utan Conservation Project” (KOCP) conducted aerial and ground surveys of orang-utan (Pongo pygmaeus morio) nests in the commercial forest reserves of Ulu Segama Malua (USM) in eastern Sabah, Malaysian Borneo. Compared with previous estimates obtained in 2002, our recent data clearly shows that orang-utan populations can be maintained in forests that have been lightly and sustainably logged. However, forests that are heavily logged or subjected to fast, successive coupes that follow conventional extraction methods, exhibit a decline in orang-utan numbers which will eventually result in localized extinction (the rapid extraction of more than 100 m3 ha−1 of timber led to the crash of one of the surveyed sub-populations). Nest distribution in the forests of USM indicates that orang-utans leave areas undergoing active disturbance and take momentarily refuge in surrounding forests that are free of human activity, even if these forests are located above 500 m asl. Displaced individuals will then recolonize the old-logged areas after a period of time, depending on availability of food sources in the regenerating areas.

Conclusion/Significance

These results indicate that diligent planning prior to timber extraction and the implementation of reduced-impact logging practices can potentially be compatible with great ape conservation.  相似文献   

3.
4.
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast‐fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density‐dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one‐third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non‐vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local‐scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local‐scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast‐fruiting year suggest that intensive selective logging may affect long‐term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.  相似文献   

5.
6.
A census was made of gorilla and chimpanzee populations throughout Gabon between December 1980 and February 1983. The aim of the census was to estimate the total numbers of both species and describe their distributions. The method was based on nest counts from line transects which allowed the calculation of population densities of all individuals except suckling infants. Fifteen types of habitat were recognized and defined in terms of their structural features. In the initial phase of the study we did transects in each habitat-type and computed mean densities for each species in each habitat-type. In the second phase of the study we estimated the sizes of gorilla and chimpanzee populations throughout the country by extrapolation from these population density values. We did transects in all areas of the country and conducted interviews to check the accuracy of the population totals obtained by extrapolation. Corrections were made to the extrapolated totals to take into account different levels of hunting pressure and other human activities found to modify ape population densities. Total populations of 34,764 gorillas and 64,173 chimpanzees were estimated. An error of ± 20% was associated with the estimated population totals, which allows the conclusion that Gabon contains 35,000 ± 7,000 gorillas and 64,000 ± 13,000 chimpanzees. The figure for gorillas is much larger than previous estimates. This seems to be because (1) gorillas occur in almost all types of forest and are not restricted to man-made secondary forest as had been though; and (2) the geographical distribution of gorillas in Gabon is wider than previously believed. Gabon's large areas of undisturbed primary forest offer exceptional potential for conservation, not only of gorillas and chimpanzees, but also of the intact tropical rain forest ecosystems which they inhabit.  相似文献   

7.
Making generalizations about the impact of commercial selective logging on biodiversity has so far remained elusive. Species responses to logging depend on a number of factors, many of which have not been studied in detail. These factors may include the natural forest conditions (forest types) under which logging impacts are investigated; but this question has so far remained unexamined. In a large‐scale replicate study we aimed at clarifying the relationship between logging and forest types on leaf litter frogs. We contrast three distinct and naturally occurring forest types, including wet evergreen, moist evergreen and semi‐deciduous forests. Selectively logged sites were compared with primary forest sites for each forest type. We found that the response of frog communities to logging varies in different forest types. In the wet evergreen forest, richness was higher in logged forest than primary forest, while diversity measures were not different between logged and primary forest habitats. In the moist evergreen, richness and diversity were higher in selectively logged areas compared with primary forest habitats. In the semi‐deciduous, logged forests were characterized by drastic loss of forest specialists, reduced richness, and diversity. These results indicate that the net effect of logging varies with respect to forest type. Forest types that are characterized by adverse climatic conditions (i.e., low rainfall and protracted dry seasons) are more likely to produce negative effects on leaf litter anuran communities. For comparisons of the impact of logging on species to be effective, future research must endeavor to include details of forest type.  相似文献   

8.
  1. Selective logging dominates forested landscapes across the tropics. Despite the structural damage incurred, selectively logged forests typically retain more biodiversity than other forest disturbances. Most logging impact studies consider conventional metrics, like species richness, but these can conceal subtle biodiversity impacts. The mass–abundance relationship is an integral feature of ecological communities, describing the negative relationship between body mass and population abundance, where, in a system without anthropogenic influence, larger species are less abundant due to higher energy requirements. Changes in this relationship can indicate community structure and function changes.
  2. We investigated the impacts of selective logging on the mass–abundance scaling of avian communities by conducting a meta‐analysis to examine its pantropical trend. We divide our analysis between studies using mist netting, sampling the understory avian community, and point counts, sampling the entire community.
  3. Across 19 mist‐netting studies, we found no consistent effects of selective logging on mass–abundance scaling relative to primary forests, except for the omnivore guild where there were fewer larger‐bodied species after logging. In eleven point‐count studies, we found a more negative relationship in the whole community after logging, likely driven by the frugivore guild, showing a similar pattern.
  4. Limited effects of logging on mass–abundance scaling may suggest high species turnover in logged communities, with like‐for‐like replacement of lost species with similar‐sized species. The increased negative mass–abundance relationship found in some logged communities could result from resource depletion, density compensation, or increased hunting; potentially indicating downstream impacts on ecosystem functions.
  5. Synthesis and applications. Our results suggest that size distributions of avian communities in logged forests are relatively robust to disturbance, potentially maintaining ecosystem processes in these forests, thus underscoring the high conservation value of logged tropical forests, indicating an urgent need to focus on their protection from further degradation and deforestation.
  相似文献   

9.
Accurate and precise surveys of primate abundance provide the basis for understanding species ecology and essential information for conservation assessments. Owing to the elusive nature of wild apes and the vast region of dense forest they inhabit, population estimates of central chimpanzees (Pan troglodytes troglodytes) and western lowland gorillas (Gorilla gorilla gorilla) have largely relied on surveys of their nests. Specific information about the nesting behavior of apes permits the estimation of the number of nests built (nest creation rate). Similarly, information on nest characteristics and environmental factors can be used to estimate the time it takes nests to decay (nest decay rate). Nest creation and decay rates are then used to convert nest density estimates to absolute ape densities. Population estimates that use site-specific estimates of nest creation and decay rates are more accurate and precise. However, it is common practice to generalize these conversion factors across sites because of the additional cost of studies required to gather the information to estimate them. Over a 9-mo study period, we detected and monitored the time to decay of gorilla nests (N = 514) and chimpanzee nests (N = 521) in northern Republic of Congo. We investigated the influence of nest characteristics and environmental factors on nest survivorship and estimated the mean time to nest decay (or equivalently survival) using MARK. Key factors influencing nest decay rate included ape species, forest type, nest height, mean rainfall, nest structure, nest type, and primary aspects of nest construction. Our findings highlight the synergistic effect of behavior and environment on great ape nest degradation, as well as providing practical insights for improving measures to monitor remaining populations of these endangered species.  相似文献   

10.
采伐对红松种群结构与动态的影响   总被引:2,自引:0,他引:2  
红松是我国长白山阔叶红松林的主要建群种,受森林采伐的影响,种群数量急剧下降,现已被列为国家二级保护植物。通过绘制种群静态生命表、生存函数、存活曲线和径级分布图,研究原始林,15%择伐、40%择伐和皆伐后恢复的天然次生林内,红松种群结构和动态的变化规律。结果表明:(1)采伐干扰对红松种群的波动周期影响不大,15%的择伐强度可以提高红松种群的生存期望。(2)原始林和15%择伐林内红松种群存活曲线均为DeeveyⅡ型,种群处于稳定期;40%择伐林内存活曲线介于DeeveyⅡ型和DeeveyⅢ型之间,种群由稳定期向成熟期过渡;皆伐林内存活曲线为DeeveyⅠ型,种群处在增长期。(3)原始阔叶红松林林、15%择伐林和40%择伐林内,红松种群径级结构均呈稳定的倒J型,且在幼树阶段均存在生长更新的停滞现象;与原始林相比,15%择伐林内幼树比例略有下降;40%择伐林和皆伐迹地,随采伐强度的增加,幼树比例明显增大。(4)方差分析表明,4个种群的生存过程差异较大,采伐干扰对红松种群生存过程的影响达到显著水平。  相似文献   

11.
ABSTRACT

Background: Lianas are an important component of tropical forests that respond to logging disturbance. Determining liana response to selective logging chronosequence is important for understanding long-term logging effects on lianas and tropical forests.

Aims: Our objective was to quantify the response of liana communities to selective logging chronosequence in a moist semi-deciduous forest in Ghana.

Methods: Liana community characteristics were determined in ten 40 m × 40 m plots randomly and homogenously distributed in each of four selectively logged forest stands that had been logged 2, 14, 40 and 68 years before the surveys and in an old-growth forest stand (ca. >200 years).

Results: Liana species composition differed significantly among the forest stands, as a function of logging time span, while species richness fluctuated along the chronosequence. The abundance of liana communities and of reproductive and climbing guilds was lower in the logged forests than in the old-growth forest. The ratio of liana abundance and basal area to those of trees was similar in the logged forests, but significantly lower than those in the old-growth forest.

Conclusions: Logging impacts on liana community structure and functional traits were largely evident, though no clear chronosequence trends were recorded, except for species composition.  相似文献   

12.
Several studies have investigated the effects of logging on primate population density, and attempted to relate density differences to changes in vegetation composition. As population density in some forest primates may be considerably influenced by dietary quality, it is important to understand how the effects of vegetation changes commonly associated with logging influence primate feeding ecology. Results are presented from a study carried out in the Budongo Forest Reserve in Uganda to investigate differences in blue monkey (Cercopithecus mitis stuhlmanni) feeding ecology in forest blocks with different logging history. Dietary composition differed between logged and unlogged forest, with a higher proportion of unripe fruit consumed in logged forest. By contrast, the proportion of young leaves, invertebrates and seeds in the diet was higher in unlogged forest. Variations in the intake of fruit was also higher in unlogged forest, but feeding patterns on other dietary items were more selective. These differences in diet reflect differences in availability of different categories of food items, as determined by tree species composition, abundance and plant phenological patterns. The observed differences between feeding ecology in logged and unlogged forest are discussed in relation to primate feeding ecology and habitat composition in Budongo.  相似文献   

13.
Alan E. Stiven 《Oecologia》1989,79(3):372-382
Summary Ecological and genetic properties of two North American terrestrial gastropods (Mesomphix spp.) were characterized in paired control and previously logged watersheds in two North Carolina forests (Coweeta and the Great Smoky Mountains National Park) of the Southern Appalachian Biosphere Reserve Cluster. Shell growth was greater in the control sites, but density and mortality were largely independent of prior logging history and forest reserve. Based on starch gel electrophoresis data, both species showed their highest levels of genetic diversity in the Coweeta forest, the component of the reserve cluster which had the most extensive and variable history of logging disturbance. M. subplanus also exhibited higher levels of heterozygosity in logged than in control watersheds, and M. andrewsae showed over twice as many rare alleles in disturbed sites as in control sites. F-statistic analysis depicted both excess levels of homozygosity and moderate genetic differentiation among the populations, reflecting the effects of small population size and perhaps drift and inbreeding. Estimated gene flow was relatively low. These results correspond to the recent finding by Bryant et al. (1987) and others on the effects of bottlenecks, and to the contrasting history of habitat instability of the two major study forests.  相似文献   

14.
The conservation of gorillas (Gorilla spp.) and chimpanzees (Pan troglodytes) depends upon knowledge of their densities and distribution throughout their ranges. However, information about ape populations in swamp forests is scarce. Here we build on current knowledge of ape populations by conducting line transect surveys of nests throughout a reserve dominated by swamp forest: the Lac Télé Community Reserve in northern Congo. We estimated gorilla and chimpanzee densities, distributions across habitats, and seasonal changes in abundance. Gorilla density was 2.9 gorillas km–2, but densities varied by habitat (0.3–5.4 gorillas km–2) with highest densities in swamp forest and terra firma mixed forest. Average chimpanzee density is 0.7 chimpanzees km–2 (0.1–1.3 chimpanzees km–2), with highest densities in swamp forest. Habitat was the best predictor of ape nest abundance, as neither the number of human indices nor the distance from the nearest village predicted nest abundance. We recorded significantly greater numbers of apes in terra firma forest during the high-water season than the low-water season, indicating that many gorillas and chimpanzees are at times concentrated in terra firma forest amid a matrix of swamp forest. Seasonally high numbers of apes on terra firma forest islands easily accessible to local people may expose them to substantial hunting pressure. Conversely, the nearly impenetrable nature of swamp forests and their low value for logging makes them promising sites for the conservation of apes.  相似文献   

15.
We examined range use by great apes during logging activities and investigated associations between local variations in ape abundance and changes in the structure of the habitat or in the availability of fruits after disturbances. We carried out two annual censuses of western lowland gorilla (G. g. gorilla) and chimpanzee populations (Pan t. troglodytes) in an active logging concession in Southeast Cameroon. The results suggest that gorillas may adapt their range use to avoid most recently logged compartments, while chimpanzees appear to be more spatially resilient to logging. In our study site, selective logging affected 10% of the forest. After logging, gorillas nested in all types of vegetation, while chimpanzees nested exclusively in mixed mature forest. Fruit availability was not affected by logging and did not explain the distribution of ape nests in the study area.  相似文献   

16.
Edward L. Webb 《Biotropica》1999,31(1):102-110
The probability of achieving a sustainable tropical logging operation is increased if the growth of surviving trees is maximized after logging. This research examined the growth ecology of seedlings and trees of the Neotropical timber species, Carapa nicaraguensis (Meliaceae). Shadehouse experiments, field plantings, and growth rate analyses tested the hypothesis that Carapa seedlings and trees experience higher growth rates in high light levels (recently formed logging gaps or logged forest plots) than in low light levels (old logging gaps or undisturbed forest plots). Consistently poor seedling growth rates under low light conditions suggest that seedlings establishing in newly formed gaps will be more successful than those establishing in building-phase gaps. Thus, the first year after logging is a critical time for gap recolonization by Carapa, and seed casting into gaps after logging is recommended. Growth of Carapa trees was significantly faster in logged forest than in undisturbed forest, and was positively associated with light availability. The results provide evidence that harvest models can be both diameter- and illumination-based. Crown illumination was not significantly higher in logged forest than in undisturbed forest, indicating that the illumination scale for this study was not sensitive enough to detect increases in light availability brought about by selective logging. Potential silvicul-tural methods (particularly poison-girdling) that maintain adequate forest light levels in Carapa swamps without significantly altering long-term tree diversity or allowing invasion of secondary species should be explored.  相似文献   

17.
The level and distribution of genetic diversity can be influenced by species life history traits and demographic factors, including perturbations that might produce population bottlenecks. Deforestation and forest fragmentation are common sources of population disturbance in contemporary populations of forest ecosystems. Although the genetic effects of forest fragmentation and deforestation have been examined by assessing levels of genetic variation in forest fragments that remain after logging, few considerations have been made of the populations that re-colonize once-cleared areas. Here we examine the effects of human-mediated population bottlenecks on the level and distribution of genetic diversity in natural populations of the long-lived forest tree species, Acer saccharum (sugar maple). We compared genetic variation and structure for populations of sugar maple found within old-growth forested area and in area that has re-colonized since logging. In this study the percent polymorphic loci and allelic richness estimates were reduced in the logged populations compared to old-growth populations. Jackknifed estimates of population genetic differentiation showed significantly higher differentiation among logged populations, with this result being consistently seen when individuals within populations were grouped according to diameter at breast height. The result of decreased genetic variation and higher levels of genetic structure among logged populations suggests that even one extensive bout of logging can alter the level and distribution of genetic variation in this forest tree species.  相似文献   

18.
Non-human primates face major environmental changes due to increased human impacts all over the world. Although some species are able to survive in certain landscapes with anthropogenic impact, their long-term viability and fitness may be decreased due to chronic stress. Here we assessed long-term stress levels through cortisol analysis in chimpanzee hair obtained from sleeping nests in northwestern Uganda, in order to estimate welfare in the context of ecotourism, forest fragmentation with human-wildlife conflicts, and illegal logging with hunting activity (albeit not of primates), compared with a control without human contact or conflict. Concerning methodological issues, season [F(2,129) = 37.4, p < 0.0001, r2 = 0.18] and the age of nests [F(2,178) = 20.3, p < 0.0001, r2 = 0.11] significantly predicted hair cortisol concentrations (HCC). With regard to effects of anthropogenic impacts, our results neither showed elevation of HCC due to ecotourism, nor due to illegal logging compared to their control groups. We did, however, find significantly increased HCC in the fragment group compared to chimpanzees living in a nearby intact forest [F(1,88) = 5.0, p = 0.03, r2 = 0.20]. In conclusion, our results suggest that hair cortisol analysis is a powerful tool that can help understanding the impact of anthropogenic disturbances on chimpanzee well-being and could be applied to other great ape species.  相似文献   

19.
The carbon storage and conservation value of old-growth tropical forests is clear, but the value of logged forest is less certain. Here we analyse >100,000 observations of individuals from 11 taxonomic groups and >2,500 species, covering up to 19?years of post-logging regeneration, and quantify the impacts of logging on carbon storage and biodiversity within lowland dipterocarp forests of Sabah, Borneo. We estimate that forests lost ca. 53% of above-ground biomass as a result of logging but despite this high level of degradation, logged forest retained considerable conservation value: floral species richness was higher in logged forest than in primary forest and whilst faunal species richness was typically lower in logged forest, in most cases the difference between habitats was no greater than ca. 10%. Moreover, in most studies >90% of species recorded in primary forest were also present in logged forest, including species of conservation concern. During recovery, logged forest accumulated carbon at five times the rate of natural forest (1.4 and 0.28?Mg?C?ha?1?year?1, respectively). We conclude that allowing the continued regeneration of extensive areas of Borneo??s forest that have already been logged, and are at risk of conversion to other land uses, would provide a significant carbon store that is likely to increase over time. Protecting intact forest is critical for biodiversity conservation and climate change mitigation, but the contribution of logged forest to these twin goals should not be overlooked.  相似文献   

20.
The conversion of forest to agriculture continues to contribute to the loss and fragmentation of remaining orang‐utan habitat. There are still few published estimates of orang‐utan densities in these heavily modified agricultural areas to inform range‐wide population assessments and conservation strategies. In addition, little is known about what landscape features promote orang‐utan habitat use. Using indirect nest count methods, we implemented surveys and estimated population densities of the Northeast Bornean orang‐utan (Pongo pygmaeus morio) across the continuous logged forest and forest remnants in a recently salvage‐logged area and oil palm plantations in Sabah, Malaysian Borneo. We then assessed the influence of landscape features and forest structural metrics obtained from LiDAR data on estimates of orang‐utan density. Recent salvage logging appeared to have a little short‐term effect on orang‐utan density (2.35 ind/km 2), which remained similar to recovering logged forest nearby (2.32 ind/km 2). Orang‐utans were also present in remnant forest patches in oil palm plantations, but at significantly lower numbers (0.82 ind/km 2) than nearby logged forest and salvage‐logged areas. Densities were strongly influenced by variation in canopy height but were not associated with other potential covariates. Our findings suggest that orang‐utans currently exist, at least in the short‐term, within human‐modified landscapes, providing that remnant forest patches remain. We urge greater recognition of the role that these degraded habitats can have in supporting orang‐utan populations, and that future range‐wide analyses and conservation strategies better incorporate data from human‐modified landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号