首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dye-decolorizing bacterium was isolated from a coconut coir sample and identified as a new genus Kerstersia sp. by various biochemical tests and 16S rRNA gene sequencing. This bacterium was capable of degrading sulfonated azo dye Amaranth aerobically at 40?°C and pH 7.0. Tests conducted on intracellular crude enzyme extract identified an oxygen insensitive azoreductase. The optimum dye-decolorizing activity at pH 7.0 and 40?°C for the decolorization of dye was 0.091?U mL?1 (μmax 0.522?mg h?1). The Ks 104.51?μM?1 has been evaluated by plotting Lineweaver–Burk plot for the Amaranth dye. The dye degraded products were extracted and characterized by TLC, diazotization and Carbylamines test, which indicated that Amaranth was biotransformed into non-toxic aromatic metabolite without amine group.  相似文献   

2.
Presence of heavy metals including lead (Pb) in the textile effluents is a crucial factor affecting the growth and potential of the dye decolorizing bacterial strains. This work was planned to isolate and characterize a bacterial strain exhibiting the potential to decolorize a range of azo dyes as well as the resistance to Pb. In this study, several Pb tolerant bacteria were isolated from effluents of textile industry. These bacterial isolates were screened for their potential of decolorizing the reactive red-120 (RR120) azo dye with presence of Pb (50 mg L?1). The most efficient isolate was further characterized for its potential to resist Pb and decolorize different azo dyes under varying cultural and incubation conditions. Out of the total 82 tested bacterial isolates, 30 bacteria were found to have varying potentials to resist the presence of lead (Pb) and carry out decolorization of an azo dye reactive red-120 (RR120) in the medium amended with Pb (50 mg L?1). The most efficient selected bacterium, Pseudomonas aeruginosa strain HF5, was found to show a good potential not only to grow in the presence of considerable concentration of Pb but also to decolorize RR120 and other azo dyes in the media amended with Pb. The strain HF5 completely (>?90%) decolorized RR120 in mineral salt medium amended with 100 mg L?1 of Pb and 20 g L?1 NaCl. This strain also considerably (>?50%) decolorized RR120 up to the presence of 2000 mg L?1 of Pb and 50 g L?1 of NaCl but with reduced rate. The optimal decolorization of RR120 by HF5 was achieved when the pH of the Pb amended (100 mg L?1) mineral salt media was adjusted at 7.5 and 8.5. Interestingly, this strain also showed the tolerance to a range of metal ions with varying MIC values. The Pseudomonas aeruginosa strain HF5 harboring the unique potentials to grow and decolorize the azo dyes in the presence of Pb is envisaged as a potential bioresource for devising the remediation strategies for treatment of colored textile wastewaters loaded with Pb and other heavy metal ions.  相似文献   

3.
Microbial biotechnologies for the decolorization of textile wastewaters have attracted worldwide attention because of their economic suitability and easiness in handling. However, the presence of high amounts of salts and metal ions in textile wastewaters adversely affects the decolorization efficiency of the microbial bioresources. In this regard, the present study was conducted to isolate salt tolerant bacterial strains which might have the potential to decolorize azo dyes even in the presence of multi-metal ion mixtures. Out of the tested 48 bacteria that were isolated from an effluent drain, the strain NA6 was found relatively more efficient in decolorizing the reactive yellow-2 (RY2) dye in the presence of 50 g L?1 NaCl. Based on the similarity of its 16S rRNA gene sequence and its position in a phylogenetic tree, this strain was designated as Proteus sp. NA6. The strain NA6 showed efficient decolorization (>90 %) of RY2 at pH 7.5 in the presence of 50 g L?1 NaCl under static incubation at 30 °C. This strain also had the potential to efficiently decolorize other structurally related azo dyes in the presence of 50 g L?1 NaCl. Moreover, Proteus sp. NA6 was found to resist the presence of different metal ions (Co+2, Cr+6, Zn+2, Pb+2, Cu+2, Cd+2) and was capable of decolorizing reactive dyes in the presence of different levels of the mixtures of these metal ions along with 50 g L?1 NaCl. Based on the findings of this study, it can be suggested that Proteus sp. NA6 might serve as a potential bioresource for the biotechnologies involving bioremediation of textile wastewaters containing the metal ions and salts.  相似文献   

4.
Decolorization of azo dyes by Rhodobacter sphaeroides   总被引:5,自引:0,他引:5  
Song ZY  Zhou JT  Wang J  Yan B  Du CH 《Biotechnology letters》2003,25(21):1815-1818
Rhodobacter sphaeroides AS1.1737 decolorized more than 90% of several azo dyes (200 mg dyes l–1) in 24 h. The optimal culture conditions were: anaerobic illumination (1990 lx), peptone as carbon source, temperature 35–40 °C and pH 7–8. Intracellular crude enzyme from this strain had azoreductase activity, optimized temperature as 45–50 °C, and decolorization kinetics which were consistent with a ping-pong mechanism.  相似文献   

5.
Azo dye decolorization was studied with Shewanella strains under saline conditions. Growing cells of Shewanella algae and Shewanella marisflavi isolated from marine environments demonstrated better azo dye decolorization capacities than the other three strains from non-saline sources. Cell suspensions of S. algae and S. marisflavi could decolorize single or mixed azo dyes with different structures. Decolorization kinetics were described with Michaelis–Menton equation, which indicated better decolorization performance of S. algae over S. marisflavi. Lactate and formate were identified as efficient electron donors for amaranth decolorization by the two strains. S. algae and S. marisflavi could decolorize amaranth at up to 100 g?L?1 NaCl or Na2SO4. However, extremely low concentration of NaNO3 exerted strong inhibition on decolorization. Both strains could remove the color and COD of textile effluent during sequential anaerobic–aerobic incubation. Lower concentrations of NaCl (20–30 g?L?1) stimulated the activities of azoreductase, laccase, and NADH-DCIP reductase. The decolorization intermediates were identified by high-performance liquid chromatography and Fourier transform infrared spectroscopy. Decolorization metabolites of amaranth were less toxic than original dye. These findings improved our knowledge of azo-dye-decolorizing Shewanella species and provided efficient candidates for the treatment of dye-polluted saline wastewaters.  相似文献   

6.
L-Asparaginase amidohydrolase (EC 3.5.1.1) has received significant attention owing to its clinical use in acute lymphoblastic leukemia treatment and non-clinical applications in the food industry to reduce acrylamide (toxic compound) formation during the frying of starchy foods. In this study, a sequential optimization strategy was used to determine the best culture conditions for L-asparaginase production from filamentous fungus Aspergillus terreus CCT 7693 by submerged fermentation. The cultural conditions were studied using a 3-level, central composite design of response surface methodology, and biomass and enzyme production were optimized separately. The highest amount of biomass (22.0?g·L?1) was obtained with modified Czapek–Dox medium containing glucose (14?g·L?1), L-proline (10?g·L?1), and ammonium nitrate (2?g·L?1) fermented at 37.2?°C and pH 8.56; for maximum enzyme production (13.50?U·g?1), the best condition was modified Czapek–Dox medium containing glucose (2?g·L?1), L-proline (10?g·L?1), and inoculum concentration of 4.8?×?108 espore·mL?1 adjusted to pH 9.49 at 34.6?°C. The L-asparaginase production profile was studied in a 7?L bench-scale bioreactor and a final specific activity of 13.81?U·g?1 was achieved, which represents an increase of 200% in relation to the initial non-optimized conditions.  相似文献   

7.
In this study, the effects of carbon source, nitrogen source, and metal ions on cell growth and Bacillus aryabhattai β-amylase production in recombinant Brevibacillus choshinensis were investigated. The optimal medium for β-amylase production, containing glucose (7.5?g·L?1), pig bone peptone (40.0?g·L?1), Mg2+ (0.05?mol·L?1), and trace metal elements, was determined through single-factor experiments in shake flasks. When cultured in the optimized medium, the β-amylase yield reached 925.4?U mL?1, which was 7.2-fold higher than that obtained in the initial medium. Besides, a modified feeding strategy was proposed and applied in a 3-L fermentor fed with glucose, which achieved a dry cell weight of 15.4?g L?1. Through this cultivation approached 30?°C with 0?g·L?1 initial glucose concentration, the maximum β-amylase activity reached 5371.8?U mL?1, which was 41.7-fold higher than that obtained with the initial medium in shake flask.  相似文献   

8.
An ascomycetous yeast strain isolated from activated sludge could decolorize Reactive Black 5 azo dye at 200 mg l?1 up to 90 % within 12–18 h under agitated condition. Yeast decolorization ability was investigated at different RB5 concentrations and, at higher dye concentration, 500 mg l?1, the decolorization was found to be 98 % after 36 h incubation time. Extensive decolorization (95–99 %) was obtained in presence of five other azo dyes, Reactive Orange 16, Reactive Red 198, Direct Blue 71, Direct Yellow 12, and Direct Black 22, by isolated yeast. HPLC analysis, UV–vis spectra and colorless biomass obtained after complete decolorization showed that the decolorization occured through a biodegradation mechanism. Decolorization was occurred during the exponential growth phase which is associated to primary metabolism. Laccase production by the yeast cells was not detected. The isolated yeast was characterized according to phenotypical and molecular procedures and was closely related (99 % identity) to Issatchenkia orientalis.  相似文献   

9.
Citric acid was produced by five species of the yeast Candida after growth on a medium containing soy biodiesel-based crude glycerol. After growth on a medium containing 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, Candida parapsilosis ATCC 7330 and C. guilliermondii ATCC 9058 produced the highest citric acid levels. On 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, the citric acid level produced by C. parapsilosis ATCC 7330 was 1.8 g L?1 or 11.3 g L?1, respectively, while C. guilliermondii ATCC 9058 produced citric acid concentrations of 3.0 g L?1 or 10.4 g L?1, respectively. Biomass production by C. guilliermondii ATCC 9058 on 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C was highest at 1.2 g L?1 or 6.9 g L?1, respectively. The citric acid yields observed for C. guilliermondii ATCC 9058 after growth on 10 g L?1 or 60 g L?1 crude glycerol (0.35 g g?1 or 0.21 g g?1, respectively) were generally higher than for the other Candida species tested. When similar crude glycerol concentrations were present in the culture medium, citric acid yields observed for some of the Candida species utilized in this study were about the same or higher compared to citric acid yields by Yarrowia lipolytica strains. Based on the findings, it appeared that C. guilliermondii ATCC 9058 was the most effective species utilized, with its citric acid production being similar to what has been observed when citric acid-producing strains of Y. lipolytica were grown on crude glycerol under batch conditions that could be of significance to biobased citric acid production.  相似文献   

10.
Polyporus sp. S133 decolorized the Amaranth in 72 h (30 mg L?1) under static and shaking conditions. Liquid medium containing glucose has shown the highest decolorization of Amaranth by Polyporus sp. S133. When the effect of increasing inoculum concentration on decolorization of Amaranth was studied, maximum decolorization was observed with 15 % inoculum concentration. Significant increase in the enzyme production of laccase (102.2 U L?1) was observed over the period of Amaranth decolorization compared to lignin peroxidase and manganese peroxidase. Germination rate of Sorghum vulgare and Triticum aestivum was less with Amaranth treatment as compared to metabolites obtained after its decolorization. Based on the metabolites detected by GC–MS, it was proposed that Amaranth was bio-transformed into two intermediates, 1-hydroxy-2-naphthoic acid and 1,4-naphthaquinone. Overall findings suggested the ability of Polyporus sp. S133 for the decolorization of azo dye and ensured the ecofriendly degradation of Amaranth.  相似文献   

11.
Methylene blue (MB) biosorption properties of Rhizopus arrhizus were investigated in the presence of surfactants. The effects of cationic and anionic surfactants on MB removal by dead biomass (1 g L?1) were determined. MB removal was tested as a function of initial pH (2–12), contact time (5–1440 min), and dye (37.4–944.7 mg L?1) and surfactant (0–10 mM) concentrations. The opposite charged anionic surfactant dodecylbenzenesulfonic acid sodium salt (DBS) enhanced sorption of cationic MB by biomass dramatically. Maximum biosorption capacity was 471.5 mg g?1 at pH 8 with 0.5 mM DBS at 944.7 mg L?1 MB concentration. The surfactant-stimulated fungal decolorization method may provide a highly efficient, inexpensive, and time-saving procedure in biological wastewater treatment technologies.  相似文献   

12.
Bacterial Decolorization of Azo Dyes by Rhodopseudomonas palustris   总被引:1,自引:0,他引:1  
Summary The ability of Rhodopseudomonas palustris AS1.2352 possessing azoreductase activity to decolorize azo dyes was investigated. It was demonstrated that anaerobic conditions were necessary for bacterial decolorization, and the optimal pH and temperature were pH 8 and 30–35 °C, respectively. Decolorization of dyes with different molecular structures was performed to compare their degradability. The strain could decolorize azo dye up to 1250 mg l−1, and the correlation between the specific decolorization rate and dye concentration could be described by Michaelis–Menten kinetics. Long-term repeated operations showed that the strain was stable and efficient during five runs. Cell extracts from the strain demonstrated oxygen-insensitive azoreductase activity in vitro.  相似文献   

13.
The gene encoding an FMN-dependent NADH azoreductase, AzrG, from thermophilic Geobacillus stearothermophilus was cloned and functionally expressed in recombinant Escherichia coli. Purified recombinant AzrG is a homodimer of 23 kDa and bore FMN as a flavin cofactor. The optimal temperature of AzrG was 85 °C for the degradation of Methyl Red (MR). AzrG remained active for 1 h at 65 °C and for 1 month at 30 °C, demonstrating both superior thermostability and long-term stability of the enzyme. AzrG efficiently decolorized MR, Ethyl Red at 30 °C. Furthermore, the enzyme exhibited a wide-range of degrading activity towards several tenacious azo dyes, such as Acid Red 88, Orange I, and Congo Red. These results suggested the sustainable utilization of G. stearothermophilus as an azo-degrading strain for AzrG carrying whole-cell wastewater treatments for azo pollutants under high temperature conditions.  相似文献   

14.
Several factors affecting erythritol production from glycerol by Yarrowia lipolytica Wratislavia K1 strain were examined in batch fermentations. Ammonium sulfate, monopotassium phosphate, and sodium chloride were identified as critical medium components that determine the ratio of polyols produced. The central composite rotatable experimental design was used to optimize medium composition for erythritol production. The concentrations of ammonium sulfate, monopotassium phosphate, and sodium chloride in the optimized medium were 2.25, 0.22, and 26.4 g L?1, respectively. The C:N ratio was found as 81:1. In the optimized medium with 100 g L?1 of glycerol the Wratislavia K1 strain produced 46.9 g L?1 of erythritol, which corresponded to a 0.47 g g?1 yield and a productivity of 0.85 g L?1 hr?1. In the fed-batch mode and medium with the total concentration of glycerol at 300 g L?1 and C:N ratio at 81:1, 132 g L?1 of erythritol was produced with 0.44 g g?1 yield and a productivity of 1.01 g L?1 hr?1.  相似文献   

15.
An oxygen-insensitive intracellular enzyme that is responsible for the decolorization of azo dyes was purified from Escherichia coli CD-2. The molecular weight of the purified enzyme was estimated as 27,000 ± 500 Da. Protein identification indicated that the enzyme had high sequence homology with E. coli K12 quinone reductase, and the enzyme was proved to have both azoreductase and quinone reductase activity. With methyl red as substrate, the optimal pH value and temperature were 6.5 and 37 °C, respectively. The enzyme was stable under different physiochemical conditions. The azoreductase activity was restrained by SDS and was almost completely inhibited by Co2+ and Hg2+. Km and Vmax values were 0.18 mM and 8.12 U mg?1 of protein for NADH and 0.05 mM and 6.46 U mg?1 of protein for methyl red, respectively. The purified enzyme could efficiently decolorize methyl red with both NADH and NADPH as electron donors.  相似文献   

16.
A novel bacterial isolate, capable of producing extracellular highly thermostable, halo-alkali-stable and cellulase-free xylanase, was isolated from soil and identified as Bacillus halodurans TSPV1 by polyphasic approach. The Plackett–Burman design identified wheat bran, lactose, tryptone and NaCl as the factors that significantly affect xylanase production, and thus, these were optimized by response surface methodology. The data analysis suggested that optimum levels of wheat bran (15–20 g L?1), lactose (1.0–1.5 g L?1), tryptone (2–2.5 g L?1) and NaCl (7.0–8.0 g L?1) support 6.75-fold higher xylanase production than that in the un-optimized medium. The xylanase is optimally active at 90 °C and pH 10, and stable for 4 h at 90 °C (T 1/2 60 h) over a broad range of NaCl concentrations (0–29 %). This is the first report on the isolation of polyextremophilic B. halodurans strain that produces thermo-halo-alkali-stable xylanase in submerged fermentation. This enzyme efficiently saccharifies agro residues like wheat bran and corncobs. Fifty-six percent of hemicellulose of wheat bran could be hydrolyzed by xylanase (100 U g?1 substrate) along with cellulase (22 U FPase and 50 U CMCase g?1). The xylanase, being thermo-alkali stable and cellulase free, can find applications in pre-bleaching of paper pulps and hydrolysis of xylan in agricultural residues.  相似文献   

17.
Abstract

To optimize operating conditions for the decolorization of the azo dye Acid Red 18 (AR18) by crude manganese peroxidase (MnP), some important factors affecting enzymatic decolorization were systematically investigated. Under the optimal enzyme reaction conditions, a decolorization efficiency of more than 82.3% was achieved after 60 min treatment. Furthermore, the manganese chelators, malate, tartrate, and lactate were found to be more favorable for the decolorization of AR18 than malonate, acetate, succinate, maleate, oxalate, and citrate. However, the presence of NaCl or Na2SO4 had a negative impact on the decolorization of AR18. The Km and Vmax values of MnP for AR18 were 169.66 μmol L? 1 and 20.63 μmol L? 1 min? 1, respectively. The decolorization of AR18 by MnP followed second-order reaction kinetics with respect to the dye concentration. The decolorization rate constant increased with increasing temperature from 20°C to 35°C, which indicated an activation energy (Ea) of 15.87 kcal mol? 1 and frequency factor (k0) of 1.36 × 108 mg? 1 L min? 1 according to the Arrhenius equation. The results obtained provide experimental data for the application of crude MnP for the decolorization of AR18, and help to elucidate the biochemical mechanism of dye decolorization by the enzyme.  相似文献   

18.
In this research, aerobic decolorization of Acid Brilliant Scarlet GR by microbial community was studied. Effects of conditions and dye concentraion on decolorization processes were investigated. Additionally, continuous decolorization was evaluated through sequencing batch tests and the microbial dynamics during this process was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis. The results showed that 100 mg l?1 of the dye was completely decolorized within 12 h, which was mainly caused by biodegradation. The optimal decolorization conditions were as follows: inoculation size 2.07 g l?1 (wet cell pellet), rotation speed 150 r min?1, pH 5.0–7.0 and 30 °C. The processes were well described by zero-order kinetics, and more than 700 mg l?1 of the dye would inhibit the activity of the consortium. Furthermore, the microbial community exhibited high efficiency in sequencing batch processes for continuous decolorization. Microbial community structure shifted obviously when exposed to higher concentration of the dye (500 mg l?1), and all the dominant microorganisms were affiliated with four different phyla of Actinobacteria, Bacteroidetes, Proteobacteria and Firmicutes.  相似文献   

19.
Geobacter metallireducens was found to be capable of decolorizing several azo dyes with different structures to various extents. Pyruvate, ethanol, acetate, propionate, and benzoate could support 66.3?±?2.6?93.7?±?2.1 % decolorization of 0.1 mM acid red 27 (AR27) in 40 h. The dependence of the specific decolorization rate on AR27 concentration (25 to 800 μM) followed Michaelis–Menten kinetics (K m?=?186.9?±?1.4 μΜ, V max?=?0.65?±?0.02 μmol?mg protein?1 h?1). Enhanced AR27 decolorization was observed with the increase of cell concentrations ranging from 7.5 to 45 mgL?1. AR27 decolorization by G. metallireducens was retarded by the presence of goethite, which competed electrons with AR27 and was reduced to Fe(II). The addition of low concentrations of humic acid (1?100 mgL?1) or 2-hydroxy–1,4-naphthoquinone (0.5?50 μM) could improve the decolorization performance of G. metallireducens. High-performance liquid chromatography analysis suggested reductive pathway to be responsible for decolorization. This was the first study on azo dye decolorization by Geobacter strain and might improve our understanding of natural attenuation and bioremediation of environments polluted by azo dyes.  相似文献   

20.
This study examined the effects of molybdenum (Mo) and boron (B) on the rhizosphere microorganisms and the soil enzyme activities of soybean. The soybeans were treated with seven different Mo and B supplements (control: without Mo and B) Mo1 (0.0185 g kg?1), B1 (0.08 g kg?1), Mo1 + B1 (0.0185 + 0.08 g kg?1), Mo2 (0.185 g kg?1), B2 (0.3 g kg?1) and Mo2 + B2 (0.185 + 0.3 g kg?1) throughout the plants’ four growth stages. The results showed that Mo, B, and combined Mo and B treatments increased the soil microbial populations, stimulated the rhizosphere metabolisms, and improved the soil enzyme activities. These stimulatory effects varied in intensity among the treatment groups. The Mo and B combination treatments were more beneficial for the soybean rhizosphere soil than that of Mo-only or the B-only treatments, which suggests that the two elements have complementary functions in the biological processes of the soybean rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号