首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of polyethylene glycol (PEG) on protein structure and the molecular details that regulate its association to polypeptides are largely unknown. These issues were addressed using type I soluble tumor necrosis factor receptor (sTNF-RI) as a model system. Changes in solution viscosity established that a truncated form of sTNF-RI bound free PEG in a pH-dependent manner. Above pH 5.3, the viscosity escalated as the pH increased, while no effect occurred below pH 5.0. Conjugation of 2 kD, 5 kD, or 20 kD PEG to the N terminus attenuated the viscosity at the higher pH values. Tryptophan phosphorescence spectroscopy correlated changes in the protein structure about Trp-107, at the C terminus, with the pH-dependent and PEGylation-dependent attenuation of the viscosity. The results indicate that specific interactions between PEG and the truncated form of sTNF-RI are elicited by an increased flexibility of the truncated protein combined perhaps with removal of steric or charge barriers. Covalently bound PEG at the N terminus reduced the protein affinity for the free polymer and induced a more rigid and polar configuration around Trp-107. Deprotonation of His-105, which is perpendicular to Trp-107, was integral to the binding mechanism producing a pH-dependent switching mechanism. These findings stress the importance of surface charge and structural plasticity in determining macromolecular binding affinities and demonstrate the ability of conjugated PEG to modify the localized surface structure in proteins away from the site of conjugation.  相似文献   

2.
Abstract

Spermine conjugation at4 N of 5-Me-dC in oligonucleotides (sp-ODNs) reduces the net negative charge and these as HG strands form triplexes with foremost stability at neutral pH (7.3), in contrast to unmodified ODNs which form stable triplexes at pH 5.5. The stability of sp-ODN triplexes is shown to arise kom improved association with duplex caused by electrostatic interaction of polycationic spermine sidechain with anionic phosphate backbone of DNA and N3 protonation is not a pre-requirement for triplexes constituted from sp- ODNs. The amplification of electrostatic component of interaction can be achieved by transformation of primary amino group of polyamines to corresponding guanidinium functions leading to improved binding and stabilization of DNA triplexes even at pH 7.0. %-Amino-dU ODNs are shown to be compatible as a central strand in formation of triplexes in which pyrimidine would be in the middle position of a triad.  相似文献   

3.
PEGylation induced changes in molecular volume and solution properties of HbA have been implicated as potential modulators of its vasoconstrictive activity. However, our recent studies with PEGylated Hbs carrying two PEG chains/Hb, have demonstrated that the modulation of the vasoconstrictive activity of Hb is not a direct correlate of the molecular volume and solution properties of the PEGylated Hb and implicated a role for the surface charge and/or the pattern of surface decoration of Hb with PEG. HbA has now been modified by thiolation mediated maleimide chemistry based PEGylation that does not alter its surface charge and conjugates multiple copies of PEG5K chains. This protocol has been optimized to generate a PEGylated Hb, (SP-PEG5K)6-Hb, that carries ~six PEG5K chains/Hb – HexaPEGylated Hb. PEGylation increased the O2 affinity of Hb and desensitized the molecule for the influence of ionic strength, pH, and allosteric effectors, presumably a consequence of the hydrated PEG-shell generated around the protein. The total PEG mass in (SP-PEG5K)6-Hb, its molecular volume, O2 affinity and solution properties are similar to that of another PEGylated Hb, (SP-PEG20K)2-Hb, that carries two PEG20K chains/Hb. However, (SP-PEG5K)6-Hb exhibited significantly reduced vasoconstriction mediated response than (SP-PEG20K)2-Hb. These results demonstrate that the enhanced molecular size and solution properties achieved through the conjugation of multiple copies of small PEG chains to Hb is more effective in decreasing its vasoconstrictive activity than that achieved through the conjugation of a comparable PEG mass using a small number of large PEG chains.  相似文献   

4.
To make insulin orally bioavailable, insulin was modified by covalent attachment (conjugation) of a short-chain methoxy polyethylene glycol (mPEG) derivative to the ε-amino group of a specific amino acid residue (LysB(29)). During the conjugation process, activated PEG can react with any of the free amino groups, the N-terminal of the B chain (PheB(1)), the N-terminal of the A chain (GlyA(1)), and the ε-amino group of amino acid (LysB(29)), resulting in a heterogeneous mixture of conjugated products. The abundance of the desired product (Methoxy-PEG(3)-propionyl--insulin at LysB(29):IN-105) in the conjugation reaction can be controlled by changing the conjugation reaction conditions. Reaction conditions were optimized for maximal yield by varying the proportions of protein to mPEG molecule at various values of pH and different salt and solvent concentrations. The desired conjugated molecule (IN-105) was purified to homogeneity using RP-HPLC. The purified product, IN-105, was crystallized and lyophilized into powder form. The purified product was characterized using multiple analytical methods including ESI-TOF and peptide mapping to verify its chemical structure. In this work, we report the process development of new modified insulin prepared by covalent conjugation of short chain mPEG to the insulin molecule. The attachment of PEG to insulin resulted in a conjugated insulin derivative that was biologically active, orally bioavailable and that showed a dose-dependent glucose lowering effect in Type 2 diabetes patients.  相似文献   

5.
A folate targeted camptothecin small molecule drug conjugate (SMDC) was synthesized using a monodisperse PEG spacer linked to folate via a releasable disulfide carbonate linker. Cell cytotoxicity in human KB cells exhibited an IC50 of 6 nM. Importantly, activity of the prodrug was blocked by excess folate, demonstrating receptor-mediated celluar uptake of the PEG conjugate.  相似文献   

6.
PEG和DBBF修饰猪血红蛋白及其携氧性质   总被引:6,自引:2,他引:6  
采用聚乙二醇 (PEG)修饰蛋白质可以增大蛋白质的分子量 ,改善其生物相容性和在生物体内的停留时间。而小分子交联修饰则可以稳定血红蛋白的高级结构 ,改善其对组织的递氧能力。比较了 4种方法活化的PEG衍生物对猪血红蛋白的修饰效率、修饰产物的携氧功能和稳定性等。PEG的分子量、轭合PEG的数量及变构效应物的存在与否都会影响修饰产物的性质 ;考察了双 3,5二溴水杨酸延胡索酸酯 (DBBF)修饰猪血红蛋白的反应条件以及修饰产物的物理特性和携氧能力 ,并进一步采用PEG和DBBF联合修饰猪血红蛋白。结果证明 ,联合修饰产物具有稳定的四聚体结构 ,分子量达 10 70 0 0 ,半饱和氧分压P50 在 3.33kPa左右 ,接近于生理条件下人体红细胞的P50 值。  相似文献   

7.
The mechanisms behind protein PEGylation are complex and dictated by the structure of the protein reactant. Hence, it is difficult to design a reaction process which can produce the desired PEGylated form at high yield. Likewise, efficient purification processes following protein PEGylation must be constructed on an ad hoc basis for each product. The retention and binding mechanisms driving electrostatic interaction-based chromatography (ion-exchange chromatography) of PEGylated proteins (randomly PEGylated lysozyme and mono-PEGylated bovine serum albumin) were investigated, based on our previously developed model Chem. Eng. Technol. 2005, 28, 1387–1393. PEGylation of each protein resulted in a shift to a smaller elution volume compared to the unmodified molecule, but did not affect the number of binding sites appreciably. The shift of the retention volume of PEGylated proteins correlated with the calculated thickness of PEG layer around the protein molecule. Random PEGylation was carried out on a column (solid-phase PEGylation) and the PEGylated proteins were separated on the same column. Solid-phase PEGylation inhibited the production of multi-PEGylated forms and resulted in a relatively low yield of selective mono-PEGylated form. Pore diffusion may play an important role in solid-phase PEGylation. These results suggest the possibility of a reaction and purification process development based on the mechanistic model for PEGylated proteins on ion exchange chromatography.  相似文献   

8.
The conjugation of trypsin (try) and trypsin inhibitor (tryi) with poly(ethylene glycol) (PEG) and methoxypoly(ethylene glycol) anthracene (mPEG-anthracene) was investigated in aqueous solution, using multiple spectroscopic methods, thermodynamic analysis, and molecular modeling. Thermodynamic parameters ΔS, ΔH, and ΔG showed protein-PEG bindings occur via H-bonding and van der Waals contacts with trypsin inhibitor forming more stable conjugate than trypsin. As polymer size increased more stable PEG-protein conjugate formed, while hydrophobic mPEG-anthracene forms less stable protein complexes. Modeling showed the presence of several H-bonding contacts between polymer and amino acids that stabilize protein-polymer conjugation. Polymer complexation induces more perturbations of trypsin inhibitor structure than trypsin with reduction of protein alpha-helix and major increase in random structures, indicating protein structural destabilization.  相似文献   

9.
Intramolecular electrostatic attraction and repulsion strongly influence the conformational sampling of intrinsically disordered proteins and domains (IDPs). In order to better understand this complex relationship, we have used nuclear magnetic resonance to measure side chain pKa values and pH‐dependent translational diffusion coefficients for the unstructured and highly acidic carboxyl‐terminus of γ‐tubulin (γ‐CT), providing insight into how the net charge of an IDP relates to overall expansion or collapse of the conformational ensemble. Many of the pKa values in the γ‐CT are shifted upward by 0.3–0.4 units and exhibit negatively cooperative ionization pH profiles, likely due to the large net negative charge that accumulates on the molecule as the pH is raised. pKa shifts of this magnitude correspond to electrostatic interaction energies between the affected residues and the rest of the charged molecule that are each on the order of 1 kcal mol?1. Diffusion of the γ‐CT slowed with increasing net charge, indicative of an expanding hydrodynamic radius (rH). The degree of expansion agreed quantitatively with what has been seen from comparisons of IDPs with different charge content, yielding the general trend that every 0.1 increase in relative charge (|Q|/res) produces a roughly 5% increase in rH. While γ‐CT pH titration data followed this trend nearly perfectly, there were substantially larger deviations for the database of different IDP sequences. This suggests that other aspects of an IDP's primary amino acid sequence beyond net charge influence the sensitivity of rH to electrostatic interactions.  相似文献   

10.
Water-soluble gold nanoparticles with an average diameter of 5 nm were prepared with carboxylic acid terminated thiol ligands. These ligands contain zero to eight methylene moieties. CdTe nanocrystals with an average diameter of 5 nm were synthesized with aminoethanethiol capping. These nanocrystals displayed characteristic absorption and emission spectra of quantum dots. The amine terminated CdTe nanocrystals and carboxylic-acid-terminated gold nanoparticles were conjugated in aqueous solution at pH 5.0 by electrostatic interaction, and the conjugation was monitored with fluorescence spectroscopy. The CdTe nanocrystals were significantly quenched upon binding with gold nanoparticles. The quenching efficiency was affected by both the concentration of gold nanoparticles in the complex and the length of spacer between the CdTe nanocrystal and Au nanoparticle. The observed quenching was explained using Förster resonance energy transfer (FRET) mechanism, and the Förster distance was estimated to be 3.8 nm between the donor–acceptor pair.  相似文献   

11.
The effect of electric field (EF) in a newly designed molecular nanowire 9,10-dimethoxy-2,6-bis(2-p-tolylethynyl)anthracene has been analysed theoretically from the structural and electronic charge transport properties using quantum chemical and charge density calculations. The applied EF (0–0.36 VÅ? 1) alters the molecular conformation, charge density distribution, electrostatic properties and the electronic energy levels of the molecule. Furthermore, the applied EF decreases the highest occupied molecular orbital–lowest unoccupied molecular orbital gap significantly from 1.775 to 0.258 eV and it also induces polarisation in the molecule, which leads to increase the dipole moment of the molecule. The electrostatic potential for various levels of applied EF reveals the charge-accumulated regions of the molecule. The IV characteristics of the molecule have been studied against various applied fields using Landauer formalism.  相似文献   

12.
'Solid-phase' PEGylation, in which a conjugation reaction attaches proteins to a solid matrix, has distinct advantages over the conventional, solution-phase process. We report a case study in which recombinant interferon (rhIFN) alpha-2a was adsorbed to a cation-exchange resin and PEGylated at the N-terminus by 5, 10, and 20 kDa mPEG aldehydes through reductive alkylation. After PEGylation, a salt gradient elution efficiently purified the mono-PEGylate of unwanted species such as unmodified IFN and unreacted PEG. Mono-PEGylation and purification were integrated into a single, chromatographic step. Depending on the molecular weight of the mPEG aldehyde, the mono-PEGylation yield ranged from 50 to 65%. Major problems associated with the solution-phase process such as random or uncontrollable multi-PEGylation and post-PEGylation purification difficulties were overcome. N-terminus sequencing and MALDI-TOF mass spectrophometry confirmed that the PEG molecule was conjugated only to the N-terminus. A cell proliferation study indicated reduced antiviral activity of the mono-PEGylate compared to that of the unmodified IFN. As higher molecular weight PEG was conjugated, in vitro bioactivity and antibody binding activity, as measured by a surface plasmon resonance biosensor, decreased. Nevertheless, trypsin resistance and thermal stability were considerably improved .  相似文献   

13.
AAV gene therapy vectors have significant clinical promise, but serum neutralization poses a challenge that must be overcome. We have examined the potential of conjugating the AAV surface with activated polyethylene glycol chains to protect the vector from neutralizing antibodies. Two key parameters were investigated: the polymer chain size and the PEG:lysine conjugation ratio. Transduction data revealed that the vector is fully infectious until a critical PEG conjugation reaction ratio was exceeded, and this critical level was found to vary with polymer chain size. At this key conjugation ratio, however, particles were moderately protected from serum neutralization, 2.3-fold over unmodified vector, demonstrating that there is a small window of PEGylation for which particles are still fully infective and benefit from antibody protection. TEM results and structural analysis indicate that the drop of infectivity as the PEG concentration is increased beyond the critical conjugation ratio may be due to a combination of steric interference with viral regions necessary for infection as well as reaction at important lysine residues. However, this first study analyzing the potential of PEG to protect AAV from serum neutralization shows that the approach has promise, which can be further enhanced if the locations of PEG attachment can be more finely controlled.  相似文献   

14.
对民族植物学的学科发展进行了简要综述。民族植物学自1896年在美国诞生以来,经历了百年漫长的发展过程。民族植物学由早期的描述编目有用植物,已经发展到了实验性、技术性和定量性研究的新阶段;民族植物学的原理与方法已被广泛应用于植物资源的可持续利用、社区发展和生物多样性保护。近代民族植物学的学科发展可归纳为3个特征:(1)研究方法的进展主要表现在由记载编目和描述到实验性、技术性的定量研究和从基础研究到实际应用的发展;(2)研究途径的发展表现在由调查记录、访谈式的被动研究到参与式研究和取证分析;(3)研究地区已由局部区域性研究扩大到全球范围的民族植物学研究,从对原住民和少数民族的民族植物学研究扩展到所有不同文化背景民族的民族植物学研究。特别是发展中国家的民族植物学研究在近半个世纪以来得到迅速发展,并广泛应用于植物资源的管理和生物多样性保护的实际工作中。民族植物学在中国起步较晚,但在过去20年里已从无到有,建立起了我国民族植物学研究的理论框架、内容、方法和途径,将民族植物学从基础描述性研究(调查、记载、编目),推进到应用研究,在植物资源的可持续利用、生物多样性保护、农村发展和山区扶贫等方面取得了若干进展。当前,我国民族植物学研究面临着发展的新机遇和新的挑战,必须紧跟国民经济发展的新形势,投入西部大开发,加强学科建设,推进研究与产业发展的结合,把民族植物学由地区性研究推进到全国性研究,进一步完善中国特色的民族植物学研究体系,积极参与国际合作与交流,对国民经济的持续发展、民族地区的团结稳定和生物多样性保护作出更大的贡献。  相似文献   

15.
Peptides targeting the human neonatal Fc receptor (FcRn) were conjugated to poly(ethylene glycol) (PEG) polymers to study their effect on inhibition of the IgG:FcRn protein-protein interaction both in vitro and in mice. Both linear (5-40kDa) and branched (20, 40kDa) PEG aldehydes were conjugated to an amine-containing linker of a homodimeric anti-FcRn peptide using reductive alkylation chemistry. It was found that conjugation of PEG to the peptide compromised the in vitro activity, with larger and branched PEGs causing the most dramatic losses in activity. The conjugates were evaluated in transgenic mice for their ability to accelerate the catabolism of human IgG. Optimal pharmacodynamic properties were observed with PEG-peptide conjugates that contained 20-40kDa linear PEGs and a 20kDa branched PEG. The optimal PEG-peptide conjugates were more effective in vivo than the unconjugated peptide control on a mole:mole and mg/kg basis, and represent potential new longer-acting peptide therapeutics for the treatment of humorally-mediated autoimmune disease.  相似文献   

16.
聚阳离子基因载体系统由于安全性好和便于设计等优点,近年来在基因治疗中的应用发展迅速.在进行基因药物的体内靶向输送时,目前国际上主要通过在基因输送系统中修饰聚乙二醇(PEG)和靶向分子来提高体内输送的稳定性和靶向性.PEG的修饰可能会遮蔽靶向分子的功能呈现,因此建立定量分析方法评价PEG修饰对靶向结合作用的影响非常重要.将连接有表皮生长因子(EGF)的聚赖氨酸(PLL)基因载体作为研究模型,建立BIAcore检测方法,比较PLL-EGF,PEG7000修饰的PLL-EGF,PEG20000修饰的PLL-EGF对表皮生长因子受体(EGFR)的结合和解离速率,评价PEG修饰对PLL-EGF靶向功能呈现的影响.结果表明,PEG7000的修饰降低了EGF和EGFR之间的结合速率,提高了解离速率,整体减弱了靶向分子的靶向结合能力.PEG20000的修饰进一步减弱靶向分子功能的呈现.因此在进行靶向型聚阳离子基因输送系统设计时,考察PEG修饰对靶向结合能力的影响程度非常重要.该研究结果也对其他基因载体系统的设计提供必要的参考.  相似文献   

17.
Abstract

Phospholipids covalently attached to polyethylene glycol (PEG-PE) are routinely used for the preparation of long-circulating liposomes. The common preparation procedure for long-circulating liposomes involves use of organic solvent. Although there is a plethora of studies describing the interaction of PEG-PE with bilayers, little is known about the effects of PEG homopolymers and single chain amphiphilic PEG on liposome structure. In the present investigation the interaction of PEG homopolymer and amphiphilic PEG-palmityl conjugate with large multilamellar liposomes composed of 1,2-dipalmitoyl-sn-glycero-phosphocholine was investigated utilizing differential scanning calorimetry. Vesicle and aggregate sizes were determined by dynamic light scattering. DSC thermograms revealed interaction of PEG homopolymer with DPPC when the two are premixed in organic solvent. The data suggest that PEG interacts with the phospholipid acyl chains deep in the bilayer. Several questions are raised regarding the suitability of the current procedure for preparation of long-circulating liposomes which utilizes organic solvent. Incorporation of only 2 mol% 5 kDa PEG-palmityl conjugate completely solubilized DPPC liposomes. Packing geometry of the lipid anchor, irrespective of the polymer molecular weight, is suggested to be the primary factor for successful grafting of hydrophilic polymers on liposomes. Pure PEG-palmityl formed self-assembled organized structures of potential use in the delivery of poorly soluble drugs.  相似文献   

18.
The structure, electron density distribution, energetic and electrostatic properties of simple nitramine based energetic TMA, DMNA, MDA and TNA molecules were determined using density functional theory (B3LYP) with the 6-311G** and aug-cc-pVDZ basis sets coupled with Bader's theory of atoms in molecules. In the NO2 group substituted molecules, the N–N bond distance increases with the increase of NO2 groups, whereas in C–N bonds, this effect is relatively less, and the distances are almost equal. The topological analysis of electron density reveals that the electron density ρbcp(r) of C–N and N–N bonds are significantly decreasing with the increase of NO2 groups in the nitramine molecules. The Laplacian of electron density ▽2ρbcp(r) of N–NO2 bonds [DMNA: ? 16.7 eÅ? 5, MDA: ? 12.8 eÅ? 5 and TNA: ? 7.9 eÅ? 5] of the molecules are relatively less negative, and the values also decrease with the increase of NO2 groups; this implies that the charge concentration decreases with the increase of NO2 groups, which leads to weakening the N–N bonds of the molecules. The isosurface of molecular electrostatic potential displays high electronegative regions around the NO2 groups. The oxygen balance OB100 of the molecules increases as the number of NO2 group increases in the molecules, in which, the TNA molecule having maximum OB100 value [+7.89]. The band gap, heat of detonation, bond dissociation energy and charge imbalance are predominantly depends on the number of NO2 group present in the molecule. The charge imbalance parameter (ν) has been calculated for all molecules, which reveals that TNA is a highly sensitive molecule, the corresponding ν value is 0.047.  相似文献   

19.
A model for the electrostatic properties of hydrated collagen fibrils, based on the concept of a “penetrable” protein, has been evaluated through studies of collagen fibrils that had been chemically modified to change their electrostatic properties,. A value of 0.28 ± 0.07 ml/g was found for the intrafibrillar space sterically inaccessible to a molecule that had an equivalent spherical radius of 4.5 Å. The net intrinsic charge on reconstituted collagen is +14 mol/mol under physiological conditions, but decreases, at constant pH, with ionic strength. A value of 7.1 for the pK of the histidine and α-amino groups in reconstituted collagen was obtained through the application of the electrostatic model to this effect. The values obtained for calcium binding parameters for collagen fibrils, under solution conditions in which the nonspecific electrostatic properties of collagen fibrils were eliminated (3–5 M tetramethyl ammonium chloride), were in agreement with values obtained in 0.16 M NaCl solutions calculated through the use of the electrostatic theory. These are 0.73 ± 0.23 and 56.2 ± 12.3 sites per molecule with intrinsic association constants of 1101 ± 386 and 21.4 ± 5.2 M?1, respectively. The model also predicts that an average 4-mV potential difference exists between the reconstituted collagen fibrils and physiological solutions, and that collagen fibrils under such conditions have piezoelectriclike properties. The pattern of interaction of ions with collagen fibrils is such that an allosteric mechanism for the catalytic step in the mineralization of collagen is a possibility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号