首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor.  相似文献   

2.
Recombinant human stem cell factor (rhSCF) was produced as an inclusion body by Escherichia coli DH5α grown in a 5 l fermentor. Inclusion bodies of rhSCF were purified and solubilized in urea solution, then renatured with simultaneous purification using a high performance hydrophobic interaction chromatographic (HPHIC) squat column. The refolded rhSCF had a purity of 94% and a bioactivity of 1.2 × 106 IU mg−1of rhSCF protein. The method described is fast and simple to implement.  相似文献   

3.
This paper shows that 19F-nuelear magnetic resonance spectroscopy on 3-fluoro-tyrosine and 5-fluorotryptophan-substituted wild-type lactose operon repressors from Escherichia coli can be used to examine the interactions with lac operator DNA.A survey of inducer and salt concentration effects on the repressor-operator complex is presented. The data lead us to a scheme for the interactions between the repressor, operator and inducer, in both binary and ternary complexes, that accommodate the results published by others.The complex between the tetrameric repressor and one 36 base-pair operator DNA fragment results in the simultaneous broadening of the resonances from all four N-terminal DNA binding domains. The actual contacts made by these binding domains are similar but probably not identical.The binding of the inducer molecule to the tetrameric repressor results in an allosteric change that can be monitored by the increased intensity of the resonances from individual tyrosine residues in the N-terminal binding domain. This increased N-terminal tyrosine resonance intensity in the complex is transmitted to repressor subunits that have not yet bound an inducer molecule.  相似文献   

4.
A convenient new procedure for the purification of galactokinase, galactose-1-phosphate uridyltransferase, and UDP-galactose 4-epimerase overexpressed in Escherichia coli is presented. The procedure is shorter than any other described in the literature and facilitates the purification of the three recombinant enzymes in considerable amounts and at high purity and specific activity. The purified gal operon enzymes were biochemically cheracterized by gel-filtration column chromatography and isoelectric focusing, and the Km values for their substrates were determined.  相似文献   

5.
6.
A simple and efficient method for expression in Escherichia coli cells and purification of a recombinant matrix protein, p17, of human immunodeficiency type I virus has been described. HIV-1 subtype A DNA sequence encoding p17 was obtained by amplification of the viral gag gene segment and cloned into an expression vector under the control of T7Lac promoter. The conditions for cell growth and induction of p17 synthesis by lactose and its further purification by metal chelate chromatography were optimized. p17 preparations with 97% purity were obtained; the yield of the protein of 28 mg per 1l of culture was achieved. The obtained protein was capable of binding antibodies from blood serum of a HIV-infected patient during immunoblotting.  相似文献   

7.
In vivo induction of the Escherichia coli lactose operon as a function of inducer concentration generates a sigmoidal curve, indicating a non-linear response. Suggested explanations for this dependence include a 2:1 inducer–repressor stoichiometry of induction, which is the currently accepted view. It is, however, known for decades that, in vitro, operator binding as a function of inducer concentration is not sigmoidal. This discrepancy between in vivo and in vitro data has so far not been resolved. We demonstrate that the in vivo non-linearity of induction is due to cooperative repression of the wild-type lac operon through DNA loop formation. In the absence of DNA loops, in vivo induction curves are hyperbolic. In the light of this result, we re-address the question of functional molecular inducer–repressor stoichiometry in induction of the lac operon.  相似文献   

8.
Lac repressor protein was purified from E. coli BMH8117 harboring plasmid pWB1000 and E. coli K12BMH 71-18 strains. Displacement of the protein with poly(ethyleneimine) (PEI) from phosphocellulose cation exchange column was shown to be an effective elution strategy. It resulted in better recoveries and sharper elution profiles than traditional salt elution without effecting the purity of the protein. The elution is assumed to proceed via displacement of bound protein by PEI when the polymer binds to the ion exchanger. The minor impurities in the protein solution were finally removed by chromatography on immobilized metal affinity column. The repressor protein undergoes distinct conformational changes upon addition of specific inducer isopropyl--D-thiogalactoside (IPTG), which is evidenced by changes in ultraviolet absorption spectrum. The protein was immobilized covalently to the Sepharose matrix. The intact biological activity of the protein after immobilization was shown by binding of genomic DNA and lac operator plasmid DNA from E. coli to the immobilized lac repressor.  相似文献   

9.
Summary The cloned recA + gene of Proteus mirabilis substitutes for a defective RecA protein in Escherichia coli recA mutants, and restores recombination, repair and phage induction functions to near normal levels. In a previous report, we described the purification and charactrisation of the recombination activities of the P. mirabilis RecA protein (West et al. 1983b). In this paper, we show that the purified protein catalyses the cleavage of both the Escherichia coli LexA protein and the bacteriophage lambda repressor in vitro. These results provide a direct biochemical basis for the interspecies complementation observed in vivo and suggest that P. mirabilis has an SOS regulatory network similar to that of E. coli.  相似文献   

10.
Wang Q  Min C  Zhu F  Xin Y  Zhang S  Luo L  Yin Z 《Current microbiology》2011,62(5):1535-1541
The amino acid l-theanine (γ-glutamylethylamide) has potential important applications in the food and pharmaceutical industries and increased demand for this compound is expected. It is the major “umami” (good taste) component of tea and its favorable physiological effects on mammals have been reported. An enzymatic method for the synthesis of l-theanine involving recombinant Escherichia coli γ-glutamyltranspeptidase (GGT) has been developed. We report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Escherichia coli γ-GGT. In order to obtain γ-GGT with high theanine-forming activity, safety, and low cost for food and pharmaceutics industry, M9 (consisting of glycerol and inorganic salts) and 0.1% (w/v) lactose were selected as culture medium and inducer, respectively. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel–nitrilotriacetic acid (Ni–NTA) resin chromatography with a yield of 115 mg per liter fermentation culture. After the SUMO/γ-GGT fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni–NTA column. Finally, about 62 mg recombinant γ-GGT was obtained from 1 l fermentation culture with no less than 95% purity. The recombinant γ-GGT showed great transpeptidase activity, with 1500 U of purified recombinant γ-GGT in a 1-l reaction system, a biosynthesis yield of 41 g of l-theanine was detected by paper chromatography or high pressure liquid chromatography (HPLC). Thus, the application of SUMO technology to the expression and purification of γ-GGT potentially could be employed for the industrial production of l-theanine.  相似文献   

11.
The Escherichia coli expression system is a powerful tool for the production of recombinant eukaryotic proteins. We use it to produce Shadoo, a protein belonging to the prion family. A chromatographic method for the purification of (His)6-tagged recombinant Shadoo expressed as inclusion bodies is described. The inclusion bodies are solubilized in 8 M urea and bound to a Ni2+-charged column to perform ion affinity chromatography. Bound proteins are eluted by a gradient of imidazole. Fractions containing Shadoo protein are subjected to size exclusion chromatography to obtain a highly purified protein. In the final step purified Shadoo is desalted to remove salts, urea and imidazole. Recombinant Shadoo protein is an important reagent for biophysical and biochemical studies of protein conformation disorders occurring in prion diseases. Many reports demonstrated that prion neurodegenerative diseases originate from the deposition of stable, ordered amyloid fibrils. Sample protocols describing how to fibrillate Shadoo into amyloid fibrils at acidic and neutral/basic pHs are presented. The methods on how to produce and fibrillate Shadoo can facilitate research in laboratories working on prion diseases, since it allows for production of large amounts of protein in a rapid and low cost manner.  相似文献   

12.
13.
Summary The isolation and properties of a hybrid plasmid carrying the Y gene of the lac operon of Escherichia coli are described. The lactose carrier protein, coded for by the Y gene, is readily identified upon lac operon induction in strains carrying the plasmid. The protein comprises about 15% of the cytoplasmic membrane protein synthesized in the first generation after induction, compared with a wild type strain induced under the same conditions where lactose carrier protein comprises 1.4% of the cytoplasmic membrane protein.  相似文献   

14.
NAD+-dependent glycerol (Gro) dehydrogenase (GroDHase) catalyzes the conversion of Gro into dihydroxyacetone (DHA), the first step for fermentative Gro metabolism in Escherichia coli. In this work, we cloned the gldA gene that codes for the E. coli GroDHase and homologously expressed, purified, and kinetically characterized the recombinant protein. To achieve this, the enzyme was over-produced using Gro supplemented growth medium and lactose as the inducer. The enzyme was highly purified using either pseudo-affinity chromatography or a simple heat-shock treatment, which is potentially valuable for industrial production of GroDHase. We detected efficient oxidation of Gro derived from biodiesel production to DHA by gas chromatography. The results presented in this work support recombinant GroDHase production in a biorefinery setting as a relevant tool for converting Gro into DHA for future biotechnological applications.  相似文献   

15.
The SecA protein occupies a pivotal position in the public protein export pathway inEscherichia coli. The multifunctional SecA protein recognizes cytoplasmic factors associated with export including the presecretory protein and targets the complex to the inner membrane, where it acts in the early stages of protein translocation. The ability of SecA to bind ATP was the basis for the development of a novel, rapid purification scheme involving a single chromatographic step. Affinity chromatography was carried out on Red Sepharose CL-6B. The SecA present in crude extracts ofE. coli binds strongly to this dye-ligand matrix, and active protein was purified to greater than 90% homogeneity. The protein isolated by this procedure retained the previously described ATPase and RNA-binding activities of SecA. This approach should permit the rapid purification of SecA homologs from a variety microorganisms.  相似文献   

16.
A method for the efficient preparation of highly purified lipopolysaccharides (LPSs) by hydrophobic interaction chromatography (HIC) has been developed. The procedure can be used for the purification of cell wall bound LPSs after hot phenol–water extraction and for the isolation of extracellular LPSs from the supernatant, respectively. The method described has been tested with artificial mixtures containing LPSs, polysaccharide, protein and RNA and subsequently employed for the preparative purification of two LPSs of different origin, namely the extracellular LPS secreted by Escherichia coli E49 into the culture medium, and the cell wall bound LPS from Pseudomonas aeruginosa VA11465/1. Compared to currently used methods for LPS purification such as enzymatic digestion and ultracentrifugation, the chromatographic separation reported here combines superior purity with minimal loss of LPS, high reproducibility and simple handling. The removal of contaminants such as protein, RNA and polysaccharides and the recovery of LPSs were monitored by appropriate assays.  相似文献   

17.
l-glutamine (Gln) is an important conditionally necessary amino acid in human body and potential demand in food or medicine industry is expected. High efficiency of l-Gln production by coupling genetic engineered bacterial glutamine synthetase (GS) with yeast alcoholic fermentation system has been developed. We report here first the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Bacillus subtilis GS. In order to obtain GS with high Gln-forming activity, safety and low cost for food and pharmaceutics industry, 0.1% (w/v) lactose was selected as inducer. The fusion protein was expressed in totally soluble form in E. coli, and expression was verified by SDS–PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel nitrilo-triacetic acid (Ni–NTA) resin chromatography with a yield of 625 mg per liter fermentation culture. After the SUMO/GS fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni–NTA column. Finally, about 121 mg recombinant GS was obtained from 1 l fermentation culture with no less than 96% purity. The recombinant purified GS showed great transferase activity (23 U/mg), with 25 U recombinant GS in a 50 ml reaction system, a biosynthesis yield of 27.5 g/l l-Gln was detected by high pressure liquid chromatography (HPLC) or thin-layer chromatography. Thus, the application of SUMO technology to the expression and purification of GS potentially could be employed for the industrial production of l-Gln.  相似文献   

18.
Auto‐induction media containing glucose, lactose, and glycerol are a simple and efficient approach for high‐throughput protein expression in Escherichia coli with lac‐derived expression systems. Its principle is based on inducer exclusion between glucose and lactose, preventing the induction by lactose before the depletion of glucose. Isopropyl‐β‐d ‐1‐thiogalactopyranoside (IPTG)—at least in typically used millimolar concentrations—is thought to be unsuitable for this purpose since it can enter the cell by diffusion independently of inducer exclusion. In this study, using parallel batch cultivations in stirred‐tank bioreactors on a milliliter scale, we show that the induction by micromolar concentrations of IPTG is prevented in the presence of glucose. With up to 40 μM IPTG, full induction and heterologous protein expression start only after the depletion of glucose. Thus, auto‐induction is possible with either lactose or IPTG, and the expression greatly depends on the type and concentration of the inducer. The best expression of enhanced green fluorescent protein was achieved with 40 μM IPTG in stirred‐tank bioreactors on a milliliter scale. The IPTG‐based auto‐induction was also reproduced in shaking flasks. Therefore, IPTG can be used in auto‐induction media for protein expression in batch‐cultured E. coli. Furthermore, we show that acetate or arabinose can have significant effects on the auto‐induction mechanism.  相似文献   

19.
The natural production of patchouli oil in developing countries cannot meet the increasing demand any more. This leads to socioecological consequences, such as the use of arable land, which is actually intended for food. Hence, the world market price increased up to $150/kg. An alternative is the biotechnological production of patchouli oil using a multiproduct sesquiterpene synthase, the patchoulol synthase (PTS). Here, we report the optimization of recombinant PTS purification from Escherichia coli lysate using continuous immobilized metal affinity chromatography. First, the purification conditions of the batch process were optimized in regard to optimal buffer composition and optimized chromatographic conditions. The best purification result was achieved with Co2+-immobilized metal affinity chromatography (Sartobind® IDA 75) with a triethanolamine buffer at pH 7, 0.5 M NaCl, 10% [vol/vol] glycerol, 5 mM MgCl2 and 250 mM imidazole for product elution. This optimized method was then transferred to a continuous chromatography system using three membrane adsorber units (surface of 75 cm2 each). Within 1.5 hr in total, 4.55 mg PTS with a final purity of 98% and recovery of 68% could be gained. The purified enzyme was used to produce 126 mg/L (-)-patchoulol from farnesyl pyrophosphate. Here, for the first time bioactive PTS was successfully purified using membrane adsorbers in a continuous downstream process.  相似文献   

20.
Recombinant human keratinocyte growth factor-2 (rhKGF-2) has previously been expressed in Escherichia coli using isopropyl-β-d-thiogalactopyranoside (IPTG), a non-metabolizable and expensive compound, as the inducer. In order to determine whether IPTG could be replaced with the cheap and natural lactose to induce rhKGF-2 expression, we examined the expression of rhKGF-2 in flask culture and 30-l fermentation using lactose as the inducer. The optimized fermentation induced with lactose resulted in 1,382 g of cell mass, corresponding to a 84% enhancement in cell mass compared with IPTG induction. While the expression level of rhKGF-2 induced with lactose was comparable to that induced with IPTG, the solubility of target protein was increased by lactose induction than by IPTG induction. The recombinant protein was further purified by cation exchange and heparin-affinity chromatography. 255 milligrams of pure rhKGF-2 was achieved per liter culture by lactose induction, 52% higher than that obtained by IPTG induction. A preliminary biochemical characterization of purified rhKGF-2 was performed by Western blotting and mitogenic activity analysis, and the results demonstrated that the purified lactose-induced rhKGF-2 could react with anti-human KGF-2 antibody and stimulate the proliferation of FGFR2-IIIb-transfected mouse BaF3 cells as IPTG-induced rhKGF-2 could do.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号