首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The strain Paenibacillus curdlanolyticus MP-1 was used to obtain mutan-hydrolyzing enzymes. Different methods of precipitation and concentration of the post culture liquid were tested. All these methods produced satisfactory results in regard to the overall activity of mutanase and yielded active preparations of the enzyme. The best precipitation was obtained with propanol -98% of the initial enzyme activity was preserved with a purification of 2-fold. Salting out with ammonium sulfate at 50% saturation gave mutanase recovery of 77% and a purification of around 2-fold. Ultrafiltration yielded an about 10-fold concentrated preparation of the enzyme with a yield of 98%. Lyophilization and concentration of the culture broth (in the range from 5 to 20 times) in a vacuum evaporator yielded active crude preparations with mutanase recovery of 97%.  相似文献   

2.
Crude mutanase preparations of Trichoderma harzianum were obtained from the culture supernatant by means of ammonium sulfate salting out, ultrafiltration, freeze-drying, concentration under reduced pressure, and fractional precipitation with organic solvents (methanol, ethanol, propanol, isopropanol, acetone). Ammonium sulfate was the worst precipitant, causing a fall in total mutanase activity by 47%. Other methods of enzyme recovery from the post-culture fluid yielded in most cases very good results in regard to specific and overall activities of the enzymatic preparations.  相似文献   

3.
Conidia of Trichoderma harzianum F-340, an active producer of fungal mutanase, were mutagenized with physical and chemical mutagens used separately or in combination. After mutagenesis, the drop in conidia viability ranged from 0.004% to 71%. Among the applied mutagens, nitrosoguanidine gave the highest frequency of cultures with enhanced mutanase activity (98%). In total, 400 clones were isolated, and preliminarily evaluated for mutanase activity in flask microcultures. Eight most productive mutants were then quantified for mutanase production in shake flask cultures. The obtained results fully confirmed a great propensity of all the tested mutants to synthesize mutanase, the activity of which increased from 59 to 107% in relation to the parental T. harzianum culture. The best mutanase-overproducing mutant (T. harzianumn F-340-48), obtained with nitrosoguanidine, produced the enzyme activity of 1.36 U/ml (4.5 U/mg protein) after 4 days of incubation in shake flask culture. This productivity was almost twices higher than that achieved by the initial strain F-340, and, at present, is the best reported in the literature. The potential application of mutanase in dentistry is also discussed.  相似文献   

4.
A mutanase (α-1,3-glucanase)-producing microorganism was isolated from a soil sample and was identified as a relative of Paenibacillus sp. The mutanase was purified to homogeneity from culture, and its molecular mass was around 57 kDa. The gene for the mutanase was cloned by PCR using primers based on the N-terminal amino acid sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of 3651-bp open reading frame that encoded a predicted 1217-amino acid polypeptide including a 43-amino acid signal peptide. The mature enzyme showed similarity to mutanases RM1 of Bacillus sp. strain RM1 and KA-304 of Bacillus circulans with 65.6% and 62.7% identity, respectively. The predicted molecular mass of the mutanase was 123 kDa. Thus, the enzyme purified from the isolate appears to be truncated by proteolysis. The genes for the full-length and truncated mutanases were expressed in Bacillus subtilis cells, and the corresponding recombinant enzymes were purified to homogeneity. The molecular masses of the two enzymes were 116 and 57 kDa, respectively. The specific activity was 10-fold higher for the full-length enzyme than for the truncated enzyme. The optimal pH and temperature for both recombinant enzymes was pH 6.4 in citrate buffer and 45 °C to 50 °C. Amongst several tested polysaccharides, the recombinant full-length enzyme specifically hydrolyzed mutan.  相似文献   

5.
Human erythrocyte transketolase could be resolved from thiamin diphosphate (TDP) by acidification of the ammonium sulfate precipitate to pH 3.5, but not by other tested procedures. Resolution was 98% by chemical measurement of residual thiamin and 95% by residual enzyme activity. Reconstitution of the resolved preparation by incubation with TDP was dependent upon TDP concentration, duration, temperature, and the presence of dithiothreitol. At low TDP concentrations, 1 h was required for maximum activation; kinetic analysis then yielded an apparent Km value for TDP of 65 nM (SD 14 nM) from 100 erythrocyte lysates and similar values for reconstituted resolved preparations previously purified 400-fold and 10,000-fold. Velocity data obtained by transketolase assays in which the TDP was added to resolved preparations simultaneously with substrates yielded an apparent Km value for TDP of 2.3 microM (SD 1.6 microM) from 114 erythrocyte lysates and similar values for purified preparations. The recovery of activity following resolution and reconstitution ranged from 21 to 60% from lysates and 38 to 70% from purified preparations. Residual ammonium sulfate up to 4.9 mM decreased the apparent Km value for TDP, while a concentration of 11.3 mM increased the value in a manner competitive with TDP and with an apparent Ki value of 2.3 mM. The spectrophotometric assay of transketolase activity was greatly affected by storage of frozen solutions of the substrate ribose 5-phosphate.  相似文献   

6.
Abstract

Affinity precipitation is a technique which is known for over 20 years, but has recently received more attention due to the development of new materials for its implementation. It is a relatively simple, convenient, and reproducible technique that results in high target molecule recovery at high specificity. We describe, here, an efficient and rapid purification procedure for Vicia faba α-galactosidase (EC 3.2.1.22) by using affinity precipitation with alginate. The enzyme was purified with 43% activity yield and 40-fold purification. SDS-PAGE of the purified enzyme showed a single band and a subunit weight of 44 kDa. The properties of the enzyme were also searched. The results showed that the general properties of the enzyme offer potential for use of this α-galactosidase in several production processes.  相似文献   

7.
Abstract

Present study was undertaken to develop cross-linked enzyme aggregate (CLEA)of alkaline serine proteases (sp) from Pythium myriotylum (Pm), a necrotrophic oomycete reported to considerably secrete serine proteases. Among various precipitants screened for spPm1-CLEA preparation, ammonium sulfate at 80% saturation (w/v) yielded 100% activity recovery and retention of spherical morphology as observed by SEM analysis. Addition of glutaraldehyde as cross-linker at 1% (v/v) concentration with optimized ammonium sulfate concentration for 1?hour at 100?rpm yielded 100% activity recovery of spPm1-CLEA from 8-day old P. myriotylum culture filtrate. Addition of BSA (10?mg/ml) to CLEA cross-linking reaction mix reduced CLEA size from the range of 1.82–1.19?µm to 394–647?nm. spPm1-CLEA preparations retained 100% activity at temperature of 80?°C and pH 12.0 signifying their potential commercial applications. In terms of kinetic parameters, present process enhanced kinetic parameters as revealed by 1.67?U.mg?1 specific activity, Km of 0.062?mM and Vmax of 0.145?µmol.min?1.mg?1 for the spPm1-CLEA compared to 0.288?U.mg?1 specific activity, Km of 0.060?mM and Vmax of 0.20?µmol.min?1.mg?1 determined for the free spPm1 enzyme. Study has successfully demonstrated the concept of CLEA in enhancing spPm1 stability and the results so generated can be translated in future towards development of robust biocatalysts.  相似文献   

8.
Some properties of the crude lyophilized fibrinolytic enzyme produced by Cochliobolus lunatus in surface culture were studied. Enzyme concentrations over the range from 0.16 to 10.16 mg/mL showed that concentration above a certain level ceased to be the limiting factor controlling enzyme action. At pH 6.8 and a temperature of 40°C, the fibrinolytic enzyme showed maximal activity at a human fibrin concentration of 2 mg/mL. The optimum pH values for enzyme activity were 6.98 and 7.0, using Sørensen and Mcllvaine buffers, respectively. Fibrinolytic enzymes were isolated from a static culture of Cochliobolus lunatus; isolation was carried out with various agents. Ammonium sulphate yielded the highest recovered fibrinolytic activity. The fraction salted out by precipitation at 25% ammonium sulphate saturation possessed the highest recovered fibrinolytic activity compared to the ammonium sulphate, ethanol, and acetone fractions.  相似文献   

9.
A pilot-scale process for the isolation of an aliphatic, amidase from Pseudomonas aeruginosa has been developed. A constitutive, partially irrepressible mutant was employed to give a high initial enzyme concentration. An existing laboratory isolation procedure has been scaled up and modified particularly by substitution of polyethylene glycol for ammonium sulfate precipitation as the first stage in the conversion of the fractionation to continuous operation. Full recovery of activity was achieved with the modification. The recovery of enzyme from a subsequent chromatographic stage was 85% and the maximum overall purification was 28-fold.  相似文献   

10.
Abstract

Rabbit liver guanine aminohydrolase has been purified 1250-fold by utilization of an affinity chromatographic separation on 9-(p-aminoethoxyphenyl)guanine-Sepharose with 50% recovery of activity. Polyacrylamide gel electrophoresis of the purified preparations revealed several protein bands which corresponded to regions of enzyme activity measured on gels which had been run under the same conditions. Gel concentration studies of the protein migration rate showed that the protein bands differed in molecular size. The minimum molecular weight was 100, 000 from gel permeation chromatography studies. The pH optimum was near pH 8 and the Km, with guanine as substrate was 5.6 × 10?6M. The latter values are in close agreement with partially purified preparations described in the literature.  相似文献   

11.
Abstract

A 8-glucosidase was isolated from Candida guilliermondii, a yeast capable of growth on cellobiose. The enzyme was partially purified by treatment with polyethylcneimine and ammonium sulfate precipitation. Further purification was achieved by affinity chromatography using a Sepharose 4B matrix to which oxidized salicin was coupled through adipic dihydrazide. The final product was a 12.5-fold purification of the crude extract with a recovery of 27% of the initial enzyme activity. Polyacryl-amide disc electrophoresis of the purified enzyme gave a single band. A Km of 1.25 × 10?4M was obtained using p_-nitrophenyl-β-D_-glucopyranoside as the substrate. The optimum pH for enzyme activity was 6.8. Maximum activity was observed at a temperature of 37°C. Enzyme activity was completely inhibited by Hg++, Pb++, and Zn++ ions. The molecular weight of the enzyme is 48, 000 as estimated by sucrose density gradient centri-fugation.  相似文献   

12.
Abstract

In this study, protease-producing capacity of Bacillus pumilus D3, isolated from hydrocarbon contaminated soil, was evaluated and optimized. Optimum growing conditions for B. pumilus D3 in terms of protease production were determined as 1% optimum inoculum size, 35?°C temperature, 11 pH and 48?h incubation time, respectively. Stability studies indicated that the mentioned protease was stable within the pH range of 7–10.5 and between 30?°C and 40?°C temperatures. Surprisingly, the activity of the enzyme increased in the presence of SDS with concentration up to 5?mM. The protease was concentrated 1.6-fold with ammonium sulfate precipitation and dialysis. At least six protein bands were obtained from dialysate by electrophoresis. Four clear protein bands with caseinolytic activity were detected by zymography. Dialysate was further purified by anion-exchange chromatography and the caseinolytic active fraction showed a single band between 29 and 36?kDa of reducing conditions.  相似文献   

13.
The Vibrio proteolyticus aminopeptidase is synthesized as a preproprotein and then converted into an active enzyme by cleavage of the N-terminal propeptide. In recombinant Escherichia coli, however, the aminopeptidase is not processed correctly and the less-active form that has the N-terminal propeptide accumulates in the culture medium. Recently, we isolated a novel vibriolysin that was expressed as an active form in E. coli by random mutagenesis; this enzyme shows potential as a candidate enzyme for the processing of aminopeptidase. The E. coli cells were engineered to co-express the novel vibriolysin along with aminopeptidase. Co-expression of vibriolysin resulted in an approximately 13-fold increase in aminopeptidase activity, and a further increase was observed in the form lacking its C-terminal propeptide. The active aminopeptidase was purified from the culture supernatant including the recombinant vibriolysin by heat treatment and ion exchange and hydroxyapatite chromatography with high purity and 35% recovery rate. This purified aminopeptidase effectively converted methionyl-human growth hormone (Met-hGH) to hGH. Thus, this co-expression system provides an efficient method for producing active recombinant V. proteolyticus aminopeptidase.  相似文献   

14.
There has been much recent interest in α-1,3-glucanases (mutanases) as they have the potential to be used in the treatment of dental caries. Mutanases have been reported in a number of bacteria, yeast and fungi but remain a relatively uncharacterised family of enzymes. In this study we heterologously expressed the mutanase gene from the filamentous fungus Penicillium purpurogenum to enable further characterization of its enzymatic activity. The mutanase cDNA was cloned and expressed in the methylotrophic yeast Pichia pastoris. The molecular mass of the secreted protein was about 102 kDa. The recombinant enzyme hydrolyzed mutan with a specific activity of 3.9 U/mg of protein. The recombinant enzyme was specific for mutan and could not cleave a variety of other polysaccharides demonstrating a specificity for α-1,3-glucosidic linkages. The pH and temperature optima were pH 4.6 and 45 °C, respectively. Synthetic compounds were also tested as substrates to assess whether the P. purpurogenum mutanase has an exo- or endo-type mechanism of hydrolysis. The results suggest an endo-hydrolytic mode of action. The type of mechanism was confirmed since mutanase activity was not suppressed in the presence of inhibitors of exo-type enzymes.  相似文献   

15.
A serine alkaline protease from a newly isolated alkaliphilic Bacillus altitudinis GVC11 was purified and characterized. The enzyme was purified to homogeneity by acetone precipitation, DEAE-cellulose anion exchange chromatography with 7.03-fold increase in specific activity and 15.25% recovery. The molecular weight of alkaline protease was estimated to be 28 kDa by SDS PAGE and activity was further assessed by zymogram analysis. The enzyme was highly active over a wide range of pH 8.5 to 12.5 with an optimum pH of 9.5. The optimum temperature of purified enzyme was 45 °C and Ca2+ further increased the thermal stability of the enzyme. The enzyme activity was enhanced by Ca2+ and Mg2+ and inhibited by Hg2+. The present study is the first report to examine and describe production of highly alkaline protease from Bacillus altitudinis and also its remarkable dehairing ability of goat hide in 18 h without disturbing the collagen and hair integrity.  相似文献   

16.
Lipase from Arthrobacter sp. was immobilized onto low-cost diatomite materials using different protocols for the resolution of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one (HMPC) by asymmetric acylation. The support surface was grafted various functional groups including methacryloxypropyl, vinyl, octyl, dodecyl and γ-(aminopropyl)-glutaraldehyde. These modifications resulted in various mechanisms during the immobilization and thus introduced different characteristics to the prepared lipases. The interfacially adsorbed lipase onto dodecyl-modified support exhibited both higher activity and stability among these immobilized preparations. The modified enzyme-aggregate coating method was performed based on interfacial adsorption in our work, and the characteristics of this immobilized lipase were investigated and compared with those by cross-linking and interfacial adsorption methods. It was shown that the enzyme-aggregate coated lipase yielded the highest activity with a recovered activity of 8.5-fold of the free enzyme, and the highest operational stability with 85% of initial activity remained after 10 recycles. Excellent enantioselectivity (E ≥ 400, with e.e. = 99% of S-HMPC) was obtained for most lipase preparations in our paper (E = 85 for the free enzyme).  相似文献   

17.
An extracellular xylanase produced by Streptomyces matensis DW67 was purified from the culture supernatant by ammonium sulfate precipitation, ion exchange and gel filtration chromatography and characterized. The xylanase was purified to 14.5-fold to homogeneity with a recovery yield of 14.1%. The purified xylanase appeared as a single protein band on SDS-PAGE with a molecular mass of 21.2 kDa. However, it had a very low apparent molecular mass of 3.3 kDa as determined by gel filtration chromatography. The N-terminal sequence of first 15 amino acid residues was determined as ATTITTNQTGYDGMY. The optimal temperature and pH for purified xylanase was 65 °C and pH 7.0, respectively. The enzyme was stable within the pH range of 4.5–8.0 and was up to 55 °C. The xylanase showed specific activity towards different xylans and no activity towards other substrates tested. Hydrolysis of birchwood xylan by the xylanase yielded xylobiose and xylotriose as principal products. The enzyme hardly hydrolyzed xylobiose and xylotriose, but it could hydrolyze xylotetraose and xylopentaose to produce mainly xylobiose and xylotriose through transglycosylation. These unique properties of the purified xylanase make this enzyme attractive for biotechnological applications, such as bioblenching in paper and pulp industries, production of xylooligosaccharides. This is the first report of the xylanase from S. matensis.  相似文献   

18.
A method is described for obtaining a highly active proteolytic enzyme from aMicrosporum species. This protease was purified (200-fold) from a cell-free culture medium by concentration with Carbowax, ammonium sulfate fractionation, charcoal and Celite filtration, calcium phosphate gel treatment, and column chromatography. The pH and temperature optima are 6.8 and 35 C respectively. Requirement of one or more free sulfhydryl group(s) for enzyme activity was indicated by inhibition withp-chloromercuric benzoate. Ethylenediaminetetraacetic acid also caused inhibition of proteolytic activity, which suggests involvement of a metal ion. The enzyme appears to be most active in the reduced form;l-cysteine and 2,3 dimercapto-l-propanol doubled the rate of activity. It has an approximate molecular weight of 51,000 to 69,000. The enzyme was highly active on all proteins examined.  相似文献   

19.
L-lysine-α-oxidase (LO) synthesized by the fungus Trichoderma cf. aureoviride Rifai VKM F-4268D under salt stress conditions was isolated and characterized. The newly developed method for the isolation and purification of the enzyme was based on its precipitation from the culture liquid by copper sulfate. The subsequent LO purification by the methods of hydrophobic (Octyl Sepharose) and ion exchange (DEAE ToyoPearl) chromatography yielded a homogeneous enzyme preparation with a high degree of purification (310-fold) and high specific activity (90 U/mg protein). The molecular mass of the enzyme determined by gel filtration and native electrophoresis was 115–116 kDa. According to the data of SDS electrophoresis, LO was a dimer with identical subunits (57–58 kDa). The optical absorption spectrum of LO corresponded to the flavoprotein spectrum with maximums at 278, 390, and 465 (a shoulder at 490) nm. LO is a stereospecific enzyme oxidizing almost exclusively L-lysine (pH optimum 7.8–8.2). Insignificant activity was observed against L-ornithine and L-arginine. LO was shown to be stable at temperatures up to 50°C.  相似文献   

20.
Abstract

A new collagenase producing a strain of Bacillus cereus, isolated from the pollen of a bee of Amazon Region (Brazil), had its enzyme characterized and the production medium composition and culture conditions enhanced. A two-level design on three factors, namely initial medium pH, the substrate (gelatin) concentration and agitation intensity, allowed identifying the first two variables as the most significant ones, while a central composite design (CCD) was subsequently used to identify their optimal levels. Statistics highlighted maximized collagenolytic activity when substrate concentration and initial medium pH were selected at their highest levels (positive effects), whereas agitation intensity at the lowest (negative effect). Triplicate runs performed under predicted optimal conditions (pH 7.8 and 1.7% gelatin concentration) yielded a collagenolytic activity (305.39?±?5.15?U) 4.6- to 15-fold those obtained with the preliminary design. The enzyme displayed optimum activity at 45?°C and pH 7.2, was stable over wide ranges of pH values and temperatures (7.2–11.0 and 25–50?°C, respectively) and was strongly inhibited by 10?mM phenylmethylsulphonyl fluoride. The zymogram showed two prominent bands at 50 and 76?kDa. These results are a first attempt to elucidate the features of this new collagenase, its production conditions, and possible scale-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号