首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overexpression of the asnA gene from Escherichia coli K-12 coding for asparagine synthetase (EC 6.3.1.1) was achieved with a plasmid, pUNAd37, a derivative of pUCI8, in E. coli. The plasmid was constructed by optimizing a DNA sequence between the promoter and the ribosome binding region. The enzyme, comprising ca. 15%, of the total soluble protein in the E. coli cell, was readily purified to apparent homogeneity by DEAE-Cellulofine and Blue-Cellulofine column chromatographies. The amino-terminal sequence, amino acid composition, and molecular weight of the purified protein agreed with the predicted values based on the DNA sequence of the gene. Furthermore the native molecular weight measured by gel filtration confirmed that asparagine synthetase exists as a dimer of identical subunits.  相似文献   

2.
Aminoacyl-tRNA synthetases (ARSs) join amino acids to their cognate tRNAs to initiate protein synthesis. Class II ARS possess a unique catalytic domain fold, possess active site signature sequences, and are dimers or tetramers. The dimeric class I enzymes, notably TyrRS, exhibit half-of-sites reactivity, but its mechanistic basis is unclear. In class II histidyl-tRNA synthetase (HisRS), amino acid activation occurs at different rates in the two active sites when tRNA is absent, but half-of-sites reactivity has not been observed. To investigate the mechanistic basis of the asymmetry, and explore the relationship between adenylate formation and conformational events in HisRS, a fluorescently labeled version of the enzyme was developed by conjugating 7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl)coumarin (MDCC) to a cysteine introduced at residue 212, located in the insertion domain. The binding of the substrates histidine, ATP, and 5′-O-[N-(l-histidyl)sulfamoyl]adenosine to MDCC-HisRS produced fluorescence quenches on the order of 6–15%, allowing equilibrium dissociation constants to be measured. The rates of adenylate formation measured by rapid quench and domain closure as measured by stopped-flow fluorescence were similar and asymmetric with respect to the two active sites of the dimer, indicating that conformational change may be rate-limiting for product formation. Fluorescence resonance energy transfer experiments employing differential labeling of the two monomers in the dimer suggested that rigid body rotation of the insertion domain accompanies adenylate formation. The results support an alternating site model for catalysis in HisRS that may prove to be common to other class II aminoacyl-tRNA synthetases.The aminoacyl-tRNA synthetases (ARSs)2 comprise two distinct classes of enzymes, all of which catalyze a two-step reaction to generate aminoacyl-tRNA for protein synthesis (1, 2) (Reactions 1 and 2). During the first of two partial reactions in aminoacylation, the cognate amino acid is condensed with ATP to form an aminoacyl-adenylate. This half reaction proceeds by an associative mechanism in which the stereochemistry of the α-phosphate undergoes inversion (3). The adenylate then undergoes a subsequent attack by the cognate tRNA, with the amino acid undergoing transfer to the 3′-terminal adenosine. Aminoacyl transfer requires the activation of 2′ or 3′ of the terminal hydroxyl, and its rate may be accelerated by a number of different mechanisms, including proton transfer to the adenylate, and proton shuttling to the 2′-OH and then to neighboring active site residues (4, 5). Many ARSs can activate their cognate amino acids in the absence of tRNA, allowing the two partial reactions to be studied individually. Notably, there are significant gaps in our understanding of how the adenylation and aminoacyl transfer half reactions are integrated into the overall reaction schemes of ARSs.Class I and class II enzymes can be broadly distinguished by their oligomeric structure. The former are generally monomeric, whereas the latter are typically dimeric or tetrameric (6). Notable exceptions to this pattern are the class Ic tyrosyl- and tryptophanyl-tRNA synthetases, both of which form obligatory dimers (7, 8). Both have been described as possessing half-of-sites reactivity (9, 10), but the picture is more complex. Consistent with half-of-sites reactivity, TyrRS binds one mole of tyrosine per dimer and retains a single mole of adenylate per mole of dimers when the E·Ade complex is purified away from unreacted substrates by size-exclusion chromatography (11). However, the steady-state kinetics of TyrRS show no evidence of cooperativity, the second binding site becomes accessible to substrates when the first site is occupied by adenylate, and TyrRS clearly binds 2 mol of tRNA in the crystal (7, 12).On the basis of these and other observations involving the rate of hydrolysis of the on-enzyme adenylate, Fersht (13) proposed that the second site of TyrRS possesses weak catalytic activity and that TyrRS is asymmetric in solution. The impact of this potential asymmetry in the activation reaction on the complete TyrRS catalytic cycle remains to be explored. TrpRS also exhibits half-of-sites reactivity, and a detailed analysis of the aminoacyl transfer reaction by pre-steady state kinetics proposed both random and ordered versions of alternating site catalysis as models of the enzyme (14). In the class II ARSs, the tetrameric SepRS represents the single example where half-of-sites reactivity has been demonstrated experimentally (15).Despite this apparent class distinction, recent work on HisRS, a class IIa ARS that is well characterized with respect to structure (1619), tRNA recognition, and reaction kinetics (4, 20), highlighted several functional attributes that are reminiscent of class I TyrRS. Like TyrRS, HisRS retains only 1 mol of adenylate per dimer when subjected to size-exclusion chromatography (4). A detailed pre-steady-state analysis of mutants of tRNAHis or HisRS compromised with respect to tRNA identity suggested that, in the complete aminoacylation reaction, formation of aminoacyl adenylate in the second active site is contingent upon a productive aminoacyl transfer reaction in the first (20). These and other data led to the proposal of an alternating site model for HisRS (20) that is analogous to the “flip flop” catalysis suggested for class II PheRS (21, 22) and class Ic TrpRS (14). This raises the possibility that the catalytic cycles of dimeric class II enzymes and dimeric class Ic enzymes share some common feature.Alternating catalysis requires a mechanism for coupling events between active sites, presumably through conformational changes propagated between these active sites. To investigate these events, a version of HisRS was developed that featured the site-specific incorporation of extrinsic environmentally sensitive fluorescent probes, allowing the adenylation reaction to be followed by stopped-flow fluorometry. Comparison of the kinetics of substrate-induced fluorescence changes to the kinetics of product formation determined by rapid quench suggests that adenylation rates are asymmetric with respect to the two active sites of the dimer, and that conformational changes linked to the insertion domain may be rate-limiting for product formation. The implications of these results for a previous model (20) of alternating site catalysis in HisRS are discussed.  相似文献   

3.
Kohamaic acid A is a potent DNA polymerase inhibitor isolated from the Okinawan marine sponge Ircinia sp. A series of structurally simplified analogs of kohamaic acid A were synthesized with the aim of evaluating structure-activity relationships.  相似文献   

4.
While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNAHis have distinctive identity elements, we constructed E. coli tRNAHis CUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a β-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNAHis CUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNAHis CUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNAHis CUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair.  相似文献   

5.
Hyaluronan synthase (HAS) utilizes UDP-GlcUA and UDP-GlcNAc in the presence of Mg(2+) to form the GAG hyaluronan (HA). The purified HAS from Streptococcus equisimilis (seHAS) shows high fidelity in that it only polymerizes the native substrates, UDP-GlcNAc and UDP-GlcUA. However, other uridinyl nucleotides and UDP-sugars inhibited enzyme activity, including UDP-GalNAc, UDP-Glc, UDP-Gal, UDP-GalUA, UMP, UDP, and UTP. Purified seHAS was approximately 40% more active in 25 mM, compared to 50 mM, PO(4) in the presence of either 50 mM NaCl or KCl, and displayed a slight preference for KCl over NaCl. The pH profile was surprisingly broad, with an effective range of pH 6.5-11.5 and the optimum between pH 9 and 10. SeHAS displayed two apparent pK(a) values at pH 6.6 and 11.8. As the pH was increased from approximately 6.5, both K(m) and V(max) increased until pH approximately 10.5, above which the kinetic constants gradually declined. Nonetheless, the overall catalytic constant (120/s) was essentially unchanged from pH 6.5 to 10.5. The enzyme is temperature labile, but more stable in the presence of substrate and cardiolipin. Purified seHAS requires exogenous cardiolipin for activity and is very sensitive to the fatty acyl composition of the phospholipid. The enzyme was inactive or highly activated by synthetic cardiolipins containing, respectively, C14:0 or C18:1(Delta9) fatty acids. The apparent E(act) for HA synthesis is 40 kJ (9.5 kcal/mol) disaccharide. Increasing the viscosity by increasing concentrations of PEG, ethylene glycol, glycerol, or sucrose inhibited seHAS activity. For PEGs, the extent of inhibition was proportional to their molecular mass. PEGs with average masses of 2.7, 11.7, and 20 kg/mol caused 50% inhibition of V(max) at 21, 6.5, and 3.5 mM, respectively. The apparent K(i) values for ethylene glycol, glycerol, and sucrose were, respectively, 4.5, 3.3, and 1.2 mM.  相似文献   

6.
根据GenBank中公布的粟酒裂殖酵母(Schizosaccharomyces pombe)N-糖酰胺酶(Png1p)cDNA序列, 设计并合成一对特异性引物, 利用RT-PCR技术从粟酒裂殖酵母中克隆出糖酰胺酶cDNA。将得到的基因克隆到表达载体pET-15b中。重组质粒转入大肠杆菌BL21(DE3)中, 经诱导表达和纯化提取后, 进行酶活测定。实验结果表明, 该酶的分子量约为39 kD, 纯化后的重组N-糖酰胺酶可以对变性处理的糖蛋白进行糖链的切除, 且这种作用需要还原剂DTT的辅助作用; N-糖酰胺酶只对错误折叠的糖蛋白有作用, 对天然的糖蛋白没有作用。等量粟酒裂殖酵母Png1p在不同温度、pH、DTT浓度和底物变性温度下对等量核糖核酸酶B(RNase B)的脱糖基化检测发现, 重组酶的最适反应温度30°C, 最适反应pH为7.0, 需要的最适DTT浓度为10 mmol/L, 底物在100°C处理10 min时酶的脱糖基化率最高。  相似文献   

7.
根据GenBank中公布的粟酒裂殖酵母(Schizosaccharomyces pombe)N-糖酰胺酶(Png1p)cDNA序列, 设计并合成一对特异性引物, 利用RT-PCR技术从粟酒裂殖酵母中克隆出糖酰胺酶cDNA。将得到的基因克隆到表达载体pET-15b中。重组质粒转入大肠杆菌BL21(DE3)中, 经诱导表达和纯化提取后, 进行酶活测定。实验结果表明, 该酶的分子量约为39 kD, 纯化后的重组N-糖酰胺酶可以对变性处理的糖蛋白进行糖链的切除, 且这种作用需要还原剂DTT的辅助作用; N-糖酰胺酶只对错误折叠的糖蛋白有作用, 对天然的糖蛋白没有作用。等量粟酒裂殖酵母Png1p在不同温度、pH、DTT浓度和底物变性温度下对等量核糖核酸酶B(RNase B)的脱糖基化检测发现, 重组酶的最适反应温度30°C, 最适反应pH为7.0, 需要的最适DTT浓度为10 mmol/L, 底物在100°C处理10 min时酶的脱糖基化率最高。  相似文献   

8.
Escherichia coli 4-fluorotryptophan-substituted arginyl-tRNA synthetase was biosynthetically prepared and purified from a tryptophan auxotroph which could overproduce this enzyme. A method was developed to separate 4-fluorotryptophan from tryptophan and to determine accurately their contents in the 4-fluorotryptophan-containing proteins. It was confirmed that more than 95% of the tryptophan residues in the purified 4-fluorotryptophan-substituted arginyl-tRNA synthetase were replaced by 4-fluorotryptophan. Studies on the effect of the 4-fluorotryptophan replacement on properties of the enzyme showed that, when compared with the native enzyme, both the specific activity and the first-order rate constant of the fluorinated enzyme decreased by approximately 20% with just slightly higher K m values. CD studies, however, did not reveal any difference between the secondary structure of the native and fluorinated enzymes. In addition, thermal unfolding studies showed that the 4-fluorotryptophan replacement did not significantly affect the thermal stability of the enzyme. We may conclude that the substitution of 4-fluorotryptophan in arginyl-tRNA synthetase had no substantial effect on the structure and function of the enzyme. Finally, a preliminary study of 19F nuclear magnetic resonance spectroscopy of the fluorinated enzyme has shown promising prospect for further investigation of its structure and function with NMR.  相似文献   

9.
The general aminopeptidase PepN from Streptococcus thermophilus A was purified to protein homogeneity by hydroxyapatite, anion-exchange, and gel filtration chromatographies. The PepN enzyme was estimated to be a monomer of 95 kDa, with maximal activity on N-Lys–7-amino-4-methylcoumarin at pH 7 and 37°C. It was strongly inhibited by metal chelating agents, suggesting that it is a metallopeptidase. The activity was greatly restored by the bivalent cations Co2+, Zn2+, and Mn2+. Except for proline, glycine, and acidic amino acid residues, PepN has a broad specificity on the N-terminal amino acid of small peptides, but no significant endopeptidase activity has been detected. The N-terminal and short internal amino acid sequences of purified PepN were determined. By using synthetic primers and a battery of PCR techniques, the pepN gene was amplified, subcloned, and further sequenced, revealing an open reading frame of 2,541 nucleotides encoding a protein of 847 amino acids with a molecular weight of 96,252. Amino acid sequence analysis of the pepN gene translation product shows high homology with other PepN enzymes from lactic acid bacteria and exhibits the signature sequence of the zinc metallopeptidase family. The pepN gene was cloned in a T7 promoter-based expression plasmid and the 452-fold overproduced PepN enzyme was purified to homogeneity from the periplasmic extract of the host Escherichia coli strain. The overproduced enzyme showed the same catalytic characteristics as the wild-type enzyme.  相似文献   

10.
The gene for monoamine oxidase (MAO) was cloned from an Escherichia coli genomic library and MAO was overproduced in the periplasmic space. The enzyme was purified to homogeneity by preparation of a periplasmic fraction, followed by ammonium sulfate fractionation and DEAE-cellulose column chromatography. Crystals were obtained by the hanging drop method using sodium citrate as a precipitant. The enzyme was found to be a dimer of identical subunits with a molecular weight of 80,000, and showed the highest activity at pH 7.5 and 45°C. The enzyme was inhibited by a MAO specific inhibitor, hydroxylamine, hydrazine, phenelzine, isoniazid, and tranycypromine. The enzyme oxidized tyramine, phenethylamine, and tryptamine at higher rates, but not oxidized diamine and polyamines such as putrecine and spermine. The antibody against E. coli MAO cross-reacted with purified MAO A from Klebsiella aerogenes.  相似文献   

11.
CRM197是一种白喉毒素突变体,作为载体蛋白广泛用于疫苗开发。将合成的CRM197基因片段克隆到表达载体pET25b中,转化大肠杆菌BL21(DE3),经IPTG诱导,CRM197获得高效表达,达到菌体总蛋白的20%。目的蛋白主要以包涵体形式存在,变性、复性后经DEAE阴离子交换、S-100分子筛纯化获得纯度高于95%的CRM197样品,用该蛋白样品免疫新西兰大白兔,免疫兔血清中检测到特异性抗体应答。急性毒性试验中,每只豚鼠皮下注射200μgCRM197纯化样品,未出现明显毒性反应症状,与之相比较,注射后48h内,20ng白喉毒素阳性对照组动物全部死亡。结果表明,利用本试验的表达策略,CRM197得到高效表达,并且具有良好的免疫原性和安全性,为其进一步生产及应用奠定基础。  相似文献   

12.
We purified to homogeneity an enzyme from Citrobacter sp. strain KCTC 18061P capable of decolorizing triphenylmethane dyes. The native form of the enzyme was identified as a homodimer with a subunit molecular mass of about 31 kDa. It catalyzes the NADH-dependent reduction of triphenylmethane dyes, with remarkable substrate specificity related to dye structure. Maximal enzyme activity occurred at pH 9.0 and 60°C. The enzymatic reaction product of the triphenylmethane dye crystal violet was identified as its leuco form by UV-visible spectral changes and thin-layer chromatography. A gene encoding this enzyme was isolated based on its N-terminal and internal amino acid sequences. The nucleotide sequence of the gene has a single open reading frame encoding 287 amino acids with a predicted molecular mass of 30,954 Da. Although the deduced amino acid sequence displays 99% identity to the hypothetical protein from Listeria monocytogenes strain 4b H7858, it shows no overall functional similarity to any known protein in the public databases. At the N terminus, the amino acid sequence has high homology to sequences of NAD(P)H-dependent enzymes containing the dinucleotide-binding motif GXXGXXG. The enzyme was heterologously expressed in Escherichia coli, and the purified recombinant enzyme showed characteristics similar to those of the native enzyme. This is the first report of a triphenylmethane reductase characterized from any organism.  相似文献   

13.
To establish the overexpression and one-step purification system of Bacillus subtilis elongation factor-Tu (EF-Tu), the EF-Tu gene was amplified with or without own ribosome binding site (rbs) by PCR and the only PCR product without rbs was subcloned successfully. For the expression of the EF-Tu gene cloned after PCR amplification, a constitutive expression system and inducible expression system with His6 tag at N-terminus or C-terminus, or glutathione-S-transferase (GST) fusion system were examined in E. coli and B. subtilis. Except GST fusion system in E. coli, however, all other trials were unsuccessful at the step of plasmid construction for the EF-Tu expression. The GST/EF-Tu fusion proteins were highly expressed by IPTG induction and obtained as both soluble and insoluble form. From the soluble GST/EF-Tu fusion protein, EF-Tu was obtained to near homogeneity by one-step purification with glutathione-sepharose affinity column chromatography followed by factor Xa treatment. The purified EF-Tu showed high GDP binding activity. These results indicate that the GST/EF-Tu fusion system is favorable to overexpression and purification of B. subtilis EF-Tu.  相似文献   

14.
联合固氮细菌粪产碱菌(Alcaligenesfaecalis)A1501菌体经超声破碎后,无细胞粗提液以PEG-6000分级沉淀,丙酮沉淀,再经蓝琼脂糖(BlueSepharoseCL-68)亲和层析分离、纯化。获得的纯谷氨酰胺合成酶(GS)在SDS-PAGE和4-30%梯度PAGE上均呈均一的一条带。GS亚基及整酶分子量分别为55kD和645kD,亚基由456个氨基酸残基组成。GS的Km值,在以Glu为氮源的介质中培养时分别为20mmol/L(Glu),50mmol/L(ATP)和45mmol/L(NH~+_4);在以NH~+_4为氮源的介质中培养时则分别为70mmol/L(Glu),49mmol/L(ATP)和80mmol/L(NH~+_4),表明NH~+_4培养下形成高度腺苷化的GS对Glu及NH~+_4的亲和力有所下降。  相似文献   

15.
Aminopeptidase B, which is one of the four cysteinyl-glycinases of Escherichia coli K-12, was purified to electrophoretic homogeneity and its enzymatic characteristics were observed. Aminopeptidase B was activated by various divalent cations such as Ni2+, Mn2+, Co2+, and Cd2+, and lost its activity completely on dialysis against EDTA. This indicates that aminopeptidase B is a metallopeptidase. It was stabilized against heat in the presence of Mn2+ or Co2+. The activity of aminopeptidase B, which was saturated with one of above divalent cations, was enhanced on the addition of a very small amount of a second divalent cation. α-Glutamyl p-nitroanilide, leucine p-nitroanilide, and methionine p-nitroanilide were good substrates for aminopeptidase B, while native peptides, cysteinylglycine and leucylglycine, were far better substrates. The kcat/Km for cysteinylglycine was much bigger than those for leucylglycine or leucine p-nitroanilide.  相似文献   

16.
The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μm.  相似文献   

17.
Glucokinase was purified from Escherichia coli B cells dosed with a hybrid plasmid carrying the gene for glucokinase. The enzyme was purified about 170-fold and was homogeneous on polyacrylamide gel electrophoresis. The enzyme was 49,000 in molecular weight and consisted of two subunits having a molecular weight of 24,500. The glucokinase catalyzed phosphorylation of D-glucose, D-mannose, D-glucosamine, and 2-deoxy-D-glucose, consuming ATP as a phosphoryl donor. Besides ATP, other nucleoside triphosphates such as ITP, GTP and UTP were also utilized as phosphoryl donors. The enzyme required free sulfhydryl groups and Mg2+ for activity. Other properties of the glucokinase were characterized and compared with those of glucokinases from various sources.  相似文献   

18.
大肠杆菌梭曼水解酶的纯化和性质邵煌,刘昌玲,肖美珍,孙曼霁(北京军事医学科学院毒物药物研究所,北京100850)梭曼属G类神经性有机磷毒剂.自然界发现多种细菌中均存在梭曼水解酶(Somanase)活性[1-3].研究细菌梭曼水解酶,寻求生物解毒的方法...  相似文献   

19.
吴炯  费炎灵  温晓燕   《生物工程学报》1997,13(4):394-399
碱性成纤维细胞生长因子(bFGF)参与了许多细胞生长和分化的调控过程。本文采用重组DNA技术在大肠杆菌中高效表达了人bFGF。首先将编码人bFGF基因克隆到pXT表达载体中与其上游的一短S导肽共一阅读框架,bFGF基因的表达受强的T7启动子调控。采用BL21(DE3)大肠杆菌作为宿主菌,用IPTG诱导BL21(DE3)细菌合成的T7RNA聚合酶,后者可催化高水平的bFGF基因表达,其bFGF产量可占总菌体蛋白的42.5%。采用肝素Sepharose一步亲和层析法直接从诱导后的细菌裂解产物中得到纯化的重组人bFGF蛋白。经Western印迹分析证明该蛋白可被人bFGF特异性单克隆抗体所识别。进一步研究证明该蛋白具有刺激NR6R-3T3成纤维细胞增殖的生物学活性,并且这一活性可被人bFGF特异性中和抗体所中和。  相似文献   

20.
Abstract

The Erbin was recently identified. The antibody against Erbin has not been commercially available. As a new member of peripheral protein LAP family and novel type of adaptor protein, its functions and binding partners are not completely known. In the present study, cDNA encoding PDZ domain of Erbin was inserted in a prokaryotic expression vector. His-tagged recombinant protein was overproduced in E. coli and purified by Ni-NTA column chromatography. About 14.4 mg of the purified protein was obtained from 500 mL of cell culture. The purity of the recombinant protein was higher than 90%. The polyclonal antibody against this protein was raised. The antibody can recognize both denatured and natural Erbin protein. It will be used to further identify the new binding partners of Erbin and study its unknown functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号