首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Oil palm fronds are the most abundant lignocellulosic biomass in Malaysia. In this study, fronds were tested as the potential renewable biomass for ethanol production. The soaking in aqueous ammonia pretreatment was applied, and the fermentability of pretreated fronds was evaluated using simultaneous saccharification and fermentation. The optimal pretreatment conditions were 7?% (w/w) ammonia, 80?°C, 20?h of pretreatment, and 1:12 S/L ratio, where the enzymatic digestibility was 41.4?% with cellulase of 60?FPU/g-glucan. When increasing the cellulase loading in the hydrolysis of pretreated fronds, the enzymatic digestibility increased until the enzyme loading reached 60?FPU/g-glucan. With 3?% glucan loading in the SSF of pretreated fronds, the ethanol concentration and yield based on the theoretical maximum after 12 and 48?h of the SSF were 7.5 and 9.7?g/L and 43.8 and 56.8?%, respectively. The ethanol productivities found at 12 and 24?h from pretreated fronds were 0.62 and 0.36?g/L/h, respectively.  相似文献   

2.
Sugarcane bagasse (SCB) was pretreated with liquid hot water (LHW) and aqueous ammonia (AA), with the objective of investigating the influence of hemicellulose and lignin removal on the enzymatic digestibility and sugar recovery. The experimental results show that LHW and aqueous ammonia have a good performance in terms of hemicellulose dissolution and lignin removal respectively. The biggest xylan recovery of 74.3 % was obtained for LHW pretreatment at 160 °C, 5 %?w/v for 20 min with the xylan dissolution of 83.1 %. And the biggest lignin removal of 84.0 % was obtained for aqueous ammonia pretreatment at 160 °C, 10 %?w/v for 60 min. Moreover, the aperture and surface area of the sample were enlarged by the liquid hot water, which improves the accessibility of the substrate to the enzyme. The lignin removal caused by aqueous ammonia pretreatment can reduce the absorption of enzyme. In addition, the correlation between the compositional change and the enzymatic digestibility indicates that the removal of hemicellulose was more effective than lignin for destruction of the hemicellulose–lignin–cellulose structure.  相似文献   

3.
Biomass contains cellulose, xylan and lignin in a complex interwoven structure that hinders enzymatic hydrolysis of the cellulose. To separate these components in yellow poplar biomass, we sequentially pretreated with dilute sulfuric acid and enzymatically-generated peracetic acid. In the first step, the dilute acid with microwave heating (140°C, 5 min) hydrolyzed 90% of xylan. The xylose yield in hydrolysate after dilute acid pretreatment was 83.1%. In the second step, peracetic acid (60°C, 6 h) removed up to 80% of lignin. This sequential pretreatment fractionated biomass into xylan and lignin, leaving a solid residue enriched in cellulose (~80%). The sequential pretreatment enhanced enzymatic digestibility of the cellulase by removal of the other components in biomass. The glucose yield after enzymatic hydrolysis was 90.5% at a low cellulase loading (5 FPU/g of glucan), which is 1.6 and 18 times higher than for dilute acid-pretreated biomass and raw biomass, respectively. This novel sequential pretreatment with dilute acid and peracetic acid efficiently separates the three major components of yellow poplar biomass, and reduces the amount of cellulase needed.  相似文献   

4.
The present study investigates the operational conditions for organosolvent pretreatment and hydrolysis of rice straw. Among the different organic acids and organic solvents tested, acetone was found to be most effective based on the fermentable sugar yield. Optimization of process parameters for acetone pretreatment were carried out. The structural changes before and after pretreatment were investigated by scanning electron microscopy, X-ray diffraction and Fourier transform infrared (FTIR) analysis. The X-ray diffraction profile showed that the degree of crystallinity was higher for acetone pretreated biomass than that of the native. FTIR spectrum also exhibited significant difference between the native and pretreated samples. Under optimum pretreatment conditions 0.458 g of reducing sugar was produced per gram of pretreated biomass with a fermentation efficiency of 39%. Optimization of process parameters for hydrolysis such as biomass loading, enzyme loading, surfactant concentration and incubation time was done using Box–Benhken design. The results indicate that acetone pretreated rice straw can be used as a good feed stock for bioethanol production.  相似文献   

5.
Bioethanol production from ammonia percolated wheat straw   总被引:2,自引:0,他引:2  
This study examined the effectiveness of ammonia percolation pretreatment of wheat straw for ethanol production. Ground wheat straw at a 10% (w/v) loading was pretreated with a 15% (v/v) ammonia solution. The experiments were performed at treatment temperature of 50∼170°C and residence time of 10∼150 min. The solids treated with the ammonia solution showed high lignin degradation and sugar availability. The pretreated wheat straw was hydrolyzed by a cellulase complex (NS50013) and β-glucosidase (NS50010) at 45°C. After saccharification, Saccharomyces cerevisiae was added for fermentation. The incubator was rotated at 120 rpm at 35°C. As a result of the pretreatment, the delignification efficiency was > 70% (170°C, 30 min) and temperature was found to be a significant factor in the removal of lignin than the reaction time. In addition, the saccharification results showed an enzymatic digestibility of > 90% when 40 FPU/g cellulose was used. The ethanol concentration reached 24.15 g/L in 24 h. This paper reports a total process for bioethanol production from agricultural biomass and an efficient pretreatment of lignocellulosic material.  相似文献   

6.
We demonstrated that the enzymatic hydrolysis of cellulose after microwave pretreatment of lignocellulosic material in ionic liquids (ILs) is drastically enhanced compared with that after conventional thermal pretreatment in ILs. Three types of cholinium ILs, choline formate (ChFor), choline acetate (ChOAc), and choline propionate (ChPro), were examined. The cellulose saccharification percentage was approximately 20% for kenaf powders pretreated in ChFor, ChOAc, and ChPro by conventional heating at 110 °C for 20 min. In contrast, approximately 60–90% of cellulose was hydrolyzed to glucose after microwave pretreatment in the same ILs at 110 °C for 20 min.  相似文献   

7.
Miscanthus x giganteus is a tall perennial grass whose suitability as an energy crop is presently being appraised. There is very little information on the effect of pretreatment and enzymatic saccharification of Miscanthus to produce fermentable sugars. This paper reports sugar yields during enzymatic hydrolysis from ammonia fiber expansion (AFEX) pretreated Miscanthus. Pretreatment conditions including temperature, moisture, ammonia loading, residence time, and enzyme loadings are varied to maximize hydrolysis yields. In addition, further treatments such as soaking the biomass prior to AFEX as well as washing the pretreated material were also attempted to improve sugar yields. The optimal AFEX conditions determined were 160 degrees C, 2:1 (w/w) ammonia to biomass loading, 233% moisture (dry weight basis), and 5 min reaction time for water-soaked Miscanthus. Approximately 96% glucan and 81% xylan conversions were achieved after 168 h enzymatic hydrolysis at 1% glucan loading using 15 FPU/(g of glucan) of cellulase and 64 p-NPGU/(g of glucan) of beta-glucosidase along with xylanase and tween-80 supplementation. A mass balance for the AFEX pretreatment and enzymatic hydrolysis process is presented.  相似文献   

8.
以棕榈残渣(Empty fruit bunch,EFB)为原料,通过预处理、酶解、发酵等过程制备纤维乙醇.首先对比了碱、碱/过氧化氢等预处理条件对棕榈残渣组成及酶解的影响,结果表明稀碱预处理效果较好.适宜的稀碱预处理条件为:NaOH浓度为1%,固液比为1∶10,在40℃浸泡24 h后于121℃下保温30 min,在该条件下,EFB的固体回收率为74.09%,纤维素、半纤维素和木质素的含量分别为44.08%、25.74%和13.89%.对该条件下预处理后的固体样品,以底物浓度5%、酶载量30 FPU/g底物酶解72 h,纤维素和半纤维素的酶解率分别达到84.44%和89.28%.进一步考察了酶载量和底物浓度对酶解的影响以及乙醇批式同步糖化发酵,当酶载量为30 FPU/g底物,底物浓度由5%增加至25%时,利用酿酒酵母Saccharomyces cerevisiae(接种量为5%,VIV)发酵72 h后乙醇的浓度分别为9.76 g/L和35.25 g/L,可分别达到理论得率的79.09%和56.96%.  相似文献   

9.
Sugarcane bagasse was subjected to steam pretreatment impregnated with hydrogen peroxide. Analyses were performed using 23 factorial designs and enzymatic hydrolysis was performed at two different solid concentrations and with washed and unwashed material to evaluate the importance of this step for obtaining high cellulose conversion. Similar cellulose conversion were obtained at different conditions of pretreatment and hydrolysis. When the cellulose was hydrolyzed using the pretreated material in the most severe conditions of the experimental design (210°C, 15 min and 1.0% hydrogen peroxide), and using 2% (w/w) water‐insoluble solids (WIS), and 15 FPU/g WIS, the cellulose conversion was 86.9%. In contrast, at a milder pretreatment condition (190°C, 15 min and 0.2% hydrogen peroxide) and industrially more realistic conditions of hydrolysis (10% WIS and 10 FPU/g WIS), the cellulose conversion reached 82.2%. The step of washing the pretreated material was very important to obtain high concentrations of fermentable sugars. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

10.
A two-stage autocatalytic hydrothermal pretreatment was proposed to improve the cassava straw utilization. The two-stage hydrothermal pretreatment was a process of which the first stage adopted lower-severity conditions (temperature and time) to improve the C-5 sugar yields and the second stage employed more severities to enhance C-6 sugar yield during enzyme hydrolysis. After employing this process, the maximum yields of C-5 and C-6 sugars were 68.49% and 81.02% when treating at 180 °C for 60 min for the first stage and 200 °C for 20 min for the second stage. Based on this, the autocatalytic pretreatment was investigated, which was a method to further enhance the pretreatment intensity by recycling pretreated liquid rich in byproduct organic acids (acetic acid, lactic acid and formic acid) during two-stage hydrothermal pretreatment. The results showed that the C-5 sugar yields of the first stage increased to 81.12% when recycled pretreated liquid twice, which led to 0.93 wt% byproduct organic acid. After the second stage, the C-6 sugar yield increased to 88.60% during enzymatic hydrolysis. Besides, mass balance and development potentials were analyzed. The results revealed that two-stage autocatalytic hydrothermal pretreatment could effectively enhance pretreatment intensity and provide promising methods of directionally depolymerizing cassava straws.  相似文献   

11.
The objective of this study was to determine the effectiveness of different organic acids (maleic, succinic, and oxalic acid) on enzymatic hydrolysis and fermentation yields of wheat straw. It was also aimed to optimize the process conditions (temperature, acid concentration, and pretreatment time) by using response surface methodology (RSM). In line with this objective, the wheat straw samples were pretreated at three different temperatures (170, 190, and 210°C), acid concentrations (1%, 3%, and 5%) and pretreatment time (10, 20, and 30 min). The findings show that at extreme pretreatment conditions, xylose was solubilized in liquid phase, causing an increase in cellulose and lignin content of biomass. Enzymatic hydrolysis experiments revealed that maleic and oxalic acids were quite effective at achieving high sugar yields (>90%) from wheat straw. In contrast, the highest sugar yields were 50–60%, when the samples were pretreated with succinic acid, indicating that succinic acid was not as effective. The optimum process conditions for maleic acid were, 210°C, 1.08% acid concentration, and 19.8 min; for succinic acid 210°C, 5% acid concentration, and 30 min; for oxalic acid 210°C, 3.6% acid concentration, and 16.3 min. The ethanol yields obtained at optimum conditions were 80, 79, and 59% for maleic, oxalic and succinic acid, respectively. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1487–1493, 2016  相似文献   

12.
Sodium percarbonate (SP), a kind of alkaline strong oxidant, was applied to corncob pretreatment. The optimized pretreatment conditions were at 4% (w/v) SP concentration with solid-to-liquid (SLR) ratio of 1:10 treating for 4?hr at 60°C. This pretreatment resulted in 91.06% of cellulose and 84.08% of hemicellulose recoveries with 34.09% of lignin removal in corncob. The reducing sugar yield from SP-pretreated corncob was 0.56?g/g after 72?hr of enzymatic hydrolysis, 1.75-folds higher than that from raw corncob. 2,3-butanediol production by Enterobacer cloacae in simultaneous saccharification fermentation was 29.18?g/L using SP-pretreated corncob as a substrate, which was 11.12 times of that using raw corncob. Scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectra analysis indicated that physical characteristics, crystallinity, and structure of corncob had changed obviously after SP pretreatment. This simple and novel pretreatment method was effective for delignification and carbohydrate retention in microbial production of 2,3-butanediol from lignocellulose biomass.  相似文献   

13.
《Process Biochemistry》2007,42(6):1003-1009
Olive tree pruning biomass, pretreated by either liquid hot water or steam explosion under selected conditions, was used as a substrate for enzymatic hydrolysis. The pretreated material was further submitted to alkaline delignification, the objective being to improve hydrolysis yields as well as increasing cellulose content in the pretreated feedstock. The enzymatic hydrolysis of pretreated residues was performed using a commercial cellulase mixture supplemented with β-glucosidase, using a solid loading range from 2 to 30% (w/v). The influence of substrate concentration on the enzymatic hydrolysis yield and on glucose concentration was studied. Comparative results with and without a delignification step are presented. Enzymatic hydrolysis at high substrate concentration (≥20%) is possible, yielding a concentrated glucose solution (>50 g/L). Nevertheless, a cellulose fraction of the pretreated residue remains unaltered.  相似文献   

14.
The role of particle size in carbohydrate fractionation upon pretreatment and glucan yields upon enzymatic hydrolysis was investigated at two different temperatures, to examine the possibility of pretreating under milder conditions smaller particles, in order to satisfy pilot‐scale operational constraints. Maize stover was knife‐milled through 1‐mm and 0.5‐mm screens and pretreated by soaking in aqueous ammonia pretreatment at 60 or 110°C for 6 h. Pretreated solids were analyzed for composition and a material balance calculated for glucan, xylan, and lignin. At 60°C, milling resulted in greater delignification compared to unmilled biomass. Delignification was more uniform at 110°C. Pretreated solids were washed and cellulase hydrolysis carried out at 10% w/w solids loading, with low and high enzyme loadings. Liquid samples were drawn and concentration data developed through HPLC to calculate 48‐h glucan and xylan hydrolytic yields. The differences in hydrolytic yield between milled and unmilled treatments were found to vary with pretreatment temperature and enzyme loading. The results show that while particle size impacts carbohydrate recovery and hydrolytic yield, it is less important in bioprocessing than pretreatment temperature and enzyme loading, possibly owing to the particles’ morphology rather than the size. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:134–140, 2016  相似文献   

15.
为研究微生物法预处理对红麻秸秆中木质素的降解及后续的红麻纤维素酶促糖化和发酵效率的影响,将白腐真菌Pleurotus sajor-caju接种在红麻秸秆培养基上固态培养,对红麻秸秆进行预处理。经P. sajor-caju培养25~35 d后,有效转化红麻秸秆中的木质素,转化率最高可达50.20%,并提高红麻纤维素的酶促水解效率,糖化率达69.33%~78.64%,与对照组相比提高了3.5~4.1倍。以微生物法预处理后的红麻秸秆样品为底物的同步糖化发酵实验表明,发酵72 h,发酵液中乙醇浓度达到18.35~  相似文献   

16.
Cassava peels provide a cheap non-food biomass waste that can be hydrolyzed to simple sugars as a useful feedstock. Unlike most crop wastes, they have high starch content as well as lignocellulose. In this study, an enzymatic treatment of cassava peels by various concentrations of amylase and glucoamylase is considered. Steam explosion pre-treatments reduced rate and yield of hydrolysis. Milled peels suspended at 10% w/v yielded a maximum reducing sugar of 0.41?g (as glucose) per gram of peels. HPLC analysis showed that levels of soluble oligosaccharides remained low throughout. A pretreatment with amylase at 95?°C slightly increased rates although final yield was the same. Additional treatment with cellulolytic enzymes increases the total hydrolysis yield to 0.61?g (as glucose) per gram of peels representing 91% of the carbohydrate in cassava peels.  相似文献   

17.
Partial acid hydrolysis was studied as a per treatment to enhance enzymatic hydrolysis, such a pretreatment was carried out in a continuous flow reactor on oak corn Stover, newsprint, and Solka Floc at temperatures ranging from 160 to 220°C, acid concentration ranging from 0 to 1.2%, and a fixed treatment time of 0.22 min. The resulting slurries and solids were than hydrolyzed with Trichoderma ressei QM 9414 cellulase at 50°C for 48 hr. For all substrates except Solka Floc, increased glucose yields were achieved during enzymatic hydrolysis of the pretreated materials as compared to hydrolysis of the original substrate. In several cases, after pretreatment, 100° of the potential glucose content of the substrate was converted to glucose after 24hr of enzymatic hydrolysis. It is felt that the increased glucose yields achieved after this pretreatment are due to acid's removal of hemicellulose, reduced degree of polymerization, and possibly due to a change in the crystal structure of the cellulose.  相似文献   

18.
A cycle spray flow-through reactor was designed and used to pretreat corn stover in dilute sulfuric acid medium. The dilute sulfuric acid cycle spray flow-through (DCF) process enhanced xylose sugar yields and cellulose digestibility while increasing the removal of lignin. Within the DCF system, the xylose sugar yields of 90–93% could be achieved for corn stover pretreated with 2% (w/v) dilute sulfuric acid at 95 °C during the optimal reaction time (90 min). The remaining solid residue exhibited enzymatic digestibility of 90–95% with cellulase loading of 60 FPU/g glucan that was due to the effective lignin removal (70–75%) in this process. Compared with flow-through and compress-hot water pretreatment process, the DCF method produces a higher sugar concentration and higher xylose monomer yield. The novel DCF process provides a feasible approach for lignocellulosic material pretreatment.  相似文献   

19.
Abstract

Mild alkaline pretreatment was evaluated as a strategy for effective lignin removal and hydrolysis of rice straw. The pretreatment efficiency of different NaOH concentrations (0.5, 1.0, 1.5 or 2.0% w/w) was assessed. Rice straw (RS) pretreated with 1.5% NaOH achieved better sugar yield compared to other concentrations used. A cellulose conversion efficiency of 91% (45.84?mg/ml glucose release) was attained from 1.5% NaOH pretreated rice straw (PRS), whereas 1% NaOH pretreated rice straw yielded 35.10?mg/ml of glucose corresponding to a cellulose conversion efficiency of 73.81%. The ethanol production from 1% and 1.5% NaOH pretreated RS hydrolysates was similar at ~3.3% (w/v), corresponding to a fermentation efficiency of 86%. The non-detoxified hydrolysate was fermented using the novel yeast strain Saccharomyces cerevisiae RPP-03O without any additional supplementation of nutrients.  相似文献   

20.
The yield of ethanol from oil palm empty fruit bunches (EFB) was increased on exploiting maleic acid pretreatment combined with fermentation of the pretreated whole slurry. The optimized conditions for pretreatment were to expose EFB to a high temperature (190 °C) with 1 % (w/v) maleic acid for a short time duration (3 min ramping to the set temperature with no holding) in a microwave digester. An enzymatic digestibility of 60.9 % (based on theoretical glucose yield) was exhibited using pretreated and washed EFB after 48 h of hydrolysis. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated EFB for 48 h resulted in 61.3 % theoretical yield of ethanol based on the initial amount of glucan in untreated EFB. These results indicate that maleic acid is a suitable catalyst not requiring detoxification steps for whole slurry fermentation of EFB for ethanol production, thus improving the process economics. Also, the whole slurry fermentation can significantly increase the biomass utilization by converting sugar from both solid and liquid phases of the pretreated slurry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号