首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus sp. are specific producers of peptidase amongst bacteria and peptidase enzymes and are of significant ones due to their multifarious applications. Advances in industrial biotechnology offer potential opportunities for economic utilization of agro-industrial by-products for many biochemical reactions. Due to their rich organic nature, they can serve as an ideal substrate for the production of different value added products like peptidases. In the present work, an attempt was made to optimize different variables by Taguchi methodology for the production of peptidase using agro-industrial by-products hydrolyzed by a Bacillus cereus strain, resulting in brewer's spent grain (BSG) being the optimal organic substrate. Subsequently, operative variables for the BSG were investigated using Taguchi methodology in order to maximize the enzyme production. Additionally, the main medium components were optimized using a mixture design. Finally, the production of peptidase by B. cereus was investigated; also the possible interaction with other proteolytic microbial strains was evaluated. A notorious synergistic effect was observed when B. cereus was inoculated with Pseudomonas sp. These brought a triple benefit, first, opening the possibility to produce technical enzymes at low cost, second, giving greater value to a food industry by-product, and third, reducing the environmental impact caused by the product removal directly into the environment.  相似文献   

2.
Feruloyl esterase (FAE) and xylanase activities were detected in culture supernatants from Humicola grisea var. thermoidea and Talaromyces stipitatus grown on brewers' spent grain (BSG) and wheat bran (WB), two agro-industrial by-products. Maximum activities were detected from cultures of H. grisea grown at 150 rpm, with 16.9 U/ml and 9.1 U/ml of xylanase activity on BSG and WB, respectively. Maximum FAE activity was 0.47 U/ml and 0.33 U/ml on BSG and WB, respectively. Analysis of residual cell wall material after microbial growth shows the preferential solubilisation of arabinoxylan and cellulose, two main polysaccharides present in BSG and WB. The production of low-cost cell-wall-deconstructing enzymes on agro-industrial by-products could lead to the production of low-cost enzymes for use in the valorisation of food processing wastes.  相似文献   

3.
Cardiovascular diseases (CVDs) cause high mortality throughout the world. Existing fibrinolytic agents are highly expensive and have many side effects. Microbial fibrinolytic enzymes are very much considered as novel therapeutic candidate for the treatment of CVDs. Reports on fibrinolytic enzyme from Xanthomonas sp. is lacking. This study reports fibrinolytic enzymes from Xanthomonas oryzae IND3 as it shows hyperactivity on fibrin-agarose plates. This organism utilized various agro-industrial wastes for enzymes production. Among all, cow dung enhanced more enzyme production, hence it was used as the low-cost substrate for statistical optimization of fibrinolytic protease in Solid state fermentation. Response surface methodology was employed to optimize the factors and enhanced yield by 4-fold. The interactions among the variables, viz, sucrose, yeast extract, and pH of the medium were investigated using Central Composite Design (CCD). The predicted fibrinolytic enzyme activity was 2340 U/g, and the observed fibrinolytic enzyme activity was 2294?±?12.8?U/g. The fibrinolytic enzyme degraded blood clot in vitro completely. This study is the first report on statistical optimization of fibrinolytic enzyme production in SSF from Xanthomonas sp. The crude extract has immense activity on proteinaceous wastes. The production of fibrinolytic protease using the low-cost substrate could reduce the production cost of enzyme.  相似文献   

4.
Cuttlefish powder (CFP) from Sepia officinalis by-products was prepared and tested as a fermentation substrate for microbial growth and protease production by several species of bacteria: Bacillus licheniformis, Bacillus subtilis, Pseudomonas aeruginosa, Bacillus cereus BG1, and Vibrio parahaemolyticus. All microorganisms studied grew well and produced protease activity when cultivated in medium containing only CFP indicating that the strains can obtain their carbon and nitrogen source requirements directly from whole by-product proteins. Moreover, it was found that the addition to the cuttlefish medium of diluted fishery wastewaters (FWW), generated by marine-products processing factories, enhanced the production of protease. Maximum activity was obtained when cells were grown in cuttlefish media containing 5-times or 10-times diluted FWW. Five-times diluted FWW enhanced protease production by B. cereus BG1 and B. subtilis by 467% and 75% more than control media, respectively. The enhancement could have been due to the high organic content or high salts in FWW.As a result, cuttlefish by-products powder enriched with diluted FWW was found to be a suitable growth media for protease-producing strains. This new process, which converts underutilized wastes (liquid and solid) into more marketable and acceptable forms, coupled with protease production, can be an alternative way to the biological treatment of solid and liquid wastes generated by the cuttlefish processing industry.  相似文献   

5.
The production of a battery of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum grown on brewer’s spent grain (BSG) under solid-state fermentation was investigated. Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum production of feruloyl esterase, xylanase, and α-l-arabinofuranosidase. Under the optimum growth conditions (80% moisture, pH 6, 26.5°C, and 5 g/l nitrogen source), the maximum level of feruloyl esterase (1,542 mU/g BSG) was found after 196 h, whereas xylanase (709 U/g BSG) and ArabF activity (3,567 mU/g BSG) were maximal after 108 h and 96 h, respectively. Based on substrate utilization data, the feruloyl esterases produced by P. brasilianum was anticipated to subclass B. A crude enzyme (CE) preparation from P. brasilianum culture grown on BSG was tested for the release of hydroxycinnamic acids and pentoses from BSG. The P. brasilianum CE produced in this work contains a balance of cell wall-modifying enzymes capable of degrading arabinoxylan of BSG by more than 40%.  相似文献   

6.
The purpose of the present research is to study the production of thermophilic alkaline protease by a local isolate, Streptomyces sp. CN902, under solid state fermentation (SSF). Optimum SSF parameters for enzyme production have been determined. Various locally available agro-industrial residues have been screened individually or as mixtures for alkaline protease production in SSF. The combination of wheat bran (WB) with chopped date stones (CDS) (5:5) proved to be an efficient mixture for protease production as it gave the highest enzyme activity (90.50 U g−1) when compared to individual WB (74.50 U g−1) or CDS (69.50 U g−1) substrates. This mixed solid substrate was used for the production of protease from Streptomyces sp. CN902 under SSF. Maximal protease production (220.50 U g−1) was obtained with an initial moisture content of 60%, an inoculum level of 1 × 108 (spore g−1 substrate) when incubated at 45°C for 5 days. Supplementation of WB and CDS mixtures with yeast extract as a nitrogen source further increased protease production to 245.50 U g−1 under SSF. Our data demonstrated the usefulness of solid-state fermentation in the production of alkaline protease using WB and CDS mixtures as substrate. Moreover, this approach offered significant benefits due to abundant agro-industrial substrate availability and cheaper cost.  相似文献   

7.
Current studies about lipase production by solid-state fermentation involve the use of agro-industrial residues towards developing cost-effective systems directed to large-scale commercialization of enzyme-catalyzed processes. In this work, lipase production and partial characterization of the crude enzymatic extracts obtained by Penicillium verrucosum using soybean bran as substrate was investigated. Different inductors were evaluated and the results showed that there is no influence of this variable on the lipase production, while temperature and initial moisture were the main factors that affected enzyme production. The optimized cultivation temperature (27.5 °C) and initial moisture of substrate (55%) were determined using the response surface methodology. Kinetics of lipase production was followed at the optimized growth conditions. Optimum lipase yield was 40 U/g of dry bran. The crude enzymatic extract showed optimal activity in the range from 30 to 45 °C and in pH 7.0.  相似文献   

8.
Brewers’ spent grain (BSG) was evaluated as substrate for the production of eicosapentaenoic acid (EPA) by solid-state fermentation with 29 fungal strains representing different Mortierella species. The effect of a 10% (w/w) linseed oil (LSO) supplement on EPA production was also determined. All the strains produced EPA on the substrate, while addition of the LSO improved the EPA yield of most strains. The strains producing the most EPA in the absence of additional LSO generally also produced the most EPA when LSO was added to the BSG. The strains, which produced the highest levels of EPA on BSG supplemented with LSO were Mortierella antarctica Mo 67 and Mortierella epicladia Mo 101, which respectively produced 2.8 mg and 2.5 mg EPA per g of BSG.  相似文献   

9.
The Bacillus subtilis US191 strain producing highly thermostable β-mannanase was previously selected as potential probiotic candidate for application as feed supplement in poultry industry. Initially, the level of extracellular β-mannanase production by this strain was 1.48 U ml−1. To improve this enzyme titer, the present study was undertaken to optimize the fermentation conditions through experimental designs and valorization of agro-industrial byproducts. Using the Plackett–Burman design, in submerged fermentation, a set of 14 culture variables was evaluated in terms of their effects on β-mannanase production. Locust bean gum (LBG), soymeal, temperature, and inoculum size were subsequently optimized by response surface methodology using Box–Behnken design. Under optimized conditions (1 g L−1 LBG, 8 g L−1 soymeal, temperature of 30°C and inoculum size of 1010 CFU ml−1), a 2.59-fold enhancement in β-mannanase titer was achieved. Next, to decrease the enzyme production cost, the effect of partial substitution of LBG (1 g L−1) by agro-industrial byproducts was investigated, and a Taguchi design was applied. This allowed the attaining of a β-mannanase production level of 8.75 U ml−1 in presence of 0.25 g L−1 LBG, 5 g L−1 of coffee residue powder, 5 g L−1 of date seeds powder, and 5 g L−1 of prickly pear seeds powder as mannans sources. Overall, a 5.91-fold improvement in β-mannanase production by B. subtilis US191 was achieved.  相似文献   

10.
Lipid accumulation by Gordonia sp. DG using sodium gluconate as carbon source in comparison with Rhodococcus opacus PD630 was studied. Maximum lipid content 80% was observed at the beginning of the stationary phase for R. opacus and 72% at the end of stationary phase for Gordonia sp. Different agro-industrial wastes were used as carbon source. The cells of the two organism accumulated lipid more than 50% of the biomass with most tested agro-industrial wastes. The maximum value was in presence of sugar cane molasses (93 and 96%) for R. opacus and Gordonia sp. respectively. Maximum triacyglycerols (TAGs), 88.9 and 57.8 mg/l, was obtained using carob and orange waste by R. opacus and Gordonia sp. respectively. The use of orange waste as carbon source by R. opacus, increased lipid unsaturation with C18:3 as the major unsaturated fatty acid. On the other hand, C22:0 and C6:0 were the dominant fatty acids (54.5% of the total identified fatty acids) produced by Gordonia sp. in presence of orange waste as carbon source. Statistical optimization of the medium revealed that maximum lipid content was achieved with 60% orange waste, 0.05 g/l ammonium chloride and 0.2 g/l magnesium sulphate.  相似文献   

11.
Control of tomato late blight (LB) in Brazil is heavily based on chemicals. However, reduction in fungicide usage is required in both conventional and organic production systems. Assuming that biological control is an alternative for LB management, 208 epiphytic microorganisms and 23 rhizobacteria (RB) were isolated from conventional and organically grown tomato plants and tested for antagonistic activity against Phytophthora infestans. Based on in vitro inhibition of sporangia germination and detached leaflet bioassays, four EP microorganisms (Aspergillus sp., Cellulomonas flavigena, Candida sp., and Cryptococcus sp.) were selected. These microorganisms were applied either singly or combined on tomato plants treated or not with the RB Bacillus cereus. On control plants, LB progress rate (r), area under disease progress curve, and final disease severity were high. Lowest values of final severity were recorded on plants colonized by B. cereus and treated with C. flavigena, Candida sp. and Cryptococcus sp. There was no reduction on disease severity in plants treated only with RB. Biological control of LB resulted in low values of r and final severity. Integration of biological control with fungicides, cultural practices, and other measures can contribute to manage LB on tomato production systems.  相似文献   

12.
This study investigated the effect of patulin and penicillic acid, two known quorum-sensing inhibitors, and the common biocide ethylenediaminetetraacetic acid (EDTA) on the biofilm formation and auto-inducer (AI)-2 production of three isolates from dental unit water lines, Klebsiella sp., Bacillus subtilis and Bacillus cereus. Penicillic acid on its own had no effect on the biofilm formation of all isolates, whereas in combination with EDTA, it enhanced biofilm formation significantly in Klebsiella sp. and B. cereus. EDTA at concentrations greater than 10 μM promoted biofilm formation in B. cereus and B. subtilis. Patulin was found to promote biofilm formation in B. cereus up to 25 μM. A significant increase in biofilm formation was observed in B. cereus and B. subtilis at concentrations greater than 10 μM of patulin when combined with EDTA. The Vibrio harveyi BB170 AI-2 bioassay showed a positive response for Klebsiella sp. AI-2 production with a maximum fold induction at the late exponential growth phase. Addition of glucose prolonged the AI-2 production phase considerably. No significant effect of patulin, penicillic acid alone as well as in combination with EDTA was observed on AI-2 production by Klebsiella sp. The findings have important implications for the design of biofilm prevention and eradication strategies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8?g:10?g:2?g yielded the highest enzyme production of 201.6?U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5?×?106 spores/mL inoculum, which gave the highest enzyme activity of 389.5?U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2?g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300?g raw cassava chips/L with cane molasses.  相似文献   

14.
Cultivation of specialty mushrooms on lignocellulosic wastes represents one of the most economical organic recycling processes. Compared with other cultivated mushrooms, very little is known about the nature of the lignocellulolytic enzymes produced by the edible and medicinal fungus Grifola frondosa, the parameters affecting their production, and enzyme activity profiles during different stages of the developmental cycle. In this work we investigated the enzymes that enable G. frondosa, to colonize and deconstruct two formulations based on industrial lignocellulosic by-products. G. frondosa degraded both substrates (oak-sawdust plus corn bran, and oak/corn bran supplemented with coffee spent-ground) decreasing 67 and 50% of their lignin content, along with 44 and 37% of the polysaccharides (hemicellulose and cellulose) respectively. 35.3% biological efficiency was obtained when using oak sawdust plus corn bran as substrate. Coffee spent-ground addition inhibited mushroom production, decreased growth, xylanase and cellulase activities. However, taking into account that G. frondosa successfully colonized this residue; this substrate formula might be considered for its growth and medicinal polysaccharide production. Although G. frondosa tested positive for Azure B plate degradation, a qualitative assay for lignin-peroxidase, attempts to detect this activity during solid state fermentation were unsuccessful. Enzyme activities peaked during colonization but declined drastically during fruiting body formation. Highest activities achieved were: endoglucanase 12.3, exoglucanase 16.2, β-glucosidase 2.3, endoxylanase 20.3, amylase 0.26, laccase 14.8 and Mn-peroxidase 7.4 U/g dry substrate.  相似文献   

15.
Alkaline pectin lyase finds applications in the degumming and retting of plant fibres, textile industry and pectic wastewater treatment where it degrades highly methylesterified pectin without prior action of any other pectinase. Response surface methodology (RSM) has been frequently utilized for the optimization of production process of industrially important enzymes from microbes. In the present work, fermentation conditions for the production of pectin lyase from Bacillus cereus were optimized using the factorial and central composite design of RSM. The cubic order polynomial regression model was found to be adequate and significant with a determination coefficient R2 of 0.9505 (p?相似文献   

16.
Fibrolytic enzyme production by Aspergillus japonicus C03 was optimized in a medium containing agro-industrial wastes, supplemented with peptone and yeast extract. A 23 full factorial composite and response surface methodology were used to design the experiments and analysis of results. Tropical forages were hydrolyzed by A. japonicus C03 enzymatic extract in different levels, and they were also tested as enzymatic substrate. Optimal production to xylanase was obtained with soybean bran added to crushed corncob (1:3), 0.01% peptone, and 0.2% yeast extract, initial pH 5.0, at 30 °C under static conditions for 5 days of incubation. Optimal endoglucanase production was obtained with wheat bran added to sugarcane bagasse (3:1), 0.01% peptone, and 0.2% yeast extract, initial pH 4.0, at 30 °C, for 6 days, under static conditions. Addition of nitrogen sources as ammonium salts either inhibited or did not influence xylanase production. This enzymatic extract had a good result on tropical forage hydrolyzes and showed better performance in the Brachiaria genera, due to their low cell wall lignin quantity. These results represent a step forward toward the use of low-cost agricultural residues for the production of valuable enzymes with potential application in animal feed, using fermentation conditions.  相似文献   

17.
Dairy manure, supplemented with agro-industrial materials, was used as the solid substrate for high yield of poly-γ-glutamic acid (γ-PGA) by Bacillus subtilis CCTCC202048. The solid-state fermentation medium was optimized by response surface methodology. In the first optimization step, a Plackett–Burman design was used to evaluate the influence of related factors. Wheat bran, soybean cake and glutamic acid were found to be more compatible supplement with dairy manure and positively influenced on γ-PGA production. In the second step, the concentrations of the three supplemental nutrients above were further optimized using a Box–Behnken design. The average γ-PGA yield (4.70%) in triplicate under optimal conditions was obtained on the laboratory scale, whereas it was 3.58% at compost experiment. These would lay a foundation for lessening the pollution of dairy manure, increasing fertilizer efficiency and exploring a late-model organic fertilizer that retains water and nutrients.  相似文献   

18.
Abstract

The popular demand for natural food additives has resulted in a number of processes for producing natural vanillin. Although there are chemical procedures and plant sources for vanillin production, microbial bioconversions are being sought as a suitable ‘natural’ alternative. The present paper describes the conversion of isoeugenol to vanillin by a novel bacterial strain isolated from soil. The strain was identified as Pseudomonas sp. strain KOB10 based on morphological and physiochemical characteristics and its 16S rDNA gene sequence. We optimized medium composition for vanillin production using a Taguchi experimental design. Eight factors, i.e. isoeugenol, glycerol, tryptone, K2HPO4, KH2PO4, Cu2+, Mg2+ and Ca2+ concentrations, were selected and experiments based on an orthogonal array layout of L18 (22 × 36) were performed. Analysis of the experimental data using the Taguchi method indicated that Cu2+ and glycerol concentrations had the highest impact on isoeugenol conversion into vanillin at a substrate concentration of 0.9 g L?1. Under the optimized conditions, growing cells of Pseudomonas sp. strain KOB10 produced 0.153 g vanillin L?1 from 0.9 g isoeugenol L?1, with a molar yield of 18.3% after incubation for 48 h. To improve the vanillin yield, the effect of other bioconversion parameters including time of isoeugenol addition, initial isoeugenol concentration and conversion time was studied; the results showed a maximum concentration of 3.14 g vanillin L?1 after a total incubation time of 88 h with 15 g isoeugenol L?1, which corresponded to a molar yield of 22.5%. Further standardization and optimization for vanillin production was challenging.  相似文献   

19.
Bacillus cereus 809A and Burkholderia sp. 711C were isolated from soil. These strains demonstrate hydrolysis activity towards prochiral 2-phenyl-1,3-propanediol diacetate and accumulated the corresponding chiral monoacetates into the reaction mixture. When 2-phenyl 1,3-propanediol diacetate was used as a substrate, the produced monoacetates with Burkholderia sp. 711C were obtained in a racemic form but that produced by Bacillus cereus 809A showed an excess of the (S)-form. The resting cell reaction revealed that for Bacillus cereus 809A, there was an enrichment of one of the enantiomers of the monoacetate such that the enantiomeric excess (e.e.) of the (S)-form was over 95%. The purified enzyme from Bacillus cereus 809A hydrolyzed diacetate to monoacetate, and the e.e. value of the (S)-form increased by prolonged reaction in a way similar to the resting cell reaction. From N-terminal amino acids, this esterase is conserved in some strains of Bacillus for which the genomic sequences have been reported.  相似文献   

20.
Brewer's spent grain (BSG) was used as a solid substrate for the production of α-amylase by Bacillus sp. KR-8104 in a submerged fermentation system. The production of α-amylase was maximized through statistical optimization of the BSG concentration and incubation time using the Doehlert experimental design. The highest tested amount of BSG (5%, w/v) in the optimization process resulted in a 5.1-fold enhancement of the response. Subsequently, we studied the role of the water-soluble and -insoluble fractions of BSG in the production of α-amylase. The results revealed that whole BSG had a greater effect on the production of α-amylase than each fraction had separately. Finally, when we examined the potential of BSG to replace the constituents of a medium formula, we observed that simultaneously adding BSG, omitting dextrin, and reducing the other ingredients concentration in the culture medium improved the production of α-amylase and made the production process more economical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号