首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plants belonging to the Brassicaceae family exhibit species‐specific profiles of glucosinolates (GSLs), a class of defence compounds against pathogens and insects. GSLs also exhibit various human health–promoting properties. Among them, glucoraphanin (aliphatic 4‐methylsulphinylbutyl GSL) has attracted the most attention because it hydrolyses to form a potent anticancer compound. Increased interest in developing commercial varieties of Brassicaceae crops with desirable GSL profiles has led to attempts to identify genes that are potentially valuable for controlling GSL biosynthesis. However, little attention has been focused on genes of kale (Brassica oleracea var. acephala). In this study, we established full‐length kale cDNA libraries containing 59 904 clones, which were used to generate an expressed sequence tag (EST) data set with 119 204 entries. The EST data set clarified genes related to the GSL biosynthesis pathway in kale. We specifically focused on BoMYB29, a homolog of Arabidopsis MYB29/PMG2/HAG3, not only to characterize its function but also to demonstrate its usability as a biological resource. BoMYB29 overexpression in wild‐type Arabidopsis enhanced the expression of aliphatic GSL biosynthetic genes and the accumulation of aliphatic GSLs. When expressed in the myb28myb29 mutant, which exhibited no detectable aliphatic GSLs, BoMYB29 restored the expression of biosynthetic genes and aliphatic GSL accumulation. Interestingly, the ratio of methylsulphinyl GSL content, including glucoraphanin, to that of methylthio GSLs was greatly increased, indicating the suitability of BoMYB29 as a regulator for increasing methylsulphinyl GSL content. Our results indicate that these biological resources can facilitate further identification of genes useful for modifications of GSL profiles and accumulation in kale.  相似文献   

3.
4.
5.
6.
A single-chain variable fragment antibody (scFv) against plumbagin (PL) accumulated the PL production in the hairy roots of Plumbago zeylanica. Recombinant Agrobacterium rhizogenes (ATCC 15834) containing an scFv gene against PL (PL-scFv) were obtained through triparental mating and transformed into P. zeylanica to induce PL-scFv protein in the hairy roots. Up to 40 μg recombinant PL-scFv were expressed per milligram of soluble protein in transgenic P. zeylanica hairy root cultures. The mean PL content obtained from transgenic hairy roots (12.24 μg/100 mg dry weight) exhibited 2.2 times higher than those obtained from wild-type (5.48 μg/100 mg dry weight). The high correlation between the PL-scFv expression level and PL content of the recombinant plants suggested that the PL biosynthesis pathway had been modulated by the expression of PL-scFv protein in the hairy roots of P. zeylanica.  相似文献   

7.
Transcriptional regulation of anthocyanin biosynthesis in red cabbage   总被引:6,自引:0,他引:6  
Youxi Yuan  Li-Wei Chiu  Li Li 《Planta》2009,230(6):1141-1153
  相似文献   

8.
Transgenic hairy roots were induced from petiole and root segments of in vitro plant Aralia elata, a medicinal woody shrub, after co-cultivation with A. rhizogenes ATCC 15834. The percentage of putative hairy root induction from root segments was higher (26.7%) than petiole explants (10.0%). Hairy roots showed active production of lateral roots with vigorous elongation. Transgenic plants were regenerated from hairy roots via somatic embryogenesis. These plants had wrinkled leaves, short petioles and numerous lateral hairy roots. The RT-PCR analysis showed the expression of rol A, B, C, D, aux 1 and 2 genes differed between the transgenic lines. Endogenous IAA level was higher in transgenic than non-transgenic plants. Conclusively, transgenic hairy roots were developed for first time in A. elata and the transgenic hairy root lines showed distinct morphological growth pattern and gene expression.  相似文献   

9.
Scutellaria lateriflora is well known for its medical applications because of the presence of flavanoids and alkaloids. The present study aimed to explore the molecular aspects and regulations of flavanoids. Five partial cDNAs encoding genes that are involved in the flavonoid biosynthetic pathway: phenylalanine ammonia lyase (SlPAL), cinnamate 4-hydroxylase (SlC4H), 4-coumaroyl CoA ligase (Sl4CL), chalcone synthase (SlCHS), and chalcone isomerase (SlCHI) were isolated from S. lateriflora. Organ expression analysis showed that these genes were expressed in all organs analyzed with the highest levels correlating with the richest accumulation of wogonin in the roots. Baicalin and baicalein differentially accumulated in S. lateriflora plants, with the highest concentration of baicalin and baicalein detected in the leaves and stems, respectively. Exogenous methyl jasmonate (MeJA) significantly enhanced the expression of SlCHS and SlCHI, and accumulation of baicalin (22.54 mg/g), baicalein (1.24 mg/g), and wogonin (5.39 mg/g) in S. lateriflora hairy roots. In addition, maximum production of baicalin, baicalein, and wogonin in hairy roots treated with MeJA was approximately 7.44-, 2.38-, and 2.12-fold, respectively. Light condition increased the expression level of SlCHS, the first committed step in flavonoid biosynthesis in hairy roots of S. lateriflora after 3 and 4 weeks of development compared to the dark condition. Dark-grown hairy roots contained a higher content of baicalin and baicalein than light-grown hairy roots, while light-grown hairy roots accumulated more wogonin than dark-grown hairy roots. These results may helpful for the metabolic engineering of flavonoids biosynthesis in S. lateriflora.  相似文献   

10.
11.
  • Shikonin and its derivatives are important medicinal secondary metabolites accumulating in roots of Lithospermum erythrorhizon. Although some membrane proteins have been identified as transporters of secondary metabolites, the mechanisms underlying shikonin transport and accumulation in L. erythrorhizon cells still remain largely unknown.
  • In this study, we isolated a cDNA encoding LeMRP, an ATP‐binding cassette transporter from L. erythrorhizon, and further investigated its functions in the transport and biosynthesis of shikonin using the yeast transformation and transgenic hairy root methods, respectively. Real‐time PCR was applied for expression analyses of LeMRP and shikonin biosynthetic enzyme genes.
  • Functional analysis of LeMRP using the heterologous yeast cell expression system showed that LeMRP could be involved in shikonin transport. Transgenic hairy roots of L. erythrorhizon demonstrated that LeMRP overexpressing hairy roots produced more shikonin than the empty vector (EV) control. Real‐time PCR results revealed that the enhanced shikonin biosynthesis in the overexpression lines was mainly caused by highly up‐regulated expression of genes coding key enzymes (LePAL, HMGR, Le4CL and LePGT) involved in shikonin biosynthesis. Conversely, LeMRP RNAi decreased the accumulation of shikonin and effectively down‐regulated expression level of the above genes. Typical inhibitors of ABC proteins, such as azide and buthionine sulphoximine, dramatically inhibited accumulation of shikonin in hairy roots.
  • Our findings provide evidence for the important direct or indirect role of LeMRP in transmembrane transport and biosynthesis of shikonin.
  相似文献   

12.
13.
Root of Glycyrrhiza uralensis, one of the most important medicinal plants, containing bioactive triterpene saponins (glycyrrhizin). Squalene synthase (SQS) plays a regulatory role in the biosynthesis of triterpene saponins. In the present investigation, SQS coding sequence from G. uralensis was cloned by polymerase chain reaction (PCR) and a transgenic system was developed for G. uralensis through Agrobacterium rhizogenes-mediated transformation. The SQS gene placed under a CaMV 35S promoter was transferred into G. uralensis using A. rhizogenes strain ACCC10060. The transformed hairy roots were selected on Murashige and Skoog (1962)-containing phosphinothricin (PPT) and root lines were established. The integration of SQS gene was confirmed by PCR and Southern blot. Three transgenic root lines UP1, UP24, UP31 were obtained and their growth rates were detected. The result showed that transgenic root lines but UP1 line grew faster than control hairy roots; high-performance liquid chromatography (HPLC) analysis demonstrated the highest glycyrrhizin content of transgenic roots was 2.5 mg/g dry weight and was about 2.6 times higher than control hairy roots. The nucleotide sequences GuSQS1 and GUSQS2 reported in this paper appear in the EMBL nucleotide sequence database with the accession number AM182329 and AM182330, respectively.  相似文献   

14.
15.
16.
Xiaozhong Lan 《Biologia》2013,68(1):91-98
2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (MCT) catalyzes the third reaction in the plastidial non-mevalonate pathway, which provides the precursors for ajmalicine. A full-length cDNA encoding MCT (RvMCT) was identified from hairy roots of Rauvolfia verticillata. The full-length 1,499-bp cDNA of RvMCT had a 945-bp coding sequence that encoded a 314-amino-acid protein with an N-terminal chloroplast transit peptide of 67 amino acid residues. RvMCT exhibited homology with other plant MCTs at the levels of sequence and structure. The phylogenetic analysis revealed the plant MCTs could be divided into three separated clusters including gymnosperms, monocotyledons and dicotyledons. Gene expression of ajmalicine metabolism (DXR, MCT, MECS, HDS, HDR, STR and SGD) in hairy roots, roots, stems, old leaves, young leaves and barks was analyzed by quantitative PCR. All the seven genes had higher expression levels in hairy roots than in other plant organs. This suggested hairy roots of R. verticillata possessed more active alkaloid metabolism than other organs and it was the reason that hairy roots produced higher levels of ajmalicine. Furthermore, the expression of DXR, MECS, HDS, HDR, STR and SGD genes was not detected in stems (only MCT detected in stems), so it could be presumed that stem acted as a transporter tissue of ajmalicine. Finally, the colour complementation assay indicated that the function of RvMCT was the same as Arabidopsis MCT. Molecular cloning, characterization and functional identification of RvMCT will be helpful to understand more about the role of MCT involved in ajmalicine biosynthesis at the molecular level.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号