首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 简便快速分离天花粉毒蛋白的一种方法孙建忠,季瑞华,王克夷(中国科学院上海生物化学研究所,上海200031)天花粉是由多年生草质藤本植物栝楼(TrichosantheskirilowiiMaxim,Cucurbitaceae)的块茎制成,天花粉毒蛋白是...  相似文献   

2.
Abstract

Ribonucleosides and xylonucleosides bearing a disulfide function on the sugar ring were synthesized. Ribonucleosides belonging to the cytidine series were found to efficiently reduce dNTP pools in the human lymphoblastoïd CEM/SS cell line.  相似文献   

3.
Atheroproliferative disorders such as atherosclerosis are an important health problem and one of the leading causes of morbidity and mortality in the United States. Minimally invasive therapeutic procedures, including angioplasty with stent deployment, are used frequently for obstructive coronary artery disease. However, restenosis, a proliferative vascular response, is a common sequela to this procedure. The current study investigated the effect of inhibiting ribonucleotide reductase (RR), an enzyme necessary for cellular proliferation, in an attempt to ameliorate the proliferative response. Two RR inhibitors, didox and hydroxyurea, were chosen for their potent antiproliferative properties. Studies were carried out by using a double-injury rabbit model, in which endothelial denudation was followed by the administration of a high-fat diet. At 4 wk after initial endothelial denudation, the developing atherosclerotic lesion was subjected to transluminal balloon dilation to simulate clinical intervention with percutaneous transluminal angioplasty. The degree of restenosis and atheroproliferation was assessed at 8 wk. Histologic evaluation of the lesion demonstrated that treatment with didox and hydroxyurea significantly decreased lesion area and lumen loss. These results suggest that RR inhibition may be an effective new tool for the treatment of atheroproliferative disorders.Abbreviations: RR, ribonucleotide reductaseCoronary artery disease and atherosclerosis, in particular, are multifactorial processes that include numerous molecular and cellular cascades culminating in inflammatory and proliferative vascular responses involving the endothelium, vascular smooth muscle cells, and leukocytes. Among these responses, impaired endothelial function, manifested as impaired nitric oxide production, and increased signaling through reactive oxygen species have been recognized as critical components in the pathogenesis of atherosclerosis. The complex nature of the atherogenic process has hindered the development of animal models that mimic human atherosclerosis.27Rabbits typically are used for studies of atherosclerosis because they are one of the few species that can develop atheromatous foci with many of the characteristics of human atherosclerotic lesions. Primary rabbit models of atherosclerosis include both genetically altered strains and models that are diet-induced. The lesions in atherosclerotic rabbits whose disease is induced through consumption of high-cholesterol diet exhibit several pathologic features associated with human lesions, including fatty streaks, accumulation of foam cells, and fibrous plaque formation. The atheromatous changes in this model manifest quickly, with marked lesion formation within 4 to 12 wk of initiation of a high-cholesterol diet.19,28 Prolonged (8 mo or more) consumption of high-cholesterol diet causes lesions that are rich in smooth muscle cells and closely resemble human lesions. To induce more advanced lesions in these rabbits, consumption of a high-cholesterol diet can be combined with vascular endothelial denudation by using a single- or double-balloon injury.16,26 Moreover, the double-balloon injury model closely approximates the clinical setting of balloon dilatation of a diseased atheromatous vessel.Currently, although percutaneous transluminal coronary angioplasty with stent deployment is the mainstay of treatment of obstructive coronary artery disease therapy, this procedure is plagued by a high incidence of restenosis, or vessel renarrowing, which is responsible for 30% to 40% of long-term failures.1,2 Drug-eluting stents recently have come to the forefront as a promising treatment modality for restenosis, but some evidence suggests that the clinical benefits may be overestimated, given that drug-eluting stents have been implicated in causing late-developing fatal thrombosis.14,17,18 Therefore, prevention of restenosis after successful percutaneous transluminal coronary angioplasty remains one of the most challenging tasks in the treatment of obstructive coronary artery disease, and alternative pharmacologic approaches are currently being pursued.Through a cascade of molecular events, the vascular trauma associated with percutaneous transluminal coronary angioplasty initiates vascular smooth muscle cells to undergo modulation from a contractile to a synthetic phenotype. Vascular smooth muscle cells proliferate in the tunica media and migrate to the tunica intima, resulting in intimal hyperplasia referred to as ‘neointimal formation.’7,8,25,33 The result of neointimal formation constitutes restenosis. Pharmacologic agents that impede the proliferation and migration of vascular smooth muscle cells are being investigated to ameliorate this response.Ribonucleotide reductase (RR) is an enzyme that, when activated by a free-radical intermediate, catalyzes the conversion of ribonucleotides to deoxyribonucleotides. This reductive reaction is a rate-limiting step in the biochemical pathway leading to DNA synthesis and cell replication.6,30,31 Hydroxyurea is a commercially available RR inhibitor that has been used for the treatment of various cancers. Didox is a more potent RR inhibitor than is hydroxyurea and has additional antiinflammatory and antioxidant properties.4,10,21,29,32 Recently the use of the RR inhibitor didox in a rat model of balloon-mediated carotid artery injury led to reduction of restenosis and cell cycle arrest.12 Because cellular proliferation and migration are involved in the formation of atherosclerotic plaques, the present study uses histologic analysis and the measurement of vascular reactivity to investigate the role of the RR inhibitors hydroxyurea and didox in preventing the development of atherosclerotic lesions.  相似文献   

4.
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides, and represent the only de novo pathway to provide DNA building blocks. Three different classes of RNR are known, denoted I-III. Class I RNRs are heteromeric proteins built up by α and β subunits and are further divided into different subclasses, partly based on the metal content of the β-subunit. In subclass Ib RNR the β-subunit is denoted NrdF, and harbors a manganese-tyrosyl radical cofactor. The generation of this cofactor is dependent on a flavodoxin-like maturase denoted NrdI, responsible for the formation of an active oxygen species suggested to be either a superoxide or a hydroperoxide. Herein we report on the magnetic properties of the manganese-tyrosyl radical cofactor of Bacillus anthracis NrdF and the redox properties of B. anthracis NrdI. The tyrosyl radical in NrdF is stabilized through its interaction with a ferromagnetically coupled manganese dimer. Moreover, we show through a combination of redox titration and protein electrochemistry that in contrast to hitherto characterized NrdIs, the B. anthracis NrdI is stable in its semiquinone form (NrdIsq) with a difference in electrochemical potential of ∼110 mV between the hydroquinone and semiquinone state. The under anaerobic conditions stable NrdIsq is fully capable of generating the oxidized, tyrosyl radical-containing form of Mn-NrdF when exposed to oxygen. This latter observation strongly supports that a superoxide radical is involved in the maturation mechanism, and contradicts the participation of a peroxide species. Additionally, EPR spectra on whole cells revealed that a significant fraction of NrdI resides in its semiquinone form in vivo, underscoring that NrdIsq is catalytically relevant.  相似文献   

5.
Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.  相似文献   

6.
7.
Staphylococci contain a class Ib NrdEF ribonucleotide reductase (RNR) that is responsible, under aerobic conditions, for the synthesis of deoxyribonucleotide precursors for DNA synthesis and repair. The genes encoding that RNR are contained in an operon consisting of three genes, nrdIEF, whereas many other class Ib RNR operons contain a fourth gene, nrdH, that determines a thiol redoxin protein, NrdH. We identified a 77-amino-acid open reading frame in Staphylococcus aureus that resembles NrdH proteins. However, S. aureus NrdH differs significantly from the canonical NrdH both in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that S. aureus NrdH is a thiol redox protein. It is not essential for aerobic or anaerobic growth and appears to have a marginal role in protection against oxidative stress. In vitro, S. aureus NrdH was found to be an efficient reductant of disulfide bonds in low-molecular-weight substrates and proteins using dithiothreitol as the source of reducing power and an effective reductant for the homologous class Ib RNR employing thioredoxin reductase and NADPH as the source of the reducing power. Its ability to reduce NrdEF is comparable to that of thioredoxin-thioredoxin reductase. Hence, S. aureus contains two alternative thiol redox proteins, NrdH and thioredoxin, with both proteins being able to function in vitro with thioredoxin reductase as the immediate hydrogen donors for the class Ib RNR. It remains to be clarified under which in vivo physiological conditions the two systems are used.Ribonucleotide reductases (RNRs) are essential enzymes in all living cells, providing the only known de novo pathway for the biosynthesis of deoxyribonucleotides, the immediate precursors of DNA synthesis and repair. RNRs catalyze the controlled reduction of all four ribonucleotides to maintain a balanced pool of deoxyribonucleotides during the cell cycle (29). Three main classes of RNRs are known. Class I RNRs are oxygen-dependent enzymes, class II RNRs are oxygen-independent enzymes, and class III RNRs are oxygen-sensitive enzymes. Class I RNRs are divided into two subclasses, subclasses Ia and Ib.Staphylococcus aureus is a Gram-positive facultative aerobe and a major human pathogen (24). S. aureus contains class Ib and class III RNRs, which are essential for aerobic and anaerobic growth, respectively (26). The class Ib NrdEF RNR is encoded by the nrdE and nrdF genes: NrdE contains the substrate binding and allosteric binding sites, and NrdF contains the catalytic site for ribonucleotide reduction. The S. aureus nrdEF genes form an operon containing a third gene, nrdI, the product of which, NrdI, is a flavodoxin (5, 33). Many other bacteria such as Escherichia coli (16), Lactobacillus lactis (17), and Mycobacterium and Corynebacterium spp. possess class Ib RNR operons that contain a fourth gene, nrdH (30, 44, 50), whose product, NrdH, is a thiol-disulfide redoxin (16, 17, 40, 43, 49). More-complex situations are found for some bacteria, where the class Ib RNR operon may be duplicated and one or more of the nrdI and nrdH genes may be missing or located in another part of the chromosome (29).NrdH proteins are glutaredoxin-like protein disulfide oxidoreductases that alter the redox state of target proteins via the reversible oxidation of their active-site dithiol proteins. NrdH proteins function with high specificity as electron donors for class I RNRs (9, 16-18). They are widespread in bacteria, particularly in those bacteria that lack glutathione (GSH), where they function as a hydrogen donor for the class Ib RNR (12, 16, 17). In E. coli, which possesses class Ia and class Ib RNRs, NrdH functions in vivo as the primary electron donor for the class Ib RNR, whereas thioredoxin or glutaredoxin is used by the class Ia NrdAB RNR (12, 17). NrdH redoxins contain a conserved CXXC motif, have a low redox potential, and can reduce insulin disulfides. NrdH proteins possess an amino acid sequence similar to that of glutaredoxins but behave functionally more like thioredoxins. NrdH proteins are reduced by thioredoxin reductase but not by GSH and lack those residues in glutaredoxin that bind GSH and the GSH binding cleft (39, 40). The structures of the E. coli and Corynebacterium ammoniagenes NrdH redoxins reveal the presence of a wide hydrophobic pocket at the surface, like that in thioredoxin, that is presumed to be involved in binding to thioredoxin reductase (39, 40). NrdI proteins are flavodoxin proteins that function as electron donors for class Ib RNRs and are involved in the maintenance of the NrdF diferric tyrosyl radical (5, 33). In Streptococcus pyogenes, NrdI is essential for the activity of the NrdHEF system in a heterologous E. coli in vivo complementation assay (33). Class Ib RNRs are proposed to depend on two specific electron donors, NrdH, which provides reducing power to the NrdE subunit, and NrdI, which supplies electrons to the NrdF subunit (33).In this report we identify an open reading frame (ORF) in S. aureus encoding an NrdH-like protein with partial sequence relatedness to the E. coli, Salmonella enterica serovar Typhimurium, L. lactis, and C. ammoniagenes NrdH proteins. In contrast to these bacteria, the S. aureus nrdH gene does not form part of the class Ib RNR operon. The S. aureus NrdH protein differs in its structure from the canonical NrdH in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that in vitro, S. aureus NrdH reduces protein disulfides and is an electron donor for the homologous class Ib NrdEF ribonucleotide reductase.  相似文献   

8.
9.
10.
11.
Type I ribonucleotide reductases (RNRs) are conserved across diverse taxa and are essential for the conversion of RNA into DNA precursors. In Neurospora crassa, the large subunit of RNR (UN-24) is unusual in that it also has a nonself recognition function, whereby coexpression of Oak Ridge (OR) and Panama (PA) alleles of un-24 in the same cell leads to growth inhibition and cell death. We show that coexpressing these incompatible alleles of un-24 in N. crassa results in a high molecular weight UN-24 protein complex. A 63-amino-acid portion of the C terminus was sufficient for un-24PA incompatibility activity. Redox active cysteines that are conserved in type I RNRs and essential for their catalytic function were found to be required for incompatibility activity of both UN-24OR and UN-24PA. Our results suggest a plausible model of un-24 incompatibility activity in which the formation of a complex between the incompatible RNR proteins is potentiated by intermolecular disulfide bond formation.  相似文献   

12.
The replication of herpes simplex virus (HSV) is unimpeded in KB cells which have been blocked in their capacity to synthesize deoxyribonucleic acid (DNA) by high levels of thymidine (TdR). Studies showed that the presence of excess TdR did not prevent host or viral DNA replication in HSV-infected cells. In fact, more cellular DNA was synthesized in infected TdR-blocked cells than in uninfected TdR-blocked cells. This implies that the event which relieved the TdR block was not specific for viral DNA synthesis but allowed some cellular DNA synthesis to occur. These results suggested that HSV has a means to insure a pool of deoxycytidylate derivatives for DNA replication in the presence of excess TdR. We postulated that a viral-induced ribonucleotide reductase was present in the cell after infection which was not inhibited by thymidine triphosphate (TTP). Accordingly, comparable studies of the ribonucleotide reductase found in infected and uninfected KB cells were made. We established conditions that would permit the study of viral-induced enzymes in logarithmically growing KB cells. A twofold stimulation in reductase activity was observed by 3 hr after HSV-infection. Reductase activity in extracts taken from infected cells was less sensitive to inhibition by exogenous (TTP) than the enzyme activity present in uninfected cells. In fact, the enzyme extracted from infected cells functioned at 60% capacity even in the presence of 2 mm TTP. These results support the idea that a viral-induced ribonucleotide reductase is present after HSV infection of KB cells and that this enzyme is relatively insensitive to inhibition by exogenous TTP.  相似文献   

13.
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox-active cofactor in many biological processes, including DNA replication and repair. Eukaryotic ribonucleotide reductases (RNRs) are Fe-dependent enzymes that catalyze deoxyribonucleoside diphosphate (dNDP) synthesis. We show here that the levels of the Sml1 protein, a yeast RNR large-subunit inhibitor, specifically decrease in response to both nutritional and genetic Fe deficiencies in a Dun1-dependent but Mec1/Rad53- and Aft1-independent manner. The decline of Sml1 protein levels upon Fe starvation depends on Dun1 forkhead-associated and kinase domains, the 26S proteasome, and the vacuolar proteolytic pathway. Depletion of core components of the mitochondrial iron-sulfur cluster assembly leads to a Dun1-dependent diminution of Sml1 protein levels. The physiological relevance of Sml1 downregulation by Dun1 under low-Fe conditions is highlighted by the synthetic growth defect observed between dun1Δ and fet3Δ fet4Δ mutants, which is rescued by SML1 deletion. Consistent with an increase in RNR function, Rnr1 protein levels are upregulated upon Fe deficiency. Finally, dun1Δ mutants display defects in deoxyribonucleoside triphosphate (dNTP) biosynthesis under low-Fe conditions. Taken together, these results reveal that the Dun1 checkpoint kinase promotes RNR function in response to Fe starvation by stimulating Sml1 protein degradation.  相似文献   

14.
Ribonucleotide reductase (RNR) is an essential enzyme for all living organisms since is the responsible for the last step in the synthesis of the four deoxyribonucleotides (dNTPs) necessary for DNA replication and repair. In this work, we have investigated the expression of the three-RNR classes (Ia, Ib and III) during Escherichia coli biofilm formation. We show the temporal and spatial importance of class Ib and III RNRs during this process in two different E. coli wild-type strains, the commensal MG1655 and the enteropathogenic and virulent E2348/69, the prototype for the enteropathogenic E. coli (EPEC). We have established that class Ib RNR, so far considered cryptic, play and important role during biofilm formation. The implication of this RNR class under the specific growth conditions of biofilm formation is discussed.  相似文献   

15.
Apicomplexa are protist parasites of tremendous medical and economic importance, causing millions of deaths and billions of dollars in losses each year. Apicomplexan-related diseases may be controlled via inhibition of essential enzymes. Ribonucleotide reductase (RNR) provides the only de novo means of synthesizing deoxyribonucleotides, essential precursors for DNA replication and repair. RNR has long been the target of antibacterial and antiviral therapeutics. However, targeting this ubiquitous protein in eukaryotic pathogens may be problematic unless these proteins differ significantly from that of their respective host. The typical eukaryotic RNR enzymes belong to class Ia, and the holoenzyme consists minimally of two R1 and two R2 subunits (α2β2). We generated a comparative, annotated, structure-based, multiple-sequence alignment of R2 subunits, identified a clade of R2 subunits unique to Apicomplexa, and determined its phylogenetic position. Our analyses revealed that the apicomplexan-specific sequences share characteristics with both class I R2 and R2lox proteins. The putative radical-harboring residue, essential for the reduction reaction by class Ia R2-containing holoenzymes, was not conserved within this group. Phylogenetic analyses suggest that class Ia subunits are not monophyletic and consistently placed the apicomplexan-specific clade sister to the remaining class Ia eukaryote R2 subunits. Our research suggests that the novel apicomplexan R2 subunit may be a promising candidate for chemotherapeutic-induced inhibition as it differs greatly from known eukaryotic host RNRs and may be specifically targeted.  相似文献   

16.
The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound''s activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme.  相似文献   

17.
Abstract

Ribonucleotide reductases are essential for the de novo biosynthesis of the 2′-deoxynucleotide components of DNA. These enzymes have complex cofactors and execute novel chemistry involving C2′ via radical abstraction of H3′. Mechanistic aspects of these transformations and selected nucleotide analogues that cause mechanism-based inactivation of ribonucleotide reductases are discussed.  相似文献   

18.
《Free radical research》2013,47(4-5):281-286
Ribonucleotide reductase is a key enzyme for DNA biosynthesis. The enzymes isolated from animal and plant cells possess a stable tyrosyl free radical which is essential for catalysis. Fungal ribonucleotide reductases are little known; the partially characterized enzyme from yeast cells proved exceptionally shortlived, and a free radical could not as yet be demonstrated. We here show that a doublet ESR signal centered at g = 2.0046 can be measured below 60°K in rapidly purified protein samples which is very similar to the ESR spectra of the tyrosine radicals present in other eukaryotic ribonucleotide reductases in structure, microwave saturation, and quenching by hydroxyurea. Because generation of these radicals requires oxygen, anaerobic yeast cultures were also studied. No change in ribonucleotide reductase was observed at 50ppm residual oxygen in the gas phase, but cell proliferation ceased entirely under complete anaerobiosis.  相似文献   

19.
Ribonucleotide reductase is a key enzyme for DNA biosynthesis. The enzymes isolated from animal and plant cells possess a stable tyrosyl free radical which is essential for catalysis. Fungal ribonucleotide reductases are little known; the partially characterized enzyme from yeast cells proved exceptionally shortlived, and a free radical could not as yet be demonstrated. We here show that a doublet ESR signal centered at g = 2.0046 can be measured below 60°K in rapidly purified protein samples which is very similar to the ESR spectra of the tyrosine radicals present in other eukaryotic ribonucleotide reductases in structure, microwave saturation, and quenching by hydroxyurea. Because generation of these radicals requires oxygen, anaerobic yeast cultures were also studied. No change in ribonucleotide reductase was observed at 50ppm residual oxygen in the gas phase, but cell proliferation ceased entirely under complete anaerobiosis.  相似文献   

20.
Acute Myeloid Leukemia (AML) is an aggressive malignancy which leads to marrow failure, and ultimately death. There is a desperate need for new therapeutics for these patients. Ribonucleotide reductase (RR) is the rate limiting enzyme in DNA synthesis. Didox (3,4-Dihydroxybenzohydroxamic acid) is a novel RR inhibitor noted to be more potent than hydroxyurea. In this report we detail the activity and toxicity of Didox in preclinical models of AML. RR was present in all AML cell lines and primary patient samples tested. Didox was active against all human and murine AML lines tested with IC50 values in the low micromolar range (mean IC50 37 µM [range 25.89–52.70 µM]). It was active against primary patient samples at concentrations that did not affect normal hematopoietic stem cells (HSCs). Didox exposure resulted in DNA damage and p53 induction culminating in apoptosis. In syngeneic, therapy-resistant AML models, single agent Didox treatment resulted in a significant reduction in leukemia burden and a survival benefit. Didox was well tolerated, as marrow from treated animals was morphologically indistinguishable from controls. Didox exposure at levels that impaired leukemia growth did not inhibit normal HSC engraftment. In summary, Didox was well tolerated and effective against preclinical models of AML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号