首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low expression and instability during isolation are major obstacles preventing adequate structure‐function characterization of membrane proteins (MPs). To increase the likelihood of generating large quantities of protein, C‐terminally fused green fluorescent protein (GFP) is commonly used as a reporter for monitoring expression and evaluating purification. This technique has mainly been restricted to MPs with intracellular C‐termini (Cin) due to GFP's inability to fluoresce in the Escherichia coli periplasm. With the aid of Glycophorin A, a single transmembrane spanning protein, we developed a method to convert MPs with extracellular C‐termini (Cout) to Cin ones providing a conduit for implementing GFP reporting. We tested this method on eleven MPs with predicted Cout topology resulting in high level expression. For nine of the eleven MPs, a stable, monodisperse protein‐detergent complex was identified using an extended fluorescence‐detection size exclusion chromatography procedure that monitors protein stability over time, a critical parameter affecting the success of structure‐function studies. Five MPs were successfully cleaved from the GFP tag by site‐specific proteolysis and purified to homogeneity. To address the challenge of inefficient proteolysis, we explored expression and purification conditions in the absence of the fusion tag. Contrary to previous studies, optimal expression conditions established with the fusion were not directly transferable for overexpression in the absence of the GFP tag. These studies establish a broadly applicable method for GFP screening of MPs with Cout topology, yielding sufficient protein suitable for structure‐function studies and are superior to expression and purification in the absence GFP fusion tagging.  相似文献   

2.
【背景】目前利用酵母表达系统已鉴定了多种物种中的Δ6脂肪酸脱饱和酶(FADS6)。由于FADS6是一种具有多个跨膜螺旋的膜蛋白,使得其大量表达和纯化具有挑战性。【目的】探索FADS6的高效表达策略,研究纯化标签添加的位置对高山被孢霉FADS6I (Ma FADS6I)重组表达效率的影响。【方法】在毕赤酵母表达载体中插入串联亲和标签HRV 3C-Protein A-His,利用改造后的载体构建带有N端或C端标签的Ma FADS6I表达载体;通过电转化获得毕赤酵母重组表达菌株;利用斑点印迹杂交(DotBlot)、聚丙烯酰胺凝胶电泳(SDS-PolyacrylamideGelElectrophoresis,SDS-PAGE)和免疫印迹(Western Blot)分析重组蛋白的表达水平,并利用气相色谱-质谱(Gas Chromatography-Mass Spectrometry,GC-MS)分析检测Ma FADS6I催化生成的脂肪酸。【结果】通过大量的毕赤酵母转化子筛选,最终获得高效表达Ma FADS6I的毕赤酵母重组菌,证实各转化子的表达具有差异性,Ma FADS6I的C端带有纯化标签较N端更有利于表达。【结论】在Ma FADS6I的C端添加纯化标签比在N端添加更有利于该蛋白在酵母系统中的表达以及底物的转化,为进一步探究FADS6高效表达和结构功能奠定了基础。  相似文献   

3.
The expression and solubilization of insoluble proteins have been facilitated by the introduction of protein tags. In our analyses of viral protein R (Vpr) of human immunodeficiency virus 1 (HIV-1), however, several conventional tag proteins enhanced its expression but failed to solubilize it. Therefore, we decided to explore whether proteins derived from Thermus thermophilus HB8 (T. th.), a highly heat-stable bacterium, could be used as tag proteins to enhance the solubilization of Vpr. Based on the data accumulated during the recent structural genomics project of T. th., we selected 15 T. th. proteins with high expression levels and solubilities. From this group, we identified a T. th. tag protein that expressed Vpr in a soluble form. Furthermore, two T. th. tag proteins, including the identified one, were found to solubilize the extremely insoluble membrane-spanning domain of the envelope protein of HIV-1. When green fluorescent protein (GFP) was used as a passenger protein of T. th. tags, the brightness and stability of GFP were similar to those of untagged GFP, suggesting that the T. th. tags do not negatively affect the function of the passenger protein. Thus, data of structural genomics can be applied to generate a customized versatile protein tag for protein analyses.  相似文献   

4.
GFP has often been used as a marker of gene expression, protein localization in living and fixed tissues as well as for protein targeting in intact cells and organisms. Monitoring foreign protein expression via GFP fusion is also very appealing for bioprocess applications. Many cells, including bacterial, fungal, plant, insect and mammalian cells, can express recombinant GFP (rGFP) efficiently. Several methods and procedures have been developed to purify the rGFP or recombinant proteins fused with GFP tag. However, most current GFP purification methods are limited by poor yields and low purity. In the current study, we developed an improved purification method, utilizing a FMU-GFP.5 monoclonal antibody (mAb) to GFP together with a mAb-coupled affinity chromatography column. The method resulted in a sample that was highly pure (more than 97% homogeneity) and had a sample yield of about 90%. Moreover, the GFP epitope permitted the isolation of almost all the active recombinant target proteins fused with GFP, directly and easily, from the crude cellular sources. Our data suggests this method is more efficient than any currently available method for purification of GFP protein.  相似文献   

5.
Plants have attracted increasing attention as an expression platform for the production of pharmaceutical proteins due to its unlimited scalability and low cost potential. However, compared to other expression systems, plants accumulate relatively low levels of foreign proteins, thus necessitating the development of efficient systems for purification of foreign proteins from plant tissues. We have developed a novel strategy for purification of recombinant proteins expressed in plants, based on genetic fusion to soybean agglutinin (SBA), a homotetrameric lectin that binds to N-acetyl-D-galactosamine. Previously it was shown that high purity SBA could be recovered from soybean with an efficiency of greater than 90% following one-step purification using N-acetyl-D-galactosamine-agar columns. We constructed an SBA fusion protein containing the reporter green fluorescent protein (GFP) and transiently expressed it in N. benthamiana plants. We achieved over 2.5% of TSP accumulation in leaves of N. benthamiana. Confocal microscopic analysis demonstrated in vivo activity of the fused GFP partner. Importantly, high purity rSBA-GFP was recovered from crude leaf extract with ~90% yield via one-step purification on N-acetyl-D-galactosamine-agar columns, and the purified fusion protein was able to induce the agglutination of rabbit red blood cells. Combined with this, tetrameric assembly of the fusion protein was demonstrated via western blotting. In addition, rSBA-GFP retained its GFP signal on agglutinated red blood cells, demonstrating the feasibility of using rSBA-GFP for discrimination of cells that bear the ligand glycan on their surface. This work validates SBA as an effective affinity tag for simple and rapid purification of genetically fused proteins.  相似文献   

6.
The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in 1H-15N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.  相似文献   

7.
Membrane proteins account for about 30% of the genomes sequenced to date and play important roles in a variety of cellular functions. However, determining the three-dimensional structures of membrane proteins continues to pose a major challenge for structural biologists due to difficulties in recombinant expression and purification. We describe here a high throughput pipeline for Escherichia coli based membrane protein expression and purification. A ligation-independent cloning (LIC)-based vector encoding a C-terminal green fluorescence protein (GFP) tag was used for cloning in a high throughput mode. The GFP tag facilitated expression screening in E. coli through both cell culture fluorescence measurements and in-gel fluorescence imaging. Positive candidates from the GFP screening were subsequently sub-cloned into a LIC-based, GFP free vector for further expression and purification. The expressed, C-terminal His-tagged membrane proteins were purified via membrane enrichment and Ni-affinity chromatography. Thermofluor technique was applied to screen optimal buffers and detergents for the purified membrane proteins. This pipeline has been successfully tested for membrane proteins from E. coli and can be potentially expanded to other prokaryotes.  相似文献   

8.
With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant.  相似文献   

9.
Antibody fragments are easily isolated from in vitro selection systems, such as phage and yeast display. Lacking the Fc portion of the antibody, they are usually labeled using small peptide tags recognized by antibodies. In this paper we present an efficient method to fluorescently label single chain Fvs (scFvs) using the split green fluorescent protein (GFP) system. A 13 amino acid tag, derived from the last beta strand of GFP (termed GFP11), is fused to the C terminus of the scFv. This tag has been engineered to be non-perturbing, and we were able to show that it exerted no effect on scFv expression or functionality when compared to a scFv without the GFP11 tag. Effective functional fluorescent labeling is demonstrated in a number of different assays, including fluorescence linked immunosorbant assays, flow cytometry and yeast display. Furthermore, we were able to show that this split GFP system can be used to determine the concentration of scFv in crude samples, as well an estimate of antibody affinity, without the need for antibody purification. We anticipate this system will be of widespread interest in antibody engineering and in vitro display systems.  相似文献   

10.
Abstract

The current revolution in proteomics has been generated by the combination of very sensitive mass spectrometers coupled to microcapillary liquid chromatography, specific proteolysis of protein mixtures and software that is capable of searching vast numbers of mass measurements against predicted peptides from sequenced genomes. The challenges of post‐genomic plant biology include characterization of protein function, post‐translational modifications and composition of protein complexes as well as deciphering protein complements in intracellular compartments – proteomes of cell organelles. In this review we summarize the current mass spectrometry methods currently being used in plant proteomics and discuss the various tagging strategies that are being used for purification and proteomic analysis of plant protein complexes.

Abbreviations: BCCD, biotin carboxyl carrier protein domain; CBP, calmodulin‐binding protein; CID, collision‐induced dissociation; ESI, electrospray ionization; EST, expressed sequence tag; FT‐ICR, Fourier transform ion cyclotron resonance; GFP, green fluorescent protein; GST, glutathione S‐transferase; HA, haemagglutinin; HILEP, hydroponic isotope labelling of entire plants; His, histidine; HPB, HA–PreScission–Biotin; HPLC, high‐performance liquid chromatography; ICAT, isotope‐coded affinity tags; ICPL, isotope‐coded protein label; iTRAQ, isobaric tag for relative and absolute quantification; LC, liquid chromatography; MALDI, matrix‐assisted laser desorption ionization; MBP, maltose‐binding protein; MS, mass spectrometry; SDS‐PAGE, sodium dodecyl sulphate‐polyacrylamide gel electrophoresis; SILAC, stable isotope labelling with amino acids in cell culture; SILIP, stable isotope labelling in planta; Strep, streptavidin; TAP, tandem affinity purification; TBP, TATA‐box‐binding protein; TOF, time‐of‐flight; UPLC, ultraperformance liquid chromatography  相似文献   

11.
Affinity tag systems are an essential tool in biochemistry, biophysics, and molecular biology. Although several different tag systems have been developed, the epitope tag system, composed of a polypeptide “tag” and an anti-tag antibody, is especially useful for protein purification. However, almost all tag sequences, such as the FLAG tag, are added to the N- or C-termini of target proteins, as tags inserted in loops tend to disrupt the functional structure of multi-pass transmembrane proteins. In this study, we developed a novel “RIEDL tag system,” which is composed of a peptide with only five amino acids (RIEDL) and an anti-RIEDL monoclonal antibody (mAb), LpMab-7. To investigate whether the RIEDL tag system is applicable for protein purification, we conducted the purification of two kinds of RIEDL-tagged proteins using affinity column chromatography: whale podoplanin (wPDPN) with an N-terminal RIEDL tag (RIEDL-wPDPN) and human CD20 with an internal RIEDL tag insertion (CD20-169RIEDL170). Using an LpMab-7-Sepharose column, RIEDL-wPDPN and CD20-169RIEDL170 were efficiently purified in one-step purification procedures, and were strongly detected by LpMab-7 using Western blot and flow cytometry. These results show that the RIEDL tag system can be useful for the detection and one-step purification of membrane proteins when inserted at either the N-terminus or inserted in an internal loop structure of multi-pass transmembrane proteins.  相似文献   

12.
Recombinant protein expression in insect cells varies greatly from protein to protein. A fusion tag that is not only a tool for detection and purification, but also enhances expression and/or solubility would greatly facilitate both structure/function studies and therapeutic protein production. We have shown that fusion of SUMO (small ubiquitin-related modifier) to several test proteins leads to enhanced expression levels in Escherichia coli. In eukaryotic expression systems, however, the SUMO tag could be cleaved by endogenous desumoylase. In order to adapt SUMO-fusion technology to these systems, we have developed an alternative SUMO-derived tag, designated SUMOstar, which is not processed by native SUMO proteases. In the present study, we tested the SUMOstar tag in a baculovirus/insect cell system with several proteins, i.e. mouse UBP43, human tryptase beta II, USP4, USP15, and GFP. Our results demonstrate that fusion to SUMOstar enhanced protein expression levels at least 4-fold compared to either the native or His(6)-tagged proteins. We isolated active SUMOstar tagged UBP43, USP4, USP15, and GFP. Tryptase was active following cleavage with a SUMOstar specific protease. The SUMOstar system will make significant impact in difficult-to-express proteins and especially to those proteins that require the native N-terminal residue for function.  相似文献   

13.
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.  相似文献   

14.
A system of expression for the foreign actin gene in yeast cells Pichia pastoris has been developed. As a target protein, the Drosophila cytoplasmic actin 5C, which has 90% homology to the β-actin of higher eukaryotes, was used. In the present work, in order to develop conditions for biosynthesis of the target protein in yeast cells and a purification procedure for the recombinant protein, a GFP-actin fusion protein containing green fluorescent protein (GFP) as a fusion tag was expressed and purified. The size and survival of P. pastoris cells producing recombinant protein were characterized and shown to depend on the accumulation of recombinant actin. The purified fusion protein was used to obtain a polyclonal antibody necessary for testing for recombinant actin.  相似文献   

15.
It is difficult to imagine any strategy for high-throughput protein expression and purification that does not involve genetically engineered affinity tags. Because of its ability to enhance the solubility and promote the proper folding of its fusion partners, Escherichia coli maltose-binding protein (MBP) is a particularly useful affinity tag. However, not all MBP fusion proteins bind efficiently to amylose resin, and even when they do it is usually not possible to obtain a sample of adequate purity after a single affinity step. To address this problem, we endeavored to incorporate supplemental affinity tags within the framework of an MBP fusion protein. We show that both the nature of the supplemental tags and their location can influence the ability of MBP to promote the solubility of its fusion partners. The most promising configurations for high-throughput protein expression and purification appear to be a fusion protein with a biotin acceptor peptide (BAP) on the N-terminus of MBP and/or a hexahistidine tag (His-tag) on the C-terminus of the passenger protein. Abbreviatoins: BAP, biotin acceptor peptide; EDTA, ethelenediaminetetraacetic acid; IPTG, isopropyl--d-thiogalactopyranoside; MBP, E. coli maltose-binding protein; GFP; green fluorescent protein; Ni-NTA, nickel-nitrilotriacetic acid; ORF, open reading frame; PCR; polymerase chain reaction; R5, polyarginine tag; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TEV, tobacco etch virus; WT, wild-type  相似文献   

16.
β-Defensins are a family of conserved small cationic antimicrobial peptides with different significant biological functions. The majority of mammalian β-defensins are expressed in epididymis, and many of them are predicted to have post-translational modifications. However, only a few of its members have been well studied due to the limitations of expressing and purifying bioactive proteins with correct post-translational modifications efficiently. Here we developed a novel Fc tagged lentiviral system and Fc tagged prokaryotic expression systems provided new options for β-defensins expression and purification. The novel lentiviral system contains a secretive signal peptide, an N-terminal IgG Fc tag, a green fluorescent protein (GFP), and a puromycin selection marker to facilitate efficient expression and fast purification of β-defensins by protein A magnetic or agarose beads. It also enables stable and large-scale expression of β-defensins with regular biological activities and post-translational modification. Purified β-defensins such as Bin1b and a novel human β-defensin hBD129 showed antimicrobial activity, immuno-regulatory activity, and expected post-translational phosphorylation, which were not found in Escherichia coli (E. coli) in expressed form. Furthermore, we successfully applied the novel system to identify mBin1b interacting proteins, explaining Bin1b in a better way. These results suggest that the novel lentiviral system is a powerful approach to produce correct post-translational processed β-defensins with bioactivities and is useful to identify their interacting proteins. This study has laid the foundation for future studies to characterize function and mechanism of novel β-defensins.  相似文献   

17.
Affinity tags as fusions to the N- or C-terminal part of proteins are valuable tools to facilitate the production and purification of proteins. In many cases, there may be the necessity to remove the tag after protein preparation to regain activity. Removal of the tag is accomplished by insertion of a unique amino acid sequence that is recognized and cleaved by a site specific protease. Here, we report the construction of an expression vector set that combines N- or C-terminal fusion to either a hexahistidine tag or Streptag with the possibility of tag removal by factor Xa or recombinant tobacco etch virus protease (rTEV), respectively. The vector set offers the option to produce different variants of the protein of interest by cloning the corresponding gene into four different Escherichia coli expression vectors. Either immobilized metal affinity chromatography or streptactin affinity chromatography can be used for the one-step purification. Furthermore, we show the successful application of the expression vector for C-terminal hexahistidine tagging. The expression and purification of His-tagged L-2-hydroxyisocaproate dehydrogenase yields fully active enzyme. The tag removal is here accomplished by a derivative of rTEV.  相似文献   

18.
We present here three expression plasmids for Trypanosoma cruzi adapted to the Gateway® recombination cloning system. Two of these plasmids were designed to express trypanosomal proteins fused to a double tag for tandem affinity purification (TAPtag). The TAPtag and Gateway® cassette were introduced into an episomal (pTEX) and an integrative (pTREX) plasmid. Both plasmids were assayed by introducing green fluorescent protein (GFP) by recombination and the integrity of the double-tagged protein was determined by western blotting and immunofluorescence microscopy. The third Gateway adapted vector assayed was the inducible pTcINDEX. When tested with GFP, pTcINDEX-GW showed a good response to tetracycline, being less leaky than its precursor (pTcINDEX).  相似文献   

19.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel, that when mutated, can give rise to cystic fibrosis in humans.There is therefore considerable interest in this protein, but efforts to study its structure and activity have been hampered by the difficulty of expressing and purifying sufficient amounts of the protein1-3. Like many ''difficult'' eukaryotic membrane proteins, expression in a fast-growing organism is desirable, but challenging, and in the yeast S. cerevisiae, so far low amounts were obtained and rapid degradation of the recombinant protein was observed 4-9. Proteins involved in the processing of recombinant CFTR in yeast have been described6-9 .In this report we describe a methodology for expression of CFTR in yeast and its purification in significant amounts. The protocol describes how the earlier proteolysis problems can be overcome and how expression levels of CFTR can be greatly improved by modifying the cell growth conditions and by controlling the induction conditions, in particular the time period prior to cell harvesting. The reagants associated with this protocol (murine CFTR-expressing yeast cells or yeast plasmids) will be distributed via the US Cystic Fibrosis Foundation, which has sponsored the research. An article describing the design and synthesis of the CFTR construct employed in this report will be published separately (Urbatsch, I.; Thibodeau, P. et al., unpublished). In this article we will explain our method beginning with the transformation of the yeast cells with the CFTR construct - containing yeast plasmid (Fig. 1). The construct has a green fluorescent protein (GFP) sequence fused to CFTR at its C-terminus and follows the system developed by Drew et al. (2008)10. The GFP allows the expression and purification of CFTR to be followed relatively easily. The JoVE visualized protocol finishes after the preparation of microsomes from the yeast cells, although we include some suggestions for purification of the protein from the microsomes. Readers may wish to add their own modifications to the microsome purification procedure, dependent on the final experiments to be carried out with the protein and the local equipment available to them. The yeast-expressed CFTR protein can be partially purified using metal ion affinity chromatography, using an intrinsic polyhistidine purification tag. Subsequent size-exclusion chromatography yields a protein that appears to be >90% pure, as judged by SDS-PAGE and Coomassie-staining of the gel.  相似文献   

20.
目的 为了从一系列旨在降解靶蛋白的化合物中筛选出高效的蛋白质水解靶向嵌合体(PROTAC),本文建立了一个稳定的高通量PROTAC筛选方法。方法 Nanoluc荧光素酶有LgBiT和HiBiT两个亚基组成,通过将HiBiT标签与mCherry(红色荧光蛋白)、目的蛋白、Halo标签融合表达,LgBiT与GFP (绿色荧光蛋白)融合表达,利用GFP与mCherry的共定位情况可直观评价Nanoluc荧光素酶的组装情况,而通过监测Nanoluc的活性可以指示目的蛋白的含量。利用慢病毒包装系统构建稳定过表达GFP-LgBiT和HiBiT-mCherry-Target-Halo的细胞系,使用可募集Halo标签融合蛋白被Cul2-Rbx1-Elo BCVHL复合体降解的Halo PROTAC3诱导HiBiT-mCherry-Target-Halo降解,进一步利用蛋白质免疫印迹(Westernblot)、Nanoluc荧光素酶活性分析系统和流式细胞术分别评价Halo PROTAC3诱导底物降解的效率。结果 Halo PROTAC3高效降解HiBiT-mCherry-Target-Halo,并呈现浓...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号