首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pullulan with different molecular-weight could be applied in various fields. A UV-induced mutagenesis Aureobasidium pullulans UVMU6-1 was obtained from the strain A. pullulans CGMCC3.933 for the production of low-molecular-weight pullulan. First, the obtained polysaccharide from A. pullulans UVMU6-1 was purified and identified to be pullulan with thin-layer chromatography, Fourier transform infrared, and nuclear magnetic resonance. Then, culture medium and conditions for this strain were optimized by flask fermentation. Based on the optimized medium and culture conditions (pH 4, addition of 4?g/L Tween 80 for 96?hr of cultivation), continuously fermentation was performed. The highest pullulan production and dry biomass was 109 and 125?g/L after fermentation for 114?hr, respectively. The average productivity was about 1?g/L/hr, which was intensively higher than the previous reported. This study would lay foundations for the industrial production of pullulan.  相似文献   

2.
菌株SRF是1株从意大利树莓(Rubus corchorifolius)果实表面分离、可产胞外多糖的新菌株。在鉴定其分类归属的基础上,对其产生的胞外多糖进行了结构分析和发酵条件优化,为寻找微生物多糖提供新的菌株,为开发利用资源微生物提供借鉴。通过形态学和ITS序列对比分析进行菌株鉴定;通过薄层层析和红外光谱分析,确定胞外多糖结构;通过单因素检测试验,确定影响产糖量的主要因素;响应面Plackett-Burman和Box-Behnken设计筛选发酵产胞外多糖的最优条件。结果表明,出发菌株SRF隶属于出芽短梗霉属,命名为Aureobasidium sp. SRF;SRF所产胞外多糖为普鲁兰多糖;单因素检测表明,对多糖产量影响最大的因素为碳源浓度、氮源浓度、无机离子浓度,其次是碳源、氮源、无机离子、pH值;根据响应面结果确定最优发酵条件为麦芽糖8%(质量分数)、酵母提取物3%(质量分数)、钙离子0.3 g/L、pH 6,产糖量达5.93 g/L。SRF是1株来源于树莓浆果表面,可产胞外普鲁兰多糖的出芽短梗霉新菌株,是1株产微生物多糖的候选菌株。  相似文献   

3.
【背景】洛伐他汀(lovastatin)是红曲霉的次生代谢产物,是重要的临床用降血脂药物。在液态发酵条件下,红曲霉的洛伐他汀产量较低,难以满足工业化生产的要求。【目的】筛选获得一株高产洛伐他汀的红曲霉株,并通过优化液态发酵条件提高洛伐他汀的产量。【方法】从红曲米中筛选获得一株高产洛伐他汀的红曲霉株,依据形态学特征、生理生化特性及18S rRNA基因序列分析对分离菌株进行鉴定;通过响应面法对其产洛伐他汀的液态发酵条件进行优化。【结果】获得一株产洛伐他汀的紫红曲霉(Monascus purpureus M4),该菌在甘油57.80g/L、酵母浸粉5.52 g/L、接种量为6.90%条件下,洛伐他汀产量(173.60 mg/L)较优化前提高了4.8倍。【结论】菌株M4产洛伐他汀最优液态发酵条件的建立,为洛伐他汀的大规模生产及该菌株的工业化应用提供了技术支撑。  相似文献   

4.
【背景】氨基葡萄糖(glucosamine, GlcN)及其衍生物N-乙酰氨基葡萄糖(N-acetylglucosamine,GlcNAc)是合成糖胺聚糖的重要前体物质,在医药、化妆品和保健品领域具有广泛的应用价值。传统的生产方式存在诸多弊端,如环境污染、原料限制、不适于海鲜易过敏人群等问题,因此利用微生物发酵法生产GlcN和GlcNAc越来越受到青睐。【目的】利用微生物发酵生产并提高N-乙酰氨基葡萄糖的产量,探索分子改造及发酵条件优化策略。【方法】以大肠杆菌MG1655为出发菌株,首先利用表达载体共表达大肠杆菌来源的glmS和酿酒酵母来源的gna1,构建GlcNAc的生物合成路径,然后利用CRISPR/Cas9技术敲除GlcNAc的分解代谢与转运途径,以提高GlcNAc的产量,最后结合发酵条件优化使GlcNAc的产量得到进一步提升。【结果】通过分子改造得到一株产GlcNAc菌株RY-5,发酵20 h后GlcNAc的产量达到了2.36 g/L,相较于初始构建的菌株RY-1提高了29倍,进一步对装液量和诱导剂IPTG的添加时间等条件进行发酵优化,GlcNAc产量达到了7.74g/L,与优...  相似文献   

5.
【背景】粗糙链霉菌(Streptomyces scabrisporus) HBERC-53204是本中心自主分离的一株链霉菌,经鉴定,其产生一种活性化合物司替霉素B (steffimycin B,SMB),对多种动植物重要病原菌具有良好生物活性。【目的】提高SMB发酵水平,拓宽放线菌活性天然产物在农牧业领域的研究及应用。【方法】以本实验室筛选出的一株产SMB的粗糙链霉菌HBERC-53204为研究对象,运用单因素试验筛选培养基的主效碳源、氮源、无机盐及各营养成分最适浓度,并基于单因素试验结果,通过Plackett-Burman(PB)试验设计筛选出显著影响因素,再结合最陡爬坡试验、Box-Behnken (BB)响应面法拟合显著因子与产量的非线性方程求解,进一步优化菌株产SMB的最佳发酵培养基配方。【结果】优化后最佳培养基配方为:葡萄糖36.22 g/L,蛋白胨8.00 g/L,酵母粉8.51 g/L,酸水解酪蛋白1.50 g/L,MgSO4 0.68 g/L,KNO3 1.00 g/L。经摇瓶验证,优化后SMB效价达到477.26 mg/L...  相似文献   

6.
Abstract

In order to obtain a better fermentation parameter for the production of recombinant Ganoderma lucidum immunomodulatory protein (rFIP-glu), an engineered Pichia pastoris GS115 was investigated on the fermentation time, temperature, methanol concentration and initial pH of media, while immunomodulatory activities of the rFIP-glu was confirmed. L9(33) orthogonal experiment were firstly employed to optimize various fermentation parameters in the shake-flask level. The optimized fermentation parameters were subsequently verified in a 5?L fermenter. Biological activities including cell viability and tumor necrosis factor-alpha (TNF-α) mRNA of the rFIP-glu were evaluated on murine macrophage RAW264.7 cells. The results showed that the yield of rFIP-glu was up to 368.71?μg/ml in the shake-flask, and 613.47?μg/ml in the 5?L fermenter, when the Pichia pastoris was incubated in basic media with the methanol concentration 1.0% and initial pH 6.5, and with constant shaking at 280?rpm for 4?days at 26?°C. In vitro assays of biological activity indicated that rFIP-glu had significant toxicity against RAW264.7 cells, and possessed the ability to induce TNF-α mRNA expression in macrophage RAW264.7 cells. In conclusion, engineered P. pastoris showed a good fermentation property under the optimum fermentation parameters. It could be a candidate industrial strain for further study.  相似文献   

7.
[背景]褐藻胶裂解酶种类丰富、降解机制多样,是高效环保降解褐藻胶、制备褐藻寡糖的工具酶,成为褐藻植物高值化开发利用的研究热点.[目的]从海泥中筛选获得褐藻胶裂解酶高效产酶菌株,确定菌株发酵产酶最优条件,鉴定和分析酶降解产物,进而解析该酶的降解特性.[方法]以褐藻胶为唯一碳源,从海带养殖场附近海泥中筛选菌株,通过形态学观...  相似文献   

8.
【目的】通过改造谷氨酸棒杆菌JNR中双功能尿苷酰转移/去除酶GlnD,减弱尿苷酰去除酶的活性,增强NH_4~+的转运和利用,提高L-精氨酸的合成。【方法】本文对来源于谷氨酸棒杆菌的突变菌株JNR中的双功能尿苷酰转移/去除酶GlnD进行整合突变,采用同源重组的方法将H_(414)和D_(415)位点突变为两个丙氨酸AA,在此菌株的基础上过量表达PII蛋白GlnK,并对其进行尿苷酰化研究,离子色谱检测摇瓶发酵过程中NH4+的浓度,并对最终的改造菌株进行连续流加发酵分析。【结果】该双功能尿苷酰转移/去除酶在谷氨酸棒杆菌中成功进行整合突变,有效减弱了尿苷酰去除酶的活性;同时过表达PII蛋白GlnK,其酰基化程度明显增强。摇瓶发酵结果表明菌株L4消耗NH_4~+增加,L-精氨酸产量为36.2±1.2 g/L,比对照菌株L3高出22.7%。5-L发酵罐实验结果显示改造菌株L4的L-精氨酸的产量为52.2 g/L,较野生型菌株L0提高了25.3%。【结论】谷氨酸棒杆菌合成L-精氨酸的过程中氮源是必不可少的。减弱GlnD尿苷酰去除酶的活性后,胞内尿苷酰化的GlnK-UMP增加,GlnK-UMP与氮转录调控因子AmtR结合,转运至胞内的NH_4~+浓度提高,促使L-精氨酸产量显著提高。  相似文献   

9.
杀鱼假交替单胞菌(Pseudoalteromonas piscicida)2515是一株具有广谱抗弧菌性能的菌株,为提升菌株2515的培养生物量,通过单因素优化方法,研究碳源、氮源、无机盐等营养成分对菌株2515的发酵产量的影响,确定关键营养因子,利用响应面分析法对影响菌株2515生物量的关键营养因子进行优化。结果显示,菌株2515的最佳发酵培养基配方为麦芽糖2.85 g/L、CaCl2 0.65 g/L、MnCl2 0.10 g/L、酵母膏3.85 g/L、胰蛋白胨10 g/L、NaCl 10 g/L。优化后的培养基使菌株2515在锥形瓶和发酵罐中发酵的OD600值分别为1.416和1.866,生物量分别提高了36.4%和40.4%,其发酵上清液和细胞内容物的抑菌活性分别提高了28.2%和27.2%。表明响应面法优化后的培养基有利于提高菌株2515的发酵生物量及抗菌效果,研究结果为菌株2515的后续开发应用提供了参考。  相似文献   

10.
Abstract

Bioethanol production from agro-industrial residues is gaining attention because of the limited production of starch grains and sugarcane, and food–fuel conflict. The aim of the present study is to maximize the bioethanol production using cassava bagasse as a feedstock. Enzymatic liquefaction, by α-amylase, followed by simultaneous saccharification and fermentation (SSF), using glucoamylase and Zymomonas mobilis MTCC 2427, was investigated for bioethanol production from cassava bagasse. The factors influencing ethanol production process were identified and screened for significant factors using Plackett–Burman design. The significant factors (cassava bagasse concentration (10–50?g/L), concentration of α-amylase (5–25% (v/v), and temperature of fermentation (27–37?°C)) were optimized by employing Box–Behnken design and genetic algorithm. The maximum ethanol concentrations of 25.594?g/L and 25.910?g/L were obtained from Box–Behnken design and genetic algorithm, respectively, under optimum conditions. Thus, the study provides valuable insights in utilizing the cost-effective industrial residue, cassava bagasse, for the bioethanol production.  相似文献   

11.
Based on intuitive analyses and statistical calculations using data from orthogonal array experiments, the optimal concentrations of K2HPO4, NaCl, MgSO4·7H2O, and (NH4)2SO4 in cell growth medium of Aureobasidium pullulans HP-2001 were measured as 7.5, 1.0, 0.1, and 2.4 g/L, respectively, whereas those for the production of pullulan were 2.5, 0.25, 0.8, and 0.3 g/L, respectively. The most important factor for cell growth and production of pullulan by A. pullulans HP-2001 was identified as K2HPO4. Optimal concentrations of glucose and yeast extract, along with the initial pH of the cell growth medium of A. pullulans HP-2001 containing optimized salt concentrations, were found to be 100.0, 10.0, and 6.0 g/L, respectively, whereas those for the production of pullulan were 100.0, 2.5, and 6.0 g/L, respectively. Conversion rates of pullulan from 10.0, 25.0, 50.0, 75.0, and 100.0 g/L of glucose in the presence of optimized salt concentrations were 26.0, 25.2, 22.4, 17.9, and 14.1%, respectively, whereas those in the presence of previously reported salt concentrations were 26.6, 25.2, 19.9, 14.3, and 11.7%, respectively. Optimal salt concentrations for the production of pullulan by A. pullulans HP-2001 varied according to the concentrations of the carbon and nitrogen sources, especially at higher concentrations.  相似文献   

12.
以出芽短梗霉IFO 4464为实验菌种,采用响应面法(RSM)优化了出芽短梗霉IFO 4464产普鲁兰多糖的发酵培养基。通过实验得到出芽短梗霉最佳发酵培养基为蔗糖59.8g/L,硫酸铵0.7 g/L,硫酸镁0.3 g/L,磷酸二氢钾5.0g/L,氯化钾0.5g/L,氯化钠1.5g/L,酵母浸膏2.5 g/L,多糖产量可达21.92 g/L。  相似文献   

13.
In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8?g:10?g:2?g yielded the highest enzyme production of 201.6?U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5?×?106 spores/mL inoculum, which gave the highest enzyme activity of 389.5?U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2?g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300?g raw cassava chips/L with cane molasses.  相似文献   

14.
To achieve direct and efficient lactic acid production from starch, a genetically modified Lactococcus lactis IL 1403 secreting α-amylase, which was obtained from Streptococcus bovis 148, was constructed. Using this strain, the fermentation of soluble starch was achieved, although its rate was far from efficient (0.09 g l−1 h−1 lactate). High-performance liquid chromatography revealed that maltose accumulated during fermentation, and this was thought to lead to inefficient fermentation. To accelerate maltose consumption, starch fermentation was examined using L. lactis cells adapted to maltose instead of glucose. This led to a decrease in the amount of maltose accumulation in the culture, and, as a result, a more rapid fermentation was accomplished (1.31 g l−1 h−1 lactate). Maximum volumetric lactate productivity was further increased (1.57 g l−1 h−1 lactate) using cells adapted to starch, and a high yield of lactate (0.89 g of lactate per gram of consumed sugar) of high optical purity (99.2% of l-lactate) was achieved. In this study, we propose a new approach to lactate production by α-amylase-secreting L. lactis that allows efficient fermentation from starch using cells adapted to maltose or starch before fermentation.  相似文献   

15.
A novel enhanced triterpenes fermentation production process by Ganoderma lucidum G0119 with the addition of oleic acid in the medium has been developed and optimized. All of the six exogenous additives tested were found to exhibit stimulatory effect on mycelial growth and triterpenes biosynthesis by G. lucidum. The results show that oleic acid addition had significant role in promoting triterpenes production. The optimal concentration and time of oleic acid addition were determined to be 30 mL/L and 0 h, respectively. Furthermore, three significant factors influencing triterpenes production were identified as glucose, magnesium sulfate and temperature using the Plackett–Burman design. The optimized conditions by central composite design were 27.83 g/L glucose, 1.32 g/L magnesium sulfate, 26.2°C temperature. The triterpenes fermentation yield with the optimized medium based on actual confirmatory experimental data in 6 L fermentor was 1.076 g/L versus the statistical model predicted value of 1.080 g/L. Our innovatively developed triterpenes fermentation production technology and process has been proven to produce high triterpenes productivity and yield conceivably useful for industrial production.  相似文献   

16.
【目的】为保证农业生产可持续性发展,研发和使用环境友好的生物农药受到全社会的高度重视。微生物代谢产物农药是我国目前应用最广的生物农药,也是未来发展绿色农药的一个重要方向。【方法】利用包含水稻白叶枯菌(Xanthomonas oryzae pv. oryzae, Xoo) PXO99A的NA培养基琼脂平板,从水稻根际土壤中筛选能抑制Xoo生长的链霉菌。通过高效液相色谱和质谱分析活性代谢产物的化学结构;采用剪叶法接种Xoo到水稻叶片后,再喷施杀粉蝶菌素溶液(0.1 g/L),2周后测定叶枯症状;采用响应面分析法优化高产杀粉蝶菌素的发酵培养基;采用PacBio SMRT测序平台+Illumina HiSeq X Ten平台开展全基因组测序。平均核苷酸一致性(average nucleotide identity,ANI)用于比较HSW2009与其他链霉菌在全基因组水平的亲缘关系。【结果】分离到一株对Xoo生长有强抑制活性的链霉菌HSW2009,其活性代谢产物为杀粉蝶菌素A1(piericidin A1,简称PIE);喷施PIE可以减轻Xoo在水稻叶片内的侵染;优化HSW2009高产PIE的发...  相似文献   

17.
Abstract

Gellan gum, produced by Sphingomonas paucimobilis, is increasingly used in food and pharmaceutical industries as stabilizing, emulsifying, texturing and gelling agents. However, its high production costs may limit its full commercial potential. Therefore, in this study, we investigated ways to reduce gellan gum production costs and improve yields. We first revealed corn steep liquor (CSL) as a cost-effective nutrient source that can improve gellan gum yields. We then systematically optimized culture conditions even further, and revealed that the addition of Triton X-100 surfactant and selected inorganic nitrogen sources improved gellan gum production. Under our optimized conditions (glucose 33.75?g/L, CSL 10?g/L, urea 2.5?g/L, MgSO4 1.08?g/L, KH2PO4 3.24?g/L, K2SO4 1?g/L and Triton X-100 0.75?g/L), we yielded a maximum concentration of 14.41?g/L, which was about 1.5-fold higher than non-optimized CSL-based medium. Our findings highlight the use of CSL as a cost effective and promising nutrient source for industrial production of gellan gum.  相似文献   

18.
Bioethanol is the most commonly used renewable biofuel as an alternative to fossil fuels. Many microbial strains can convert lignocellulosics into bioethanol. However, very few natural strains with a high capability of fermenting pentose sugars and simultaneously utilizing various sugars have been reported. In this study, fermentation of sugar by Fusarium oxysporum G was performed for the production of ethanol to improve the performance of the fermentation process. The influences of pH, substrate concentration, temperature, and rotation speed on ethanol fermentation are investigated. The three significant factors (pH, substrate concentration, and temperature) are further optimized by quadratic orthogonal rotation regression combination design and response surface methodology (RSM). The optimum conditions are pH 4, 40?g/L of xylose, 32?°C, and 110?rpm obtained through single factor experiment design. Finally, it is found that the maximum ethanol production (10.0?g/L) can be achieved after 7 d of fermentation under conditions of pH 3.87, 45.2?g/L of xylose, and 30.4?°C. Glucose is utilized preferentially for the glucose–xylose mixture during the initial fermentation stage, but glucose and xylose are synchronously consumed without preference in the second period. These findings are significant for the potential industrial application of this strain for bioethanol production.  相似文献   

19.
Abstract

Cyanophycin is a bacterial storage polymer for carbon, nitrogen and energy with emerging industrial applications. As efficient cyanophycin production is enhanced by peptone, but commercial peptones are very expensive, thereby increasing the overall production cost, an enzymatically produced feather hydrolysate (FH) is assessed as a cheap replacement of peptone to lower the costs and make cyanophycin production more economically feasible. Keratinase production using feather as the sole carbon/nitrogen source by S.pactum 40530 at 30-L fermentation scale was achieved within 93?h with degradation rate of 96.5%. A concentration of 60?g/L of FH, generated by keratinolytic activity (8?×?103?U?g?1L?1d?1) within 24?h, was used as the main carbon/peptone source to produce cyanophycin. The growth performances of E. coli DapE/L using FH was compared to that of casamino acids (CA) and up to 7.1?±?0.4 and 5.3?±?0.3?g/L of cell mass were obtained after 72?h from FH and CA, respectively. Cyanophycin production yielded 1.4?±?0.1g/L for FH with average molecular mass of 28.8 and 1.4?±?0.2 for CA with average molecular mass of 35.3, after 60?h. For the first time, FH generated by biotechnological methods from environmentally problematic, abundant and renewable feather bioresource was successfully used for cyanophycin biopolymer production.  相似文献   

20.
Abstract

Filamentous fungi from the genus Aspergillus are of high importance for the production of organic acids. Itaconic acid (IA) is considered as an important component for the production of synthetic fibers, resin, plastics, rubber, paints, coatings, adhesives, thickeners and binders. Aspergillus niveus MG183809 was isolated from the soil sample (wastewater unit) which was collected from Avadi, Chennai, India. In the present study, itaconic acid was successfully produced by isolated A. niveus by submerged batch fermentation. In the fermentation process, various low-cost substrates like corn starch, wheat flour and sweet potato were used for itaconic acid production. Further, the factor influencing parameters such as substrate concentration and incubation period were optimized. Maximum yield of itaconic acid (15.65?±?1.75?g/L) was achieved by using A. niveus from corn starch at a concentration of 120?g/L after 168?hr (pH 3.0). And also extraction of itaconic acid from the fermentation was performed with 91.96?±?1.57 degree of extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号