首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We purified many kinds of antifreeze proteins with high activity from the leaves of Ammopiptanthus mongolicus by several biochemical techniques. The antifreeze activities of these AFPs were measured by both osmometry and differential scanning calorimetry, and the inhibition of growth of ice crystals by the AFPs was obvious. Additionally, the antifreeze proteins were analyzed by sequencing, glycosylation reaction, mass spectroscopy, and circular dichroism spectroscopy. Both samples have some other unique structures different from those of fishes and of insects. It was suggested that plant AFPs might have a particular antifreeze mechanism in comparison with that of fish and insects.  相似文献   

2.
Antifreeze proteins (AFPs) were obtained from intercellular spaces of spruce needles Picea abies (L.) Karst. and Picea pungens Engelm. by vacuum infiltration with ascorbic acid, followed by centrifugation to recover the infiltrate. As shown by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), apoplastic proteins are accumulated in these spruce species as a group of 5–9 polypeptide bands. These proteins have a molecular mass of 7–80 kDa. The spruce AFPs have the ability to modify the growth of ice and thermal hysteresis, TH, caused by these AFPs was close to 2.0 °C at a concentration of 400 μg/ml. The antifreeze activity of proteins from these winter-hardy coniferous species showed a positive correlation with the concentration of proteins after cold acclimation of needle tissues. Apoplastic proteins from winter spruce needles exhibited antifreeze activity, whereas no such activity was observed in extracts from summer needles. When we examined the possible role of spruce AFPs in cryoprotection, we found that lactate dehydrogenase, LDH, activity was higher after freezing in the presence of AFPs compared with bovine serum albumin. Amino-terminal sequence comparisons indicated that a 27-kDa protein from both P. abies and P. pungens was similar to some pathogenesis-related proteins namely chitinases, also from conifer species. These results show that spruces produce AFPs that are secreted into the apoplast of needles. The accumulation of AFPs in extracellular spaces caused by seasonal cold acclimation during winter indicates that these proteins may play a role in the acquisition of freezing tolerance of needle cells in coniferous species.  相似文献   

3.
Transgenic Arabidopsis thaliana plants which express genes encoding insect, Dendroides canadensis, antifreeze proteins (AFP) were produced by Agrobacterium-mediated transformation. The antifreeze protein genes, both with and without the signal peptide sequence (for protein secretion), were expressed in transformed plants. Thermal hysteresis activity (indicating the presence of active AFPs) was present in protein extracts from plants expressing both proteins and was also detected in leaf apoplast fluid from plants expressing AFPs with the signal peptide. Transgenic lines did not demonstrate improved ability to survive freezing when compared to wild-type. However, when cooled under four different regimes, transgenic lines with AFPs in the apoplast fluid froze at significantly lower temperatures than did wild-type, especially in the absence of extrinsic nucleation events.  相似文献   

4.
抗冻蛋白结构与抗冻机制   总被引:13,自引:0,他引:13  
抗冻蛋白(amifreeze proteins,AFPs)是20世纪60年代从极地鱼血淋巴中分离的一种大分子抗冻剂,迄今为止科学工作者已从陆地昆虫、植物、细菌和真菌等各类生物中分离到多种抗冻蛋白,并测得了它们的基因序列及一些晶体结构,近些年的工作主要集中在该类蛋白质抗冻机制的研究上。抗冻蛋白具有广泛的应用前景,它不但可以应用于食物的冷鲜贮存及移植器官的低温保存,还可通过转基因提高经济作物的抗冻能力。  相似文献   

5.
很多越冬的生物会产生抗冻蛋白,这些抗冻蛋白能够吸附到冰晶的表面改变冰晶形态并抑制冰晶的生长.抗冻蛋白在很多生物体内都被发现,不同的抗冻蛋白结构差异非常大.目前的一些研究揭示了几种抗冻蛋白的结构,并提出了抗冻蛋白与冰晶的结合模型,但是还没有一种机制能解释所有抗冻蛋白的作用机理.抗冻蛋白能被广泛的应用到农业、水产业和低温储藏器官、组织和细胞,利用转基因技术提高植物的抗冻性具有重要应用价值.而抗冻蛋白基因的表达调控则有待进一步阐明.  相似文献   

6.
Type I antifreeze proteins (AFPs) are alanine-rich α-helical polypeptides found in some species of right-eye flounders, sculpin, and snailfish. In this study, a shorthorn sculpin skin type I cDNA clone was used to probe an Atlantic snailfish liver cDNA library in order to locate expressed genes corresponding to snailfish plasma AFPs. Clones isolated from the cDNA library had sections with substantial amino acid and nucleotide sequence similarity to snailfish type I AFPs. However, further analysis revealed that the positives were actually three different liver-expressed proteins—two were eggshell proteins, while the third was a type II keratin. We propose that a shift in reading frame could produce alanine-rich candidate AFPs with possible antifreeze activity or ice crystal modification properties. Furthermore, it is plausible that one or more of the liver-expressed proteins represent the progenitors of snailfish type I AFPs. [Reviewing Editor: Dr. John Oakeshott]  相似文献   

7.
昆虫抗冻蛋白的研究进展   总被引:18,自引:2,他引:18  
费云标  江勇  赵淑慧 《昆虫学报》2000,43(1):98-102
热滞效应(Tberm Hysteresis Action)最早在昆虫研究中发现,后来研究表明,它是抗冻蛋白(Antifreeze Proteins,AFPs)的一种基本性质。和鱼类,植物AFPs相比,昆虫AFPs具有更高 的热滞活性和独特的化学结构特征。昆虫AFPs在昆虫抗冻生理过程中起着相当重要的作用,表现在以下三个方面:①抑制一些冰晶形成;②提高冰冻耐受性;③可能参与水分平衡过程。光周期,气温和湿度是调控AFPs生物合成与降解的三种外部因子,而体内激素的变化可能是直接调节脂肪体合成AFPs的内部因子。  相似文献   

8.
Antifreeze proteins (AFPs) inhibit the growth of ice by binding to the surface of ice crystals, preventing the addition of water molecules to cause a local depression of the freezing point. AFPs from insects are much more effective at depressing the freezing point than fish AFPs. Here, we have investigated the possibility that insect AFPs bind more avidly to ice than fish AFPs. Because it is not possible to directly measure the affinity of an AFP for ice, we have assessed binding indirectly by examining the partitioning of proteins into a slowly growing ice hemisphere. AFP molecules adsorbed to the surface and became incorporated into the ice as they were overgrown. Solutes, including non-AFPs, were very efficiently excluded from ice, whereas AFPs became incorporated into ice at a concentration roughly equal to that of the original solution, and this was independent of the AFP concentration in the range (submillimolar) tested. Despite their >10-fold difference in antifreeze activity, fish and insect AFPs partitioned into ice to a similar degree, suggesting that insect AFPs do not bind to ice with appreciably higher affinity. Additionally, we have demonstrated that steric mutations on the ice binding surface that decrease the antifreeze activity of an AFP also reduce its inclusion into ice, supporting the validity of using partitioning measurements to assess a protein's affinity for ice.  相似文献   

9.
The deduced amino acid sequences of antifreeze proteins (AFPs) from larvae of the beetle Dendroides canadensis were determined from both complementary DNAs (cDNAs) and from peptide sequencing. These consisted of proteins with a 25-residue signal peptide and mature proteins 83 (Dendroides antifreeze protein; DAFP-1) or 84 (DAFP-2) amino acids in length which differed at only two positions. Peptide sequencing yielded sequences which overlapped exactly with those of the deduced cDNA sequences of DAFP-1 and DAFP-2, while the partial sequence of another AFP (DAFP-3) matched 21 of 28 residues. Seven 12- or 13-mer repeating units are present in these antifreeze proteins with a consensus sequence consisting of: Cys-Thr-X3-Ser-X5-X6-Cys-X8-X9-Ala-X11-Thr-X13, where X3 and X11 tend toward charged residues, X5 tends toward threonine or serine, X6 toward asparagine or aspartate, X9 toward asparagine or lysine, and X13 toward alanine in the 13-mers. The most interesting feature of these proteins is that throughout the length of the mature antifreeze proteins every sixth residue is a cysteine. These sequences are not similar to any of the known fish AFPs, but they are similar to AFPs from the beetle Tenebrio molitor. Accepted: 14 November 1997  相似文献   

10.
Some organisms that experience subzero temperatures, such as insects, fish, bacteria, and plants, synthesize antifreeze proteins (AFPs) that adsorb to surfaces of nascent ice crystals and inhibit their growth. Although some AFPs are globular and nonrepetitive, the majority are repetitive in both sequence and structure. In addition, they are frequently encoded by tandemly arrayed, multigene families. AFP isoforms from the mealworm beetle, Tenebrio molitor, are extremely potent and inhibit ice growth at temperatures below −5°C. They contain a 12-amino acid repeat with the sequence TCTxSxxCxxAx, each of which makes up one coil of the β-helix structure. TxT motifs are arrayed to form the ice-binding surface in all three known insect AFPs: the homologous AFPs from the two beetles, T. molitor and Dendroides canadensis, and the nonhomologous AFP from the spruce budworm, Choristoneura fumiferana. In this study, we have obtained the cDNA and genomic sequences of additional T. molitor isoforms. They show variation in the number of repeats (from 6 to 10) which can largely be explained by recombination at various TCT motifs. In addition, phylogenetic comparison of the AFPs from the two beetles suggests that gene loss and amplification may have occurred after the divergence of these species. In contrast to a previous study suggesting that T. molitor genes have undergone positive Darwinian selection (selection for heterogeneity), we propose that the higher than expected ratio of nonsynonymous-to-synonymous substitutions might result from selection for higher AT content in the third codon position. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. [Reviewing Editor: Dr. John Oakeshott]  相似文献   

11.
Antifreeze proteins in Alaskan insects and spiders   总被引:13,自引:0,他引:13  
Prior to this study, antifreeze proteins (AFPs) had not been identified in terrestrial arthropods from the Arctic or anywhere in Alaska. The hemolymph of 75 species of insects and six spiders from interior and arctic Alaska were screened for thermal hysteresis (a difference between the freezing and melting points), characteristic of the presence of AFPs. Eighteen species of insects and three spiders were shown to have AFPs. Ten of the insects with AFPs were beetles including the first species from the families Chrysomelidae, Pythidae, Silphidae and Carabidae. In addition, the first Neuropteran to have AFPs was identified, the lacewing Hemerobius simulans together with the second and third Diptera (the first Tipulids) and the second and third Hemiptera, the stinkbug Elasmostethus interstinctus (the first Pentatomid), and the water strider Limnoporus dissortis (the first Gerrid). Prior to this study, 33 species of insects and three spiders had been reported to have AFPs. Most AFP-producing terrestrial arthropods are freeze avoiding, and the AFPs function to prevent freezing. However, some of the AFP- producing insects identified in this study are known to be freeze tolerant (able to survive freezing) to very low temperatures (-40 to -70 degrees C).  相似文献   

12.
The equilibrium heat stability and the kinetic heat tolerance of a recombinant antifreeze protein (AFP) from the beetle Rhagium mordax (RmAFP1) are studied through differential scanning calorimetry and circular dichroism spectroscopy. In contrast to other insect AFPs studied with this respect, the RmAFP1 has only one disulfide bridge. The melting temperature, Tm, of the protein is determined to be 28.5°C (pH 7.4), which is much lower than most of those reported for AFPs or globular proteins in general. Despite its low melting temperature, both biophysical and activity measurements show that the protein almost completely refolds into the native state after repeated exposure of 70°C. RmAFP1 thus appears to be kinetically stable even far above its melting temperature. Thermodynamically, the insect AFPs seem to be dividable in three groups, relating to their content of disulfide bridges and widths of the ice binding motifs; high melting temperature AFPs (high disulfide content, TxT motifs), low melting temperature but high refolding capability AFPs (one disulfide bridge, TxTxTxT motifs) and irreversibly unfolded AFPs at low temperatures (no disulfide bridges, TxTxTxTxT motifs). The property of being able to cope with high temperature exposures may appear peculiar for proteins which strictly have their effect at subzero temperatures. Different aspects of this are discussed.  相似文献   

13.
Summary Purified antifreeze proteins (AFPs) from the larvae of the beetle Dendroides canadensis do not produce the high levels of antifreeze activity seen in the hemolymph of overwintering larvae, even when the purified AFPs are assayed at very high concentrations. However, addition of certain proteins or agar (at concentrations sufficiently low that the gel state does not result) to the Dendroides AFP resulted in a 2–3-fold increase in activity. A 70-kDa protein with AFP-activating capabilities was purified from Dendroides larvae. Addition of this endogenous activator protein to a 4 mg·ml-1 solution of AFP increased the activity of the AFPs to values comparable to those of the hemolymph of overwintering larvae. Data derived from a modified immunoblot technique demonstrate that the activators bind to the AFP, or vice versa. Formation of this association must allow the AFP to block ice crystal growth by binding to the surface of potential seed crystals in the normal fashion. However, because the AFP-activator complex is much larger than the AFP alone, the complex probably blocks a greater surface area of the crystal and is thus a more efficient antifreeze.Abbreviations AFP antifreeze protein - BSA bovine serum albumine - DEAE diethylaminoethyl - Ig immunoglubolin - LPIN lipoprotein ice nucleator - PIN protein ice nucleator - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - TH thermal hysteresis  相似文献   

14.
Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.  相似文献   

15.
Antifreeze proteins (AFPs) have independently evolved in many organisms. AFPs act by binding to ice crystals, effectively lowering the freezing point. AFPs are often at high copy number in a genome and diversity exists between copies. Type III antifreeze proteins are found in Arctic and Antarctic eel pouts, and have previously been shown to evolve under positive selection. Here we combine molecular and proteomic techniques to understand the molecular evolution and diversity of Type III antifreeze proteins in a single individual Antarctic fish Lycodichthys dearborni. Our expressed sequence tag (EST) screen reveals that at least seven different AFP variants are transcribed, which are ultimately translated into five different protein isoforms. The isoforms have identical 66 base pair signal sequences and different numbers of subsequent ice-binding domains followed by a stop codon. Isoforms with one ice-binding unit (monomer), two units (dimer), and multiple units (multimer) were present in the EST library. We identify a previously uncharacterized protein dimer, providing further evidence that there is diversity between Type III AFP isoforms, perhaps driven by positive selection for greater thermal hysteresis. Proteomic analysis confirms that several of these isoforms are translated and present in the liver. Our molecular evolution study shows that paralogs have diverged under positive selection. We hypothesize that antifreeze protein diversity is an important contributor to depressing the serum freezing point.  相似文献   

16.
Some creatures living in extremely low temperatures can produce some special materials called “antifreeze proteins” (AFPs), which can prevent the cell and body fluids from freezing. AFPs are present in vertebrates, invertebrates, plants, bacteria, fungi, etc. Although AFPs have a common function, they show a high degree of diversity in sequences and structures. Therefore, sequence similarity based search methods often fails to predict AFPs from sequence databases. In this work, we report a random forest approach “AFP-Pred” for the prediction of antifreeze proteins from protein sequence. AFP-Pred was trained on the dataset containing 300 AFPs and 300 non-AFPs and tested on the dataset containing 181 AFPs and 9193 non-AFPs. AFP-Pred achieved 81.33% accuracy from training and 83.38% from testing. The performance of AFP-Pred was compared with BLAST and HMM. High prediction accuracy and successful of prediction of hypothetical proteins suggests that AFP-Pred can be a useful approach to identify antifreeze proteins from sequence information, irrespective of their sequence similarity.  相似文献   

17.
Fragilariopsis is a dominating psychrophilic diatom genus in polar sea ice. The two species Fragilariopsis cylindrus and Fragilariopsis curta are able to grow and divide below freezing temperature of sea water and above average sea water salinity. Here we show that antifreeze proteins (AFPs), involved in cold adaptation in several psychrophilic organisms, are widespread in the two polar species. The presence of AFP genes (afps) as a multigene family indicated the importance of this group of genes for the genus Fragilariopsis, possibly contributing to its success in sea ice. Protein phylogeny showed the potential mobility of afps, which appear to have crossed kingdom and domain borders, occurring in Bacteria, diatoms, crustaceans and fungi. Our results revealed a broad distribution of AFPs not only in polar organisms but also in taxa apparently not related to cold environments, suggesting that these proteins may be multifunctional. The relevance of AFPs to Fragilariopsis was also shown by gene expression analysis. Under stress conditions typical for sea ice, with subzero temperatures and high salinities, F. cylindrus and F. curta strongly expressed selected afps. An E/G point mutation in the Fragilariopsis AFPs may play a role in gene expression activity and protein function.  相似文献   

18.
Antifreeze proteins (AFPs) are found in cold-adapted organisms and have the unusual ability to bind to and inhibit the growth of ice crystals. However, the underlying molecular basis of their ice-binding activity is unclear because of the difficulty of studying the AFP-ice interaction directly and the lack of a common motif, domain or fold among different AFPs. We have formulated a generic ice-binding model and incorporated it into a physicochemical pattern-recognition algorithm. It successfully recognizes ice-binding surfaces for a diverse range of AFPs, and clearly discriminates AFPs from other structures in the Protein Data Bank. The algorithm was used to identify a novel AFP from winter rye, and the antifreeze activity of this protein was subsequently confirmed. The presence of a common and distinct physicochemical pattern provides a structural basis for unifying AFPs from fish, insects and plants.  相似文献   

19.
The antifreeze polypeptides (AFPs) are found in several marine fish and have been grouped into four distinct biochemical classes (type I-IV). Recently, the new subclass of skin-type, type I AFPs that are produced intracellularly as mature polypeptides have been identified in the winter flounder (Pleuronectes americanus) and the shorthorn sculpin (Myoxocephalus scorpius). This study demonstrates the presence of skin-type AFPs in the longhorn sculpin (Myoxocephalus octodecemspinosus), which produces type IV serum AFPs. Using polymerase chain reaction-based methods, a clone that encoded for a type I AFP was identified. The clone lacked a signal sequence, indicating that the mature polypeptide is produced in the cytosol. A recombinant protein was produced in Escherichia coli and antifreeze activity was characterized. Four individual Ala-rich polypeptides with antifreeze activity were isolated from the skin tissue. One polypeptide was completely sequenced by tandem MS. This study provides the first evidence of a fish species that produces two different biochemical classes of antifreeze proteins (type I and type IV), and enforces the notion that skin-type AFPs are a widespread biological phenomenon in fish.  相似文献   

20.
The antifreeze proteins (AFPs) are a family of proteins characterised by their ability to inhibit the growth of ice. These proteins have evolved as a protection against lethal freezing in freeze avoiding species. Metal stress has been shown to reduce the cold hardening in invertebrates, but no study has investigated how this type of stress affects the production of AFPs. This study demonstrates that exposure to cadmium (Cd), copper (Cu) and zinc (Zn) reduces the normal developmental increase in AFP levels in Tenebrio molitor larvae reared under summer conditions. Exposure to winter conditions, however stimulated the production of AFPs in the metal exposed larvae, and raised the concentrations of AFPs to normal winter levels. The reduced level of AFPs in metal-stressed animals acclimated to summer conditions seems to arise from alterations in the normal gene expression of AFPs. The results indicate that metal exposure may cause freeze avoiding insects to become more susceptible to lethal freezing, as they enter the winter with lowered levels of AFPs. Such an effect cannot be revealed by ordinary toxicological tests, but may nevertheless be of considerable ecological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号