首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a sequential approach, we described efficient blastospore production in a stirred tank bioreactor (3?L capacity). We used the response surface methodology to optimise the media ingredients and fermentation parameters to obtain the maximum production of blastospores by a locally collected isolate of Metarhizium acridum (Ascomycota: Hypocreales). The results showed that a liquid culture medium supplemented with monopotassium phosphate (15.17?g/L), corn steep liquor (69.25?g/L), and casamino acids (80.68?g/L) in a stirred tank bioreactor under operating conditions constant at 635?rpm, a temperature of 26°C, and pH 3.3 produced 1.25?×?108?blastospores (bls)/ml, with 93% viability after 120?h of fermentation. This bioreactor yield compares favourably with the yields obtained by shake flask production and confirms the suitability of the media and production parameters for the potential scale-up fermentation production of M. acridum.  相似文献   

2.
ABSTRACT

In this study, we optimised the conditions for the production of micropropagules of Trichoderma harzianum EGE-K38 in static liquid culture in Modified Czapec Medium (MCM) containing 8?g/L glucose in an integrated tray bioreactor system designed by our research group. Incubation temperature, air flow rate, inoculum spore concentration, inoculation size, medium volume and the use of spores or agar plugs containing mycelia as inoculum were individually studied as one factor at a time. The maximum micropropagule count was 5.2?±?0.2?×?109?cfu/mL and dry cell weight was 17?±?2?g/L. For the subsequent drying processes, the maximum drying yield percentage ((viable micropropagule counts after drying/viable cells before drying)*100) after drying of micropropagules was 23.30% (cfu/cfu). Results obtained from our integrated tray bioreactor system showed that static liquid culture fermentation offers potential for industrial scale fungal BCAs production.  相似文献   

3.
A bioreactor system for biotoxin production was appraised against traditional methods of growing dinoflagellate cultures. In an optimised bioreactor culture (5.4?L) operated in batch mode, growth of Karenia selliformis was more efficient than in 15-L bulk carboy culture in terms of growth rate (μ?=?0.07?day?1 versus 0.05?day?1) and growth maximum (G max, 169.106 versus 41.106 cells L?1). Maximal gymnodimine concentration (1200?μg L?1) in bioreactor culture was 8-fold higher than in bulk carboy culture, and the yield per cell (pg cell?1) was 2-fold higher. Similarly the bioreactor batch culture of Alexandrium ostenfeldii performed more efficiently than carboy cultures in terms of growth rate (1.6-fold higher), growth maximum (15-fold higher) and desmethyl C spirolide (SPX-desMe-C) yield (5-fold higher [μg L?1], though the yield [pg cell?1basis] was lower). When bioreactor cultures of K. selliformis were operated in continuous mode, the yield of gymnodimine was substantially higher than a carboy or the bioreactor run in batch mode to growth max (793?μg day?1 over 58?days in continuous culture was achieved versus an average of 60?μg day?1 [carboy over 40?days] or 249?μg day?1 [batch mode] over 26?days). Likewise in continuous bioreactor cultures of A. ostenfeldii run over 25?days, the yield of SPX-desMe-C (29?μg day?1) was substantially higher than in same cultures run in batch mode or carboys (10.2 day?1 and 7.7?μg day?1 respectively). Similarly 5.4?L bioreactor batch cultures of K. brevisulcata reached 3.8-fold higher cell densities than carboy cultures, and when operated in continuous mode, the brevisulcatic acids were more efficiently produced than in batch culture (12?μg day?1 versus 7?μg day?1). When the bioreactor system was upscaled to 52?L, the maximum cell densities and toxin yields of K. brevisulcata cultures were somewhat less than those achieved in the smaller reactor, which was attributed to reduced light penetration.  相似文献   

4.
Abstract

Strain DRP2-19 was detected to produce high yield of glucansucrase in MRS broth, which was identified to be Leuconostoc mesenteroides. In order for industrial glucansucrase production of L. mesenteroides DRP2-19, a one-factor test was conducted, then response surface method was applied to optimize its yield and discover the best production condition. Based on Plackett–Burman (PB) experiment, sucrose, Ca2+, and initial pH were found to be the most significant factors for glucansucrase production. Afterwards, effects of the three main factors on glucansucrase activity were further investigated by central composite design and the optimum composition was sucrose 35.87?g/L, Ca2+ 0.21?mmol/L, and initial pH 5.56. Optimum results showed that glucansucrase activity was increased to 3.94?±?0.43?U/mL in 24?hr fermentation, 2.66-fold higher than before. In addition, the crude enzyme was purified using ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. The molecular weight of glucansucrase was determined as approximately 170?kDa by Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was purified 15.77-fold and showed a final specific activity of 338.56?U/mg protein.  相似文献   

5.
Lactobacillus casei NRRL-B-1922 was used to ferment whole fruit juice of Punica granatum. P. granatum which is also known as pomegranate could support the growth of L. casei even without nutrient supplementation. This can be seen from the maximum specific growth rate of the strain in shake flasks (0.08 h−1) and stirred tank bioreactor (0.11 h−1). Quercetin-3-glucoside was detected as the most abundant compound in the juice and its concentration increased up to 7.0 g/L at the maximum bacterial growth after 27-hs of fermentation in bioreactor. The results showed that the probioticated juice could have more than 80 % inhibition in dipeptidyl peptidase-4 (DPP4) assay. The glucose and fructose content were steadily reduced with the consumption rate of 0.51 g/L/h and 0.37 g/L/h, respectively in bioreactor. Therefore, the biotransformation of P. granatum juice by L. casei could increase the juice functionality by improving its inhibitory activity against DPP4.  相似文献   

6.
Naringinase bioprocess based on Bacillus methylotrophicus was successfully scaled up based on constant oxygen transfer rate (OTR) as the scale-up criterion from 5-L bioreactor to 20-L bioreactor. OTR was measured in 5 and 20-L bioreactor under various operating conditions using dynamic method. The operating conditions, where complete dispersion was observed were identified. The highest OTR of 0.035 and 0.04?mMol/L/s was observed in 5 and 20-L bioreactor, respectively. Critical dissolved oxygen concentration of novel isolated strain B. methylotrophicus was found to be 20% of oxygen saturation in optimized medium. The B. methylotrophicus cells grown on sucrose had maximum oxygen uptake rate of 0.14?mMol/L/s in optimized growth medium. The cells produced the maximum naringinase activity of 751 and 778?U/L at 34?hr in 5 and 20-L bioreactors, respectively. The maximum specific growth rate of about 0.178/hr was observed at both the scales of operations. The maximum naringinase yield of 160 and 164?U/g biomass was observed in 5 and 20-L bioreactors, respectively. The growth and production profiles at both scales were similar indicating successful scale-up strategy for B. methylotrophicus culture.  相似文献   

7.
《Process Biochemistry》2007,42(1):93-97
Successful scale-up of Azadirachta indica suspension culture for azadirachtin production was done in stirred tank bioreactor with two different impellers. The kinetics of biomass accumulation, nutrient consumption and azadirachtin production of A. indica cell suspension culture were studied in a stirred tank bioreactor equipped with centrifugal impeller and compared with similar bioreactor with a setric impeller to investigate the role of O2 transfer efficiency of centrifugal impeller bioreactor on overall culture metabolism. The maximum cell mass for centrifugal impeller bioreactor and stirred tank bioreactor (with setric impeller) were 18.7 and 15.5 g/L (by dry cell weight) and corresponding azadirachtin concentrations were 0.071 and 0.05 g/L, respectively. Glucose and phosphate were identified as the major growth-limiting nutrients during the bioreactor cultivation. The centrifugal impeller bioreactor demonstrated less shearing and improved O2 transfer than the stirred tank bioreactor equipped with setric impeller with respect to biomass and azadirachtin production.  相似文献   

8.
Curdlan is produced by a mutant of Alcaligenes faecalis var. myxogenes, strain 10C3. The nature of its gel formation was investigated. The polymer formed a firm, resilient gel when heated in aqueous suspension at or above 54°C. An aqueous suspension (2%) of the polymer gave 730 (g/cm2) gel strength when heated at 90°C. The gel strength was independent of the incubation time but dependent upon the temperature. The presence of borate alone greatly increased the gel strength. The gel strength did not change between pH 2.5 and 10. The addition of urea, a reagent which breaks hydrogen bonds, caused a decrease in the gel-forming temperature, the extent of decrease depending upon the concentration of urea. X-ray studies indicated that heat-treatment of the polymer suspension caused a change in the molecular arrangement.  相似文献   

9.
The possibility of using in situ addition of anion-exchange resin for the removal of acetate in the culture aimed at improving growth of E. coli and expression of periplasmic human interferon-α2b (PrIFN-α2b) was studied in shake flask culture and stirred tank bioreactor. Different types of anion-exchange resin were evaluated and the concentration of anion-exchange resin was optimized using response surface methodology. The addition of anion-exchange resins reduced acetate accumulation in the culture, which in turn, improved growth of E. coli and enhanced PrIFN-α2b expression. The presence of anion-exchange resins did not influence the physiology of the cells. The weak base anion-exchange resins, which have higher affinity towards acetate, yielded higher PrIFN-α2b expression as compared to strong anion-exchange resins. High concentrations of anion-exchange resin showed inhibitory effect towards growth of E. coli as well as the expression of PrIFN-α2b. The maximum yield of PrIFN-α2b in shake flask culture (501.8 μg/L) and stirred tank bioreactor (578.8 μg/L) was obtained at ion exchange resin (WA 30) concentration of 12.2 g/L. The production of PrIFN-α2b in stirred tank bioreactor with the addition of ion exchange resin was about 1.8-fold higher than that obtained in fermentation without ion exchange resin (318.4 μg/L).  相似文献   

10.
In this study we maximized biomass production by the basidiomycete Ganoderma australe ATHUM 4345, a species of pharmaceutical interest as it is a valuable source of nutraceuticals, including dietary fibers and glucans. We used the Biolog FF MicroPlate to screen 95 different carbon sources for growth monitoring. The pattern of substrate catabolism forms a substrate assimilation fingerprint, which is useful in selecting components for media optimization of maximum biomass production. Response surface methodology, based on the central composite design was applied to explore the optimum concentrations of carbon and nitrogen sources of culture medium in shake flask cultures. When the improved culture medium was tested in a 20‐L stirred tank bioreactor, using 13.7 g/L glucose and 30.0 g/L yeast extract, high biomass yields (10.1±0.4 g/L) and productivity of 0.09 g L?1 h?1 were obtained. The yield coefficients for total glucan and dietary fibers on biomass formed were 94.82±6 and 341.15±12.3 mg/g mycelium dry weight, respectively.  相似文献   

11.
以来自餐饮废油的生物柴油副产物粗甘油作为廉价底物,对弗托氏葡糖杆菌(Gluconobacter frateurii)CGMCC5397发酵转化生产二羟基丙酮(DHA)进行初步研究。研究发现粗甘油中的金属离子,尤其是Zn2+对微生物转化生产二羟基丙酮有明显抑制作用。粗甘油经过预处理后,利用优化后的发酵培养基,在7 L发酵罐中进行补料分批发酵,48 h后DHA浓度达到89.5 g/L,生产强度为1.86 g/(L·h),甘油转化率为90.1%。本研究初步证明了弗托氏葡糖杆菌能高效和经济地利用生物柴油副产物粗甘油生产DHA。  相似文献   

12.
The objective of this study was to evaluate the production of pectinase by an isolated strain of Penicillium brasilianum in a bioreactor and to consider its potential for industrial applications (i.e. fruit juice). The optimization of production was achieved through experimental design. The maximum exo-polygalacturonase (Exo-PG) production in the bioreactor was 53.8?U mL?1 under the conditions of 180?rpm, an aeration rate of 1.5 vvm, 30?°C, pHinitial of 5.5, 5?×?106 spores mL?1, 32?g L?1 pectin, 10?g L?1 of yeast extract and 0.5?g L?1 magnesium sulfate and bioproduction for 36?h. The production of Exo-PG in the bioreactor was 1.3 times higher than that obtained in shake flasks, with aeration (1.5 vvm) and agitation (180?rpm) control. The crude enzyme complex, beyond the pectinolytic activity of Exo-PG (53.8?U mL?1), also contained activity pectin methylesterase (6.0?U mL?1) and pectin lyase (6.61?U mL?1). At a crude enzyme complex with a concentration of 0.5% (v/v), viscosity of peach juice was reduced by 11.66%, turbidity was reduced by 13.71% and clarification was increased by 26.92%. Based on the present results, we can conclude that the new strain of isolated P. brasilianum produced high amounts of pectinases in a bioreactor with mechanical agitation, and has the potential to be applied to in the clarification of juices.  相似文献   

13.
《Process Biochemistry》2007,42(6):1033-1038
Valienamine is an important medicinal intermediate with broad use in the synthesis of some stronger α-glucosidase inhibitors. In order to improve valienamine concentration in the fermentation broth and make the downstream treatment easy, a fed-batch process for the enhanced production of valienamine by Stenotrophomonas maltrophilia in a stirred tank bioreactor was developed. Results showed that supplementation of validamycin A in the process of cultivation could increase the valienamine concentration. One-pulse feeding was observed to be the best strategy. The maximum valienamine concentration of 2.35 g L−1 was obtained at 156 h when 86.4 g of validamycin A was added to a 15-L bioreactor containing 8 L fermentation medium with one-pulse feeding. The maximum valienamine concentration had a great improvement and was increased above 100% compared to batch fermentation in the stirred tank bioreactor. The pH-controlled experiments showed that controlling the pH in the process of one-pulse feeding fermentation had not obvious effect on the production of valienamine.  相似文献   

14.
The study was designed to investigate the use of ultrasound-assisted extraction (UAE) of rapamycin (sirolimus) from bacterial strain of Streptomyces rapamycinicus NRRL 5491. To achieve the maximum extraction yield, various parameters were optimized which include S. rapamycinicus (10?g) of biomass in toluene (50?mL), temperature (20°C), acoustic intensity (35.67?W/cm2), and duty cycle (40%) for 4?min extraction time with probe tip length of 0.5?cm dipped into extraction solvent from the surface. The maximum extraction yield 60.15?±?0.01?mg/L was attained under the mentioned optimum parameters. The use of ultrasound for the extraction of rapamycin shows about twofold increase in the yield as compared to the conventional solid–liquid extraction (29.7?±?0.2?mg/L). The study provides the effective UAE technique to produce potential value-added products.  相似文献   

15.
An upflow packed-bed cell recycle bioreactor (IUPCRB) is proposed for obtaining a high cell density. The system is comprised of a stirred tank bioreactor in which cells are retained partially by a packed-bed. A 1.3 cm (ID) × 48 cm long packed-bed was installed inside a 2 L bioreactor (working volume 1 L). Continuous ethanol fermentation was carried out using a 100 g/L glucose solution containing Saccharomyces cerevisiae (ATCC 24858). Cell retention characteristics were investigated by varying the void fraction (VF) of the packed bed by packing it with particles of 0.8∼2.0 mm sized stone, cut hollow fiber pieces, ceramic, and activated carbon particles. The best results were obtained using an activated carbon bed with a VF of 30∼35%. The IUPCRB yielded a maximum cell density of 87 g/L, an ethanol concentration of 42 g/L, and a productivity of 21 g/L/h when a 0.5 h−1 dilution rate was used. A natural bleeding of cells from the filter bed occurred intermittently. This cell loss consisted of an average of 5% of the cell concentration in the bioreactor when a high cell concentration (approximately 80 g/L) was being maintained.  相似文献   

16.
A pseudo-affinity process for penicillin acylase (EC 3.5.1.11) purification using an affinity ligand (Ampicillin) attached on Sepharose 4B-CNBr was optimized. The enzyme adsorption on this affiant (Amp-Seph) is independent of pH between 5.5 and 8.8, in 100?mM phosphate containing 22% (w/v) ammonium sulphate. The desorption of the penicillin acylase from the affinity gels was carried out, the best desorption results being obtained through a non specific eluent, 100?mM phosphate pH 4.6 with 15% (w/v) ammonium sulphate. The best purification results were obtained with an enzymatic extract, produced through osmotic shock of Escherichia coli cells (3.7?IU/mg prot). With this extract and an affinity gel of Sepharose 4B-CNBr derivatized with ampicillin (3.8?μmol/cm3?gel), a maximum activity capacity adsorbed of 20?IU/cm3?gel was obtained for initial values of activity and protein concentration of 1.7?IU/cm3 and 0.4?mg prot/cm3, respectively. With the optimized eluent it was possible to obtain penicillin acylase in only one purification step with a desorption yield of enzyme activity higher than 90%. The penicillin acylase produced with this process was characterized by a maximum purity of 34?IU/mg prot, corresponding to a purification degree higher than 150 in relation to the lowest pure enzymatic extract. The enzyme purity of the eluted fractions was certified by SDS gel electrophoresis and liquid chromatography through a Mono Q column in a FPLC apparatus. The gel electrophoresis presented 4 main stained bands with 2 corresponding to α and β subunits of the penicillin acylase with equivalent molecular weights of 27 and 63?kDa. No external diffusion resistance on penicillin acylase and total protein adsorption on this affiant (Amp-Seph 3.8?μmol/cm3?gel) were observed for continuous adsorption processes performed at two different agitation speeds (120 and 400?rpm).  相似文献   

17.
Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d?1. A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d?1 and modified F/2 growth media containing nitrate at 3.09?mg N/L, phosphate at 2.24?mg P/L, and silicate at 11.91?mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69?×?104 cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.  相似文献   

18.
The kinetic study of Arthrospira platensis extracellular polymeric substances (EPS) production under different trophic modes??photoautotrophy (100???mol photons m?2?s?1), heterotrophy (1.5?g/L glucose), and mixotrophy (100???mol photons m?2?s?1 and 1.5?g/L glucose)??was investigated. Under photoautotrophic and heterotrophic conditions, the maximum EPS production 219.61?±?4.73 and 30.30?±?1.97?mg/L, respectively, occurred during the stationary phase. Under a mixotrophic condition, the maximum EPS production (290.50?±?2.21?mg/L) was observed during the early stationary phase. The highest specific EPS productivity (433.62?mg/g per day) was obtained under a photoautotrophic culture. The lowest specific EPS productivity (38.33?mg/g per day) was observed for the heterotrophic culture. The effects of glucose concentration, light intensity, and their interaction in mixotrophic culture on A. platensis EPS production were evaluated by means of 32 factorial design and response surface methodology. This design was carried out with a glucose concentration of 0.5, 1.5, and 2.5?g/L and at light levels of 50, 100, and 150???mol photons m?2?s?1. Statistical analysis of the model demonstrated that EPS concentration and EPS yield were mainly influenced by glucose concentration and that conditions optimizing EPS concentration were dissimilar from those optimizing EPS yield. The highest maximum predicted EPS concentration (369.3?mg/L) was found at 150???mol photons m?2?s?1 light intensity and 2.4?g/L glucose concentration, while the highest maximum predicted EPS yield (364.3?mg/g) was recorded at 115???mol photons m?2?s?1 light intensity and 1.8?g/L glucose concentration.  相似文献   

19.
The objective of this study was to quantify the effect of algal biomass concentration on the rheology of the algal culture broth. Batch cultivations of Chlorella minutissima were carried out with air and carbon dioxide in a stirred tank bioreactor with a working volume of 1.8 L. The apparent viscosity of the culture broth was significantly affected by the cell mass concentrations in the bioreactor. Culture broth containing 50 g/L cell mass from air fed was found to exhibit an apparent viscosity of 1.52 mPa.s. The apparent viscosity of the carbon‐dioxide‐fed cultivations was found to increase by 20% at a shear rate of 100 s?1. The flow behavior of the system was adequately described by the Herschel–Bulkley model with a small yield stress.  相似文献   

20.
Summary An aerobic continuous stirred tank bioreactor with cell recycle was used to produce citric acid from glucose with a yeastSaccharomycopsis lipolytica NRRL Y7576. Specific rate of total acid production was 0.045h–1, yield on glucose was 0.86 g/g and volumetric productivity was 1.16 g acid/Lh; all higher than or similar to batch values. Effluent acid concentration was 75g/L. In batch, under nitrogen limited. conditions, stability of citric acid synthesis and excretion was constant over a period of 700 hours. Under conditions of cell recycle, cell concentration and rate of acid production were constant over 200 hours of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号