首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Staphylococcus aureus, among other staphylococcal species, developed multidrug resistance and causes serious health risks that require complex treatments. Therefore, the development of novel and effective strategies to combat these bacteria has been gaining importance. Since Staphylococcus simulans lysostaphin is a peptidoglycan hydrolase effective against staphylococcal species, the enzyme has a significant potential for biotechnological applications. Despite promising results of lysostaphin as a bacteriocin capable of killing staphylococcal pathogens, it is still not widely used in healthcare settings due to its high production cost. In this study, medium engineering techniques were applied to improve the expression yield of recombinant lysostaphin in E. coli. A new effective inducible araBAD promoter system and different mediums were used to enhance lysostaphin production. Our results showed that the composition of autoinduction media enhanced the amount of lysostaphin production 5-fold with the highest level of active lysostaphin at 30?°C. The production cost of 1000?U of lysostaphin was determined as 4-fold lower than the previously proposed technologies. Therefore, the currently developed bench scale study has a great potential as a large-scale fermentation procedure to produce lysostaphin efficiently.  相似文献   

2.
Staphylococcus simulans lysostaphin is an endopeptidase lysing staphylococcus cell walls by cleaving pentaglycine cross-bridges in their peptidoglycan. A synthetic gene encoding S. simulans lysostaphin was cloned in Escherichia coli cells, and producer strains were designed. The level of produced biologically active lysostaphin comprised 6-30% of total E. coli cell protein (depending on E. coli M15 or BL21 producer) under batch cultivation conditions. New methods were developed for purification of lysostaphin without affinity domains and for testing its enzymatic activity. As judged by PAGE, the purified recombinant lysostaphin is of >97% purity. The produced lysostaphin lysed cells of Staphylococcus aureus and Staphylococcus haemolyticus clinical isolates. In vitro activity and general biochemical properties of purified recombinant lysostaphin produced by M15 or BL21 E. coli strains were identical to those of recombinant lysostaphin supplied by SigmaAldrich (USA) and used as reference in other known studies. The prepared recombinant lysostaphin represents a potential product for development of enzymatic preparation for medicine and veterinary due to the simple purification scheme enabling production of the enzyme of high purity and antistaphylococcal activity.  相似文献   

3.
The heterologous production of the industrially relevant fungal enzyme pyranose 2-oxidase in the prokaryotic host E. coli was investigated using 3 different expression systems, i.e. the well-studied T7 RNA polymerase based pET21d+, the L-arabinose inducible pBAD and the pCOLD system. Preliminary experiments were done in shaking flasks at 25°C and optimized induction conditions to compare the productivity levels of the different expression systems. The pET21d+ and the pCOLD system gave 29 U/L·h and 14 U/L·h of active pyranose 2-oxidase, respectively, whereas the pBAD system only produced 6 U/L·h. Process conditions for batch fermentations were optimized for the pET21d+ and the pCOLD systems in order to reduce the formation of inactive inclusion bodies. The highest productivity rate with the pET21d+ expression system in batch fermentations was determined at 25°C with 32 U/L·h. The pCOLD system showed the highest productivity rate (19 U/L·h) at 25°C and induction from the start of the cultivation. Using the pCOLD system in a fed batch fermentation at 25°C with a specific growth rate of μ = 0.15 h-1resulted in the highest productivity rate of active pyranose oxidase with 206 U/L·h.  相似文献   

4.
A gene encoding the carboxymethylcellulase (CMCase) of a marine bacterium, Bacillus subtilis subsp. subtilis A-53, was cloned in Escherichia coli JMB109 and the recombinant strain was named as E. coli JMB109/A-53. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth, extracted by Design Expert Software based on response surface methodology, were 100.0 g/l, 7.5 g/l, and 7.0, respectively, whereas those for production of CMCase were 100.0 g/l, 7.5 g/l, and 8.0. The optimal temperatures for cell growth and the production of CMCase by E. coli JM109/A-53 were found to be and 40 and 35 °C, respectively. The optimal agitation speed and aeration rate of a 7 l bioreactor for cell growth were 400 rpm and 1.5 vvm, whereas those for production of CMCase were 400 rpm and 0.5 vvm. The optimal inner pressure for cell growth was 0.06 MPa, which was the same as that for production of CMCase. The production of CMCase by E. coli JM109/A-53 under optimized conditions was 880.2 U/ml, which was 2.9 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen source for production of CMCase by a recombinant E. coli JM109/A-53 and the productivity of E. coli JM109/A-53 was 5.9 times higher than that of B. subtilis subp. subtilis A-53.  相似文献   

5.
Recombinant Escherichia coli engineered to contain the whole mevalonate pathway and foreign genes for β-carotene biosynthesis, was utilized for production of β-carotene in bioreactor cultures. Optimum culture conditions were established in batch and pH-stat fed-batch cultures to determine the optimal feeding strategy thereby improving production yield. The specific growth rate and volumetric productivity in batch cultures at 37°C were 1.7-fold and 2-fold higher, respectively, than those at 28°C. Glycerol was superior to glucose as a carbon source. Maximum β-carotene production (titer of 663 mg/L and overall volumetric productivity of 24.6 mg/L × h) resulted from the simultaneous addition of 500 g/L glycerol and 50 g/L yeast extract in pH-stat fed-batch culture.  相似文献   

6.
The production of a recombinant nitrilase expressed in Escherichia coli JM109/pNLE was optimized in the present work. Various culture conditions and process parameters, including medium composition, inducer, induction condition, pH and temperature, were systematically examined. The results showed that nitrilase production in E. coli JM109/pNLE was greatly affected by the pH condition and the temperature in batch culture, and the highest nitrilase production was obtained when the fermentation was carried out at 37°C, initial pH 7.0 without control and E. coli was induced with 0.2 mM isopropyl-β-d-thiogalactoside at 4.0 h. Furthermore, enzyme production could be significantly enhanced by adopting the glycerol feeding strategy with lower flow rate. The enzyme expression was also authenticated by sodium dodecyl phosphate polyacrylamide gel electrophoresis analysis. Finally, under the optimized conditions for fed-batch culture, cell growth, specific activity and nitrilase production of the recombinant E. coli were increased by 9.0-, 5.5-, and 50-fold, respectively.  相似文献   

7.
The gene encoding Staphylococcus simulans lysostaphin has been cloned into two Escherichia coli expression systems: pET23b+ (Novagen, UK) and pBAD/Thio-TOPO (Invitrogen, USA), which allow the overexpression of a target protein as a fusion protein. The enzyme produced in the pET system contains a cluster of six histidines at the C-terminus, and the protein produced in the pBAD system contains 133 additional amino acid residues at the N-terminus, including thioredoxin, a cluster of six histidines and a recognition site for endoprotease Factor Xa. The recombinant enzymes were purified by metal-affinity chromatography on a Co2+-Sepharose column. Approximately 20 mg of purified recombinant enzyme were obtained in the pET expression system and 39 mg in the pBAD system, from a 1-L culture. The obtained fusion protein from the pET system revealed specific activity that was approximately 10 times higher than that of the fusion protein from the pBAD system (970 U/mg versus 83 U/mg). The purified enzymes displayed maximum activity at close to 45 degrees C and pH 8.0 or 7.5 for the enzyme obtained from pET and pBAD system, respectively. The lysostaphin activity was strongly inhibited by Zn2+ or Cu2+ (2 mM) with a 70-80% decrease. The Ni2+ (2 mM) also inhibited the enzyme with a 60 and 20% activity decrease for enzyme from the pET and pBAD system, respectively. The Co2+ had no impact on enzymatic activity at the 2 mM concentration; however, 30 and 20% activity decreases were observed at the 10mM concentration for the enzyme obtained from the pET and pBAD expression systems, respectively. EDTA, known as a strong inhibitor of the native lysostaphin, had no impact on the antistaphylococcal activity of either recombinant enzyme.  相似文献   

8.

Background

Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020.

Results

The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h.

Conclusions

Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.
  相似文献   

9.
Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L?1 days?1, or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L?1.  相似文献   

10.
Factors influencing production of the monocyclic carotenoid torulene in recombinant Escherichia coli were investigated by modulating enzyme expression level, culture conditions, and engineering of the isoprenoid precursor pathway. The gene dosage of in vitro evolved lycopene cyclase crtY2 significantly changed the carotenoid profile. A culture temperature of 28°C showed better production of torulene than 37°C while initial culture pH had no significant effect on torulene production. Glucose-containing LB, 2×YT, TB and MR media significantly repressed the production of torulene, and the other carotenoids lycopene, tetradehydrolycopene, and -carotene, in E. coli. In contrast, glycerol-containing LB, 2×YT, TB, and MR media enhanced torulene production. Overexpression of dxs, dxr, idi and/or ispA, individually and combinatorially, enhanced torulene production up to 3.1–3.3 fold. High torulene production was observed in a high dissolved oxygen level bioreactor in TB and MR media containing glycerol. Lycopene was efficiently converted into torulene during aerobic cultures, indicating that the engineered torulene synthesis pathway is well coordinated, and maintains the functionality and integrity of the carotenogenic enzyme complex.  相似文献   

11.
Endophytes are recognised as potential sources of novel secondary metabolites, including enzymes and drugs, with applications in medicine, agriculture and industry. There is a growing need for new enzymes, including proteases, for use in industry that can function under a variety of conditions. In this study, three fungal endophytes (Alternaria alternata, Phoma herbarum and an unclassified fungus), were isolated from the Australian native plant, Eremophilia longifolia, and assessed for production of proteases. The lyophilised growth media obtained after fungal fermentation were analysed for protease production using enzyme activity assays. Protease production was optimised by assessing the effects of temperature, pH, carbon source and nitrogen source on activity. A. alternata showed the greatest protease activity in a wide range of pH (3–9). The broadest activity between 9 and 50 °C was observed at pH 7, suggesting a neutral protease. Overall, the optimum conditions were 37 °C and pH 7 with a maximum specific activity value of 69.86 BAEE units/mg. The characteristics demonstrated by this fungal endophyte showed that it is a potential source of an enzyme with particular application in the dairy industry. However, further studies of the tolerance to higher temperatures and pH will indicate whether the enzyme is suitable to such applications.  相似文献   

12.
Summary A 1.5 kb plasmid-encoded lysostaphin gene fragment of Staphylococcus staphylolyticus was amplified by polymerase chain reaction (PCR) and cloned in Escherichia coli by using plasmid pET29b(+) as an expression vector. By optimizing culture conditions, the activities of lysostaphin were expressed as 66 %, 30 %, and 4 % in extracellular, intracellular, and periplasmic fractions of recombinant E. coli, respectively. The enzyme was purified to homogeneity by using a simple one-step fractionation on bacterial cells of lysostaphin-resistant Staphylococcus aureus mutant. The recombinant enzyme had an Mr of approximate 27 kDa, and its bacteriolytic activity was indistinguishable to the authentic lysostaphin purified from Staphylococcus staphylolyticus.  相似文献   

13.
Scale up studies for production of lipoic acid (LA) from Saccharomyces cerevisiae have been reported in this paper for the first time. LA production in batch mode was carried out in a stirred tank bioreactor at varying agitation and aeration with maximum LA production of 512 mg/L obtained at 350 rpm and 25 % dissolved oxygen in batch culture conditions. Thus, LA production increased from 352 mg/L in shake flask to 512 mg/L in batch mode in a 5 L stirred tank bioreactor. Biomass production under these conditions was mathematically explained using logistic equation and data obtained for LA production and substrate utilization were successfully fitted using Luedeking–Piret and Mercier’s models. The kinetic studies showed LA production to be growth associated. Further enhancement of LA production was carried out using fed-batch (variable volume) and semi-continuous modes of fermentation. Semi-continuous fermentation with three feeding cycles of sucrose effectively increased the production of LA from 512 to 725 mg/L.  相似文献   

14.
A stable fluorescent holo-β-allophycocyanin (holo-ApcB) was produced by metabolically engineered Escherichia coli. The E. coli cells harbored two plasmids for expression of five genes that were involved in the holo-ApcB production. Response surface methodology was employed to investigate the individual and interactive effects of four variables, i.e., initial pH of culture medium, IPTG concentration, post-induction temperature, and induction start time, on holo-ApcB production by E. coli. The experimental results showed that the IPTG concentration, postinduction temperature, and induction start time had significant individual effects on holo-ApcB production. A significant interactive effect was also found between the initial pH of culture and induction start time. The maximum holo-ApcB production of 45.3 mg/L was predicted under the following optimized culture conditions: a postinduction temperature of 28.4°C, initial pH of culture of 7.3, IPTG concentration of 1.1 mM, and postinduction time of 66 min. Holo-ApcB production under the optimized culture conditions increased 5.8-fold, compared with that under the nonoptimized conditions. Response surface methodology proved to be a valuable tool for optimization of holo-ApcB production by metabolically engineered E. coli.  相似文献   

15.
An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box–Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD600nm) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.  相似文献   

16.
This study aimed to investigate the efficiency of an aerobic sequencing batch reactor (aerobic SBR) in a nonsterile system using the application of an experimental design via central composite design (CCD). The acidic whey obtained from lactic acid fermentation by immobilized Lactobacillus plantarum sp. TISTR 2265 was fed into the bioreactor of the aerobic SBR in an appropriate ratio between acidic whey and cheese whey to produce an acidic environment below 4.5 and then was used to support the growth of Dioszegia sp. TISTR 5792 by inhibiting bacterial contamination. At the optimal condition for a high yield of biomass production, the system was run with a hydraulic retention time (HRT) of 4 days, a solid retention time (SRT) of 8.22 days, and an acidic whey concentration of 80% feeding. The chemical oxygen demand (COD) decreased from 25,230 mg/L to 6,928 mg/L, which represented a COD removal of 72.15%. The yield of biomass production and lactose utilization by Dioszegia sp. TISTR 5792 were 13.14 g/L and 33.36%, respectively, with a long run of up to 180 cycles and the pH values of effluent were rose up to 8.32 without any pH adjustment.  相似文献   

17.
Chikungunya, a mosquito-borne viral disease caused by Chikungunya virus (CHIKV), has drawn substantial attention after its reemergence causing massive outbreaks in tropical regions of Asia and Africa. The recombinant envelope 2 (rE2) protein of CHIKV is a potential diagnostic as well as vaccine candidate. Development of cost-effective cultivation media and appropriate culture conditions are generally favorable for large-scale production of recombinant proteins in Escherichia coli. The effects of medium composition and cultivation conditions on the production of recombinant Chikungunya virus E2 (rCHIKV E2) protein were investigated in shake flask culture as well as batch cultivation of Escherichia coli. Further, the fed-batch process was also carried out for high cell density cultivation of E. coli expressing rE2 protein. Expression of rCHIKV E2 protein in E. coli was induced with 1 mM isopropyl-beta-thiogalactoside (IPTG) at ~23 g dry cell weight (DCW) per liter of culture and yielded an insoluble protein aggregating to form inclusion bodies. The final DCW after fed-batch cultivation was ~35 g/l. The inclusion bodies were isolated, solubilized in 8 M urea and purified through affinity chromatography to give a final product yield of ~190 mg/l. The reactivity of purified E2 protein was confirmed by Western blotting and enzyme-linked immunosorbent assay. These results show that rE2 protein of CHIKV may be used as a diagnostic reagent or for further prophylactic studies. This approach of producing rE2 protein in E. coli with high yield may also offer a promising method for production of other viral recombinant proteins.  相似文献   

18.
Characterization of the staphylococcal bacteriophage lysin CHAP(K)   总被引:1,自引:0,他引:1  
Aims: To develop an efficient purification strategy for the bacteriophage lysin CHAPK. To evaluate its antibacterial spectrum, enzymatic properties, optimal reaction conditions and lytic activity against live Staphlyococcus aureus. Methods and Results: Recombinant CHAPK was purified to homogeneity by cation exchange chromatography, with yields of up to 10 mg from 1 l of Escherichia coli culture. The lytic spectrum of CHAPK includes all staphylococcal species and also members of the genera Micrcococcus, Streptococcus, Nesterenkonia, Arthrobacter, Leuconostoc and Carnobacterium. The enzyme was active from pH 6 to 11 with an optimum activity at pH 9, from 5 to 40°C, with an optimum activity at 15°C. When cell lysis by CHAPK and lysostaphin was compared over a concentration range of 2·5–10 μg ml?1 using live Staph. aureus for 5 min at 37°C, CHAPK gave rise to greater turbidity reduction indicating that it works more rapidly than lysostaphin. Conclusions: This study describes in detail the purification and characteristics of the novel phage‐derived enzyme CHAPK demonstrating that it has excellent biochemical properties as an anti‐staphylococcal agent. Significance and Impact of the Study: Currently, there is a need for new antimicrobial agents due to the increasing worldwide prevalence of antibiotic resistance. Our findings demonstrate the potential for development of CHAPK as an alternative therapeutic against pathogenic staphylococci including MRSA.  相似文献   

19.
Cephalosporin C (CPC) acylase is an enzyme which hydrolyzes CPC to 7-aminocephalosporanic acid (7-ACA) directly, and therefore has great potential in industrial application. In this study, the CPC acylase from a recombinant Escherichia coli was purified to high purity by immobilized metal affinity chromatography, and the CPC acylase was covalently attached to three kinds of epoxy supports, BB-2, ES-V-1 and LX-1000EP. The immobilized CPC acylase with LX-1000EP as the support shows the highest activity (81 U g−1) suggesting its potential in industrial 7-ACA production. The activity of immobilized enzyme was found to be optimal at pH between 8.5 and 9.5 and to increase with temperature elevation until 55 °C. Immobilized CPC acylase showed good stability at pH between 8.0 and 9.5 and at temperature up to 40 °C. To avoid product degradation, the production of 7-ACA utilizing immobilized enzyme was carried out at 25 °C, pH 8.5 in a designed reactor. Under optimal reaction conditions, a very high 7-ACA yield of 96.7% was obtained within 60 min. In the results of repeated batch production of 7-ACA, 50% activity of the initial cycle was maintained after being recycled 24 times and the average conversion rate of CPC reached 98%.  相似文献   

20.
Medium and culture conditions for alginate lyase production by marine Vibrio sp. QY102 were first optimized using statistical methods including Plackett–Burman design and central composite design. Then, fermentation in 5-L bioreactor showed that alginate acted as easily used carbohydrate for Vibrio sp. QY102, while starch extended its growth phase and stabilized pH variations. Thus, a novel strategy using mixed carbon sources was proposed that starch supported growth while enzyme synthesis was induced by pulse feedings of solid alginate. The optimized process followed that Vibrio sp. QY102 grew on starch until the end of the logarithmic growth phase, and then solid alginate was added as 1 g/L every 3 h. Meanwhile, initial pH 5.0 and natural pH during fermentation was favorable for alginate lyase production. After optimization, the highest alginate lyase production reached 52.8 U/mL, which was 329 % higher than the control. Finally, fermentation scale-up was performed in 30-L bioreactor and the maximum alginate lyase production was obtained as 46.8 U/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号