首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activation of 5-lipoxygenase (5-LO) involves its calcium-dependent translocation to the nuclear envelope, where it catalyzes the two-step transformation of arachidonic acid into leukotriene A(4), leading to the synthesis of various leukotrienes. To understand the mechanism by which 5-LO is specifically targeted to the nuclear envelope, we studied the membrane binding properties of the amino-terminal domain of 5-LO, which has been proposed to have a C2 domain-like structure. The model building, electrostatic potential calculation, and in vitro membrane binding studies of the isolated C2-like domain of 5-LO and selected mutants show that this Ca(2+)-dependent domain selectively binds zwitterionic phosphatidylcholine, which is conferred by tryptophan residues (Trp(13), Trp(75), and Trp(102)) located in the putative Ca(2+)-binding loops. The spatiotemporal dynamics of the enhanced green fluorescence protein-tagged C2-like domain of 5-LO and mutants in living cells also show that the phosphatidylcholine selectivity of the C2-like domain accounts for the specific targeting of 5-LO to the nuclear envelope. Together, these results show that the C2-like domain of 5-LO is a genuine Ca(2+)-dependent membrane-targeting domain and that the subcellular localization of the domain is governed in large part by its membrane binding properties.  相似文献   

2.
Lipoxygenases (LOXs) catalyze the regio- and stereospecific dioxygenation of polyunsaturated membrane-embedded fatty acids. We report here the 3.2 A resolution structure of 8R-LOX from the Caribbean sea whip coral Plexaura homomalla, a LOX isozyme with calcium dependence and the uncommon R chiral stereospecificity. Structural and spectroscopic analyses demonstrated calcium binding in a C2-like membrane-binding domain, illuminating the function of similar amino acids in calcium-activated mammalian 5-LOX, the key enzyme in the pathway to the pro-inflammatory leukotrienes. Mutation of Ca(2+)-ligating amino acids in 8R-LOX resulted not only in a diminished capacity to bind membranes, as monitored by fluorescence resonance energy transfer, but also in an associated loss of Ca(2+)-regulated enzyme activity. Moreover, a structural basis for R chiral specificity is also revealed; creation of a small oxygen pocket next to Gly(428) (Ala in all S-LOX isozymes) promoted C-8 oxygenation with R chirality on the activated fatty acid substrate.  相似文献   

3.
5-Lipoxygenase (5-LO) catalysis is positively regulated by Ca2+ ions and phospholipids that both act via the N-terminal C2-like domain of 5-LO. Previously, we have shown that 1-oleoyl-2-acetylglycerol (OAG) functions as an agonist for human polymorphonuclear leukocytes (PMNL) in stimulating 5-LO product formation. Here we have demonstrated that OAG directly stimulates 5-LO catalysis in vitro. In the absence of Ca2+ (chelated using EDTA), OAG strongly and concentration-dependently stimulated crude 5-LO in 100,000 x g supernatants as well as purified 5-LO enzyme from PMNL. Also, the monoglyceride 1-O-oleyl-rac-glycerol and 1,2-dioctanoyl-sn-glycerol were effective, whereas various phospholipids did not stimulate 5-LO. However, in the presence of Ca2+, OAG caused no stimulation of 5-LO. Also, phospholipids or cellular membranes abolished the effects of OAG. As found previously for Ca2+, OAG renders 5-LO activity resistant against inhibition by glutathione peroxidase activity, and this effect of OAG is reversed by phospholipids. Intriguingly, a 5-LO mutant lacking tryptophan residues (Trp-13, -75, and -102) important for the binding of the 5-LO C2-like domain to phospholipids was not stimulated by OAG. We conclude that OAG directly stimulates 5-LO by acting at a phospholipid binding site located within the C2-like domain.  相似文献   

4.
Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol produced during stimulus-induced phosphoinositide turnover and attenuate protein kinase C activation. Diacylglycerol kinase alpha is an 82-kDa DGK isoform that is activated in vitro by Ca(2+). The DGK alpha regulatory region includes tandem C1 protein kinase C homology domains and Ca(2+)-binding EF hand motifs. It also contains an N-terminal recoverin homology (RVH) domain that is related to the N termini of the recoverin family of neuronal calcium sensors. To probe the structural basis of Ca(2+) regulation, we expressed a series of DGK alpha deletions spanning its regulatory domain in COS-1 cells. Deletion of the RVH domain resulted in loss of Ca(2+)-dependent activation. Further deletion of the EF hands resulted in a constitutively active enzyme, suggesting that sequences in or near the EF hands are sufficient for autoinhibition. Binding of Ca(2+) to the EF hands protected sites within both the RVH domain and EF hands from trypsin cleavage and increased the phenyl-Sepharose binding of a recombinant DGK alpha fragment that included both the RVH domain and EF hands. These observations suggested that Ca(2+) elicits a concerted conformational change of these two domains. A cationic amphiphile, octadecyltrimethylammonium chloride, also activated DGK alpha. As with Ca(2+), this activation required the RVH domain. However, this agent did not protect the EF hands and RVH domain from trypsin cleavage. These findings indicate that the EF hands and RVH domain act as a functional unit during Ca(2+)-induced DGK alpha activation.  相似文献   

5.
Isotope labeling of recombinant normal cardiac troponin C (cTnC3) with 15N-enriched amino acids and multidimensional NMR were used to assign the downfield-shifted amide protons of Gly residues at position 6 in Ca(2+)-binding loops II, III, and IV, as well as tightly hydrogen-bonded amides within the short antiparallel beta-sheets between pairs of Ca(2+)-binding loops. The amide protons of Gly70, Gly110, and Gly146 were found to be shifted significantly downfield from the remaining amide proton resonances in Ca(2+)-saturated cTnC3. No downfield-shifted Gly resonance was observed from the naturally inactive site I. Comparison of downfield-shifted amide protons in the Ca(2+)-saturated forms of cTnC3 and CBM-IIA, a mutant having Asp65 replaced by Ala, demonstrated that Gly70 is hydrogen bonded to the carboxylate side chain of Asp65. Thus, the hydrogen bond between Gly and Asp in positions 6 and 1, respectively, of the Ca(2+)-binding loop appears crucial for maintaining the integrity of the helix-loop-helix Ca(2+)-binding sites. In the apo- form of cTnC3, only Gly70 was found to be shifted significantly downfield with respect to the remaining amide proton resonances. Thus, even in the absence of Ca2+ at binding site II, the amide proton of Gly70 is strongly hydrogen bonded to the side-chain carboxylate of Asp65. The amide protons of Ile112 and Ile148 in the C-terminal domain and Ile36 in the N-terminal domain data-sheets exhibit chemical shifts consistent with hydrogen-bond formation between the pair of Ca(2+)-binding loops in each domain of Ca(2+)-saturated cTnC3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The apoptosis-linked protein ALG-2 is a Ca(2+)-binding protein that belongs to the penta-EF-hand (PEF) protein family. ALG-2 forms a homodimer, a heterodimer with another PEF protein, peflin, and a complex with its interacting protein, named Alix or AIP1. We previously identified annexin XI as a novel ALG-2-binding partner. Both the N-terminal regulatory domain of annexin XI (Anx11N) and the ALG-2-binding domain of Alix/AIP1 are rich in Pro, Gly, Ala, Tyr and Gln. This PGAYQ-biased amino acid composition is also found in the N-terminal extension of annexin VII (Anx7N). Using recombinant ALG-2 proteins and the glutathione S-transferase (GST) fusion proteins of Anx7N and Anx11N, the direct Ca(2+)-dependent interaction was analyzed by a biotin-tagged ALG-2 overlay assay and by a real-time interaction analysis with a surface plasmon resonance (SPR) biosensor. Both GST-Anx7N and GST-Anx11N showed similar binding kinetics against ALG-2 as well as ALG-2-DeltaN23, which lacked the hydrophobic N-terminal region. Two binding sites were predicted in both Anx7N and Anx11N, and the dissociation constants (K(d)) were estimated to be approximately 40-60 nM for the high-affinity site and 500-700 nM for the low-affinity site.  相似文献   

7.
Hosfield CM  Elce JS  Davies PL  Jia Z 《The EMBO journal》1999,18(24):6880-6889
The combination of thiol protease activity and calmodulin-like EF-hands is a feature unique to the calpains. The regulatory mechanisms governing calpain activity are complex, and the nature of the Ca(2+)-induced switch between inactive and active forms has remained elusive in the absence of structural information. We describe here the 2.6 A crystal structure of m-calpain in the Ca(2+)-free form, which illustrates the structural basis for the inactivity of calpain in the absence of Ca(2+). It also reveals an unusual thiol protease fold, which is associated with Ca(2+)-binding domains through heterodimerization and a C(2)-like beta-sandwich domain. Strikingly, the structure shows that the catalytic triad is not assembled, indicating that Ca(2+)-binding must induce conformational changes that re-orient the protease domains to form a functional active site. The alpha-helical N-terminal anchor of the catalytic subunit does not occupy the active site but inhibits its assembly and regulates Ca(2+)-sensitivity through association with the regulatory subunit. This Ca(2+)-dependent activation mechanism is clearly distinct from those of classical proteases.  相似文献   

8.
CaBP1 is a Ca(2+)-binding protein that regulates the gating of voltage-gated (Ca(V)) Ca(2+) channels. In the Ca(V)1.2 channel α(1)-subunit (α(1C)), CaBP1 interacts with cytosolic N- and C-terminal domains and blunts Ca(2+)-dependent inactivation. To clarify the role of the α(1C) N-terminal domain in CaBP1 regulation, we compared the effects of CaBP1 on two alternatively spliced variants of α(1C) containing a long or short N-terminal domain. In both isoforms, CaBP1 inhibited Ca(2+)-dependent inactivation but also caused a depolarizing shift in voltage-dependent activation and enhanced voltage-dependent inactivation (VDI). In binding assays, CaBP1 interacted with the distal third of the N-terminal domain in a Ca(2+)-independent manner. This segment is distinct from the previously identified calmodulin-binding site in the N terminus. However, deletion of a segment in the proximal N-terminal domain of both α(1C) isoforms, which spared the CaBP1-binding site, inhibited the effect of CaBP1 on VDI. This result suggests a modular organization of the α(1C) N-terminal domain, with separate determinants for CaBP1 binding and transduction of the effect on VDI. Our findings expand the diversity and mechanisms of Ca(V) channel regulation by CaBP1 and define a novel modulatory function for the initial segment of the N terminus of α(1C).  相似文献   

9.
The crystal structure of a sarcoplasmic Ca(2+)-binding protein (SCP) from the sandworm Nereis diversicolor has been determined and refined at 2.0 A resolution using restrained least-squares techniques. The two molecules in the crystallographic asymmetric unit, which are related by a non-crystallographic 2-fold axis, were refined independently. The refined model includes all 174 residues and three calcium ions for each molecule, as well as 213 water molecules. The root-mean-square difference in co-ordinates for backbone atoms and calcium ions of the two molecules is 0.51 A. The final crystallographic R-factor, based on 18,959 reflections in the range 2.0 A less than or equal to d less than or equal to 7.0 A, with intensities exceeding 2.0 sigma, is 0.182. Bond lengths and bond angles in the molecules have root-mean-square deviations from ideal values of 0.013 A and 2.2 degrees, respectively. SCP has four distinct domains with the typical helix-loop-helix (EF-hand) Ca(2+)-binding motif, although the second Ca(2+)-binding domain is not functional due to amino acid changes in the loop. The structure shows several unique features compared to other Ca(2+)-binding proteins with four EF-hand domains. The overall structure is highly compact and globular with a predominant hydrophobic core, unlike the extended dumbbell-shaped structure of calmodulin or troponin C. A hydrophobic tail at the COOH terminus adds to the structural stability by packing against a hydrophobic pocket created by the folding of the NH2 and COOH-terminal Ca(2+)-binding domain pairs. The first and second domains show different helix-packing arrangements from any previously described for Ca(2+)-binding proteins.  相似文献   

10.
The amino acid sequence of a new Ca2+-binding protein (CaVP) from Amphioxus muscle (Cox, J. A., J. Biol. Chem. 261, 13173-13178) has been determined. The protein contains 161 amino acid residues and has a molecular weight of 18,267. The N terminus is blocked by an acetyl group. The two functional Ca2+-binding sites have been localized based on homology with known Ca2+-binding domains, on internal homology and on secondary structure prediction, and appear to be the domains III and IV. The C-terminal half of CaVP, which contains the two Ca2+-binding sites, shows a remarkable similarity with human brain calmodulin (45%) and with rabbit skeletal troponin C (40%). Functional domain III contains 2 epsilon-N-trimethyllysine residues in the alpha-helices flanking the Ca2+-binding loop. Sequence determination revealed two abortive Ca2+-binding domains in the N-terminal half of CaVP with a similarity of 24 and 30% as compared with calmodulin and troponin C, respectively. This half is also characterized by the presence of a disulfide bridge linking the N-terminal helix of domain I to the C-terminal helix of domain II. This disulfide bond is very resistant to reduction in the native state, but not in denatured CaVP. The optically interesting aromatic chromophores (2 tryptophan and 1 tyrosine residues) are all located in the nonfunctional domain II.  相似文献   

11.
Katanin p60 (p60-katanin) is a microtubule (MT)-severing enzyme and its activity is regulated by the p80 subunit (adaptor-p80). p60-katanin consists of an N-terminal domain, followed by a single ATPase associated with various cellular activities (AAA) domain. We have previously shown that the N-terminal domain serves as the binding site for MT, the substrate of p60-katanin. In this study, we show that the same domain shares another interface with the C-terminal domain of adaptor-p80. We further show that Ca(2+) ions inhibit the MT-severing activity of p60-katanin, whereas the MT-binding activity is preserved in the presence of Ca(2+). In detail, the basal ATPase activity of p60-katanin is stimulated twofold by both MTs and the C-terminal domain of adaptor-p80, whereas Ca(2+) reduces elevated ATPase activity to the basal level. We identify the Ca(2+) -binding site at the end of helix 2 of the N-terminal domain, which is different from the MT-binding interface. On the basis of these observations, we propose a speculative model in which spatial rearrangement of the N-terminal domain relative to the C-terminal AAA domain may be important for productive ATP hydrolysis towards MT-severing. Our model can explain how Ca(2+) regulates both severing and ATP hydrolysis activity, because the Ca(2+) -binding site on the N-terminal domain moves close to the AAA domain during MT severing.  相似文献   

12.
C2 domains are widespread protein modules that often occur as tandem repeats in many membrane-trafficking proteins such as synaptotagmin and rabphilin. The first and second C2 domains (C2A and C2B, respectively) have a high degree of homology but also specific differences. The structure of the C2A domain of synaptotagmin I has been extensively studied but little is known about the C2B domains. We have used NMR spectroscopy to determine the solution structure of the C2B domain of rabphilin. The overall structure of the C2B domain is very similar to that of other C2 domains, with a rigid beta-sandwich core and loops at the top (where Ca2+ binds) and the bottom. Surprisingly, a relatively long alpha-helix is inserted at the bottom of the domain and is conserved in all C2B domains. Our results, together with the Ca(2+)-independent interactions observed for C2B domains, indicate that these domains have a Janus-faced nature, with a Ca(2+)-binding top surface and a Ca(2+)-independent bottom surface.  相似文献   

13.
Recently, we reported that in crude enzyme preparations, a monocyte-derived soluble protein (M-DSP) renders 5-lipoxygenase (5-LO) activity Ca2+-dependent. Here we provide evidence that this M-DSP is glutathione peroxidase (GPx)-1. Thus, the inhibitory effect of the M-DSP on 5-LO could be overcome by the GPx-1 inhibitor mercaptosuccinate and by the broad spectrum GPx inhibitor iodoacetate, as well as by addition of 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13(S)-HPODE). Also, the chromatographic characteristics and the estimated molecular mass (80-100 kDa) of the M-DSP fit to GPx-1 (87 kDa), and GPx-1, isolated from bovine erythrocytes, mimicked the effects of the M-DSP. Intriguingly, only a trace amount of thiol (10 micro M GSH) was required for reduction of 5-LO activity by GPx-1 or the M-DSP. Moreover, the requirement of Ca2+ allowing 5-LO product synthesis in various leukocytes correlated with the respective GPx-1 activities. Mutation of the Ca2+ binding sites within the C2-like domain of 5-LO resulted in strong reduction of 5-LO activity by M-DSP and GPx-1, also in the presence of Ca2+. In summary, our data suggest that interaction of Ca2+ at the C2-like domain of 5-LO protects the enzyme against the effect of GPx-1. Apparently, in the presence of Ca2+, a low lipid hydroperoxide level is sufficient for 5-LO activation.  相似文献   

14.
Weljie AM  Gagné SM  Vogel HJ 《Biochemistry》2004,43(48):15131-15140
Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.  相似文献   

15.
Calcium-binding epidermal growth factor (EGF)-like modules are found in numerous extracellular and membrane proteins involved in such diverse processes as blood coagulation, lipoprotein metabolism, determination of cell fate, and cell adhesion. Vitamin K-dependent protein S, a cofactor of the anticoagulant enzyme activated protein C, has four EGF-like modules in tandem with the three C-terminal modules each harbouring a Ca(2+)-binding consensus sequence. Recombinant fragments containing EGF modules 1-4 and 2-4 have two Ca(2+)-binding sites with dissociation constants ranging from 10(-8) to 10(-5) M. Module-module interactions that greatly influence the Ca(2+) affinity of individual modules have been identified. As a step towards an analysis of the structural basis of the high Ca(2+) affinity, we expressed the Ca(2+)-binding EGF pair 3-4 from human protein S. Correct folding was shown by (1)H NMR spectroscopy. Calcium-binding properties of the C-terminal module were determined by titration with chromophoric chelators; binding to the low-affinity N-terminal site was monitored by (1)H-(15)N NMR spectroscopy. At physiological pH and ionic strength, the dissociation constants for Ca(2+) binding were 1.0x10(-6) M and 4. 8x10(-3) M for modules 4 and 3, respectively, i.e. the calcium affinity of the C-terminal site was about 5000-fold higher than that of the N-terminal site. Moreover, the Ca(2+) affinity of EGF 4, in the pair 3-4, was about 9000-fold higher than that of synthetic EGF 4. The EGF modules in protein S are known to mediate the interaction with factor Xa. We have now found modules 3-4 to be involved in this interaction. However, the individual modules 3 and 4 manifested no measurable activity.  相似文献   

16.
Mukherjee S  Kuchroo K  Chary KV 《Biochemistry》2005,44(34):11636-11645
One of the calcium binding proteins from Entamoeba histolytica (EhCaBP) is a 134 amino acid residue long (M(r) approximately 14.9 kDa) double domain EF-hand protein containing four Ca(2+) binding sites. CD and NMR studies reveal that the Ca(2+)-free form (apo-EhCaBP) exists in a partially collapsed form compared to the Ca(2+)-bound (holo) form, which has an ordered structure (PDB ID ). Deuterium exchange studies on the partially structured apo-EhCaBP reveal that the C-terminal domain is better structured than the N-terminal domain. The protein can be reversibly folded and unfolded upon addition of Ca(2+) and EGTA, respectively. Titration shows a slow initial folding of the apo form with increasing Ca(2+) concentration, followed by a highly cooperative folding to its final state at a certain threshold of Ca(2+). Ca(2+) and the EGTA titration taken together show that site II in the N-terminal domain has the highest affinity for Ca(2+) contrary to earlier studies. Further, this study has thrown light on the relative Ca(2+) binding affinity and specificity of each site in the intact protein. A structural model for the partially collapsed form of apo-EhCaBP and its equilibrium folding to its completely folded holo state has been suggested. Large conformational changes seen in transforming from the apo to holo form of EhCaBP suggest that this protein should be functioning as a sensor protein and might have a significant role in host-parasite recognition.  相似文献   

17.
The apoptosis-linked protein ALG-2 is a Ca(2+)-binding protein that belongs to the penta-EF-hand protein family. ALG-2 forms a homodimer, a heterodimer with another penta-EF-hand protein, peflin, and a complex with its interacting protein, named AIP1 or Alix. By yeast two-hybrid screening using human ALG-2 as bait, we isolated a cDNA of a novel ALG-2-interacting protein, which turned out to be annexin XI. Deletion analysis revealed that ALG-2 interacted with the N-terminal domain of annexin XI (AnxN), which has an amino acid sequence similar to that of the C-terminal region of AIP1/Alix. Using recombinant biotin-tagged ALG-2 and the glutathione S-transferase (GST) fusion protein of AnxN, the direct interaction was analyzed by an ALG-2 overlay assay and by real-time interaction analysis with a surface plasmon resonance (SPR) biosensor. The dissociation constant (K(d)) was estimated to be approximately 70 nM. The Ca(2+)-dependent fluorescence change of ALG-2 in the presence of the hydrophobicity fluorescent probe 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was inhibited by mixing with GST-AnxN, suggesting that the Pro/Gly/Tyr/Ala-rich hydrophobic region in AnxN masked the Ca(2+)-dependently exposed hydrophobic surface of ALG-2.  相似文献   

18.
L-type (alpha(1C)) calcium channels inactivate rapidly in response to localized elevation of intracellular Ca(2+), providing negative Ca(2+) feedback in a diverse array of biological contexts. The dominant Ca(2+) sensor for such Ca(2+)-dependent inactivation has recently been identified as calmodulin, which appears to be constitutively tethered to the channel complex. This Ca(2+) sensor induces channel inactivation by Ca(2+)-dependent CaM binding to an IQ-like motif situated on the carboxyl tail of alpha(1C). Apart from the IQ region, another crucial site for Ca(2+) inactivation appears to be a consensus Ca(2+)-binding, EF-hand motif, located approximately 100 amino acids upstream on the carboxyl terminus. However, the importance of this EF-hand motif for channel inactivation has become controversial since the original report from our lab implicating a critical role for this domain. Here, we demonstrate not only that the consensus EF hand is essential for Ca(2+) inactivation, but that a four-amino acid cluster (VVTL) within the F helix of the EF-hand motif is itself essential for Ca(2+) inactivation. Mutating these amino acids to their counterparts in non-inactivating alpha(1E) calcium channels (MYEM) almost completely ablates Ca(2+) inactivation. In fact, only a single amino acid change of the second valine within this cluster to tyrosine (V1548Y) supports much of the functional knockout. However, mutations of presumed Ca(2+)-coordinating residues in the consensus EF hand reduce Ca(2+) inactivation by only approximately 2-fold, fitting poorly with the EF hand serving as a contributory inactivation Ca(2+) sensor, in which Ca(2+) binds according to a classic mechanism. We therefore suggest that while CaM serves as Ca(2+) sensor for inactivation, the EF-hand motif of alpha(1C) may support the transduction of Ca(2+)-CaM binding into channel inactivation. The proposed transduction role for the consensus EF hand is compatible with the detailed Ca(2+)-inactivation properties of wild-type and mutant V1548Y channels, as gauged by a novel inactivation model incorporating multivalent Ca(2+) binding of CaM.  相似文献   

19.
A molecule of the photoreceptor Ca(2+)-binding protein recoverin contains four potential EF-hand Ca(2+)-binding sites, of which only two, the second and the third, are capable of binding calcium ions. We have studied the effects of substitutions in the second, third and fourth EF-hand sites of recoverin on its Ca(2+)-binding properties and some other characteristics, using intrinsic fluorescence, circular dichroism spectroscopy and differential scanning microcalorimetry. The interaction of the two operating binding sites of wild-type recoverin with calcium increases the protein's thermal stability, but makes the environment around the tryptophan residues more flexible. The amino acid substitution in the EF-hand 3 (E121Q) totally abolishes the high calcium affinity of recoverin, while the mutation in the EF-hand 2 (E85Q) causes only a moderate decrease in calcium binding. Based on this evidence, we suggest that the binding of calcium ions to recoverin is a sequential process with the EF-hand 3 being filled first. Estimation of Ca(2+)-binding constants according to the sequential binding scheme gave the values 3.7 x 10(6) and 3.1 x 10(5) M(-1) for third and second EF-hands, respectively. The substitutions in the EF-hand 2 or 3 (or in both the sites simultaneously) do not disturb significantly either tertiary or secondary structure of the apo-protein. Amino acid substitutions, which have been designed to restore the calcium affinity of the EF-hand 4 (G160D, K161E, K162N, D165G and K166Q), increase the calcium capacity and affinity of recoverin but also perturb the protein structure and decrease the thermostability of its apo-form.  相似文献   

20.
Epidermal growth factor (EGF)-like modules are involved in protein-protein interactions and are found in numerous extracellular proteins and membrane proteins. Among these proteins are enzymes involved in blood coagulation, fibrinolysis and the complement system as well as matrix proteins and cell surface receptors such as the EGF precursor, the low density lipoprotein receptor and the developmentally important receptor, Notch. The coagulation enzymes, factors VII, IX and X and protein C, all have two EGF-like modules, whereas the cofactor of activated protein C, protein S, has four EGF-like modules in tandem. Certain of the cell surface receptors have numerous EGF modules in tandem. A subset of EGF modules bind one Ca(2+). The Ca(2+)-binding sequence motif is coupled to a sequence motif that brings about beta-hydroxylation of a particular Asp/Asn residue. Ca(2+)-binding to an EGF module is important to orient neighboring modules relative to each other in a manner that is required for biological activity. The Ca(2+) affinity of an EGF module is often influenced by its N-terminal neighbor, be it another EGF module or a module of another type. This can result in an increase in Ca(2+) affinity of several orders of magnitude. Point mutations in EGF modules that involve amino acids which are Ca(2+) ligands result in the biosynthesis of biologically inactive proteins. Such mutations have been identified, for instance, in factor IX, causing hemophilia B, in fibrillin, causing Marfan syndrome, and in the low density lipoprotein receptor, causing hypercholesterolemia. In this review the emphasis will be on the coagulation factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号