首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Two field-growing silver birch (Betula pendula Roth) clones (clone 4 and 80) were exposed to elevated CO2 and O3 over three growing seasons (1999–2001). In each year, the nutrients and cell wall chemistry of naturally abscised leaf litter were analyzed in order to determine the possible CO2- and O3-induced changes in the litter quality. Also CO2 and O3 effects on the early leaf litter decomposition dynamics (i.e. decomposition before the lignin decay has started) were studied with litter-bag experiments (Incubation 1 with 1999 leaf litter, Incubation 2 with 2000 leaf litter, and Incubation 3 with 2001 leaf litter) in a nearby silver birch forest. Elevated CO2 decreased N, S, C:P and α-cellulose concentrations, but increased P, hemicellulose and lignin+polyphenolic concentrations, C:N and lignin+polyphenolic:N in both clones. CO2 enrichment decreased the subsequent decomposition of leaves of clone 4 transiently (in Incubations 1 and 2), whereas elevated CO2 effects on the subsequent leaf decomposition of clone 80 were inconsistent. In contrast to CO2, O3 decreased P concentrations and increased C:P, but both of these trends were visible in elevated O3 treatment only. O3-induced decreases in Mn, Zn and B concentrations were observed also, but O3 effects on the cell wall chemistry of leaf litter were minor. Some O3-induced changes either became more consistent in leaf litter collected during 2001 (decrease in B concentrations) or appeared only in this litter lot (decrease in N concentrations, decrease in decomposition at the end of Incubation 3). In conclusion, in northern birch forests elevated CO2 and O3 levels have the potential to affect leaf litter quality, but consistent CO2 and O3 effects on the decomposition process remain to be validated.  相似文献   

2.
The future capacity of forest ecosystems to sequester atmospheric carbon is likely to be influenced by CO2-mediated shifts in nutrient cycling through changes in litter chemistry, and by interactions with pollutants like O3. We evaluated the independent and interactive effects of elevated CO2 (560 μl l−1) and O3 (55 nl l l−1) on leaf litter decomposition in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) at the Aspen free air CO2 enrichment (FACE) site (Wisconsin, USA). Fumigation treatments consisted of replicated ambient, +CO2, +O3, and +CO2 + O3 FACE rings. We followed mass loss and litter chemistry over 23 months, using reciprocally transplanted litterbags to separate substrate quality from environment effects. Aspen decayed more slowly than birch across all treatment conditions, and changes in decomposition dynamics of both species were driven by shifts in substrate quality rather than by fumigation environment. Aspen litter produced under elevated CO2 decayed more slowly than litter produced under ambient CO2, and this effect was exacerbated by elevated O3. Similarly, birch litter produced under elevated CO2 also decayed more slowly than litter produced under ambient CO2. In contrast to results for aspen, however, elevated O3 accelerated birch decay under ambient CO2, but decelerated decay under enriched CO2. Changes in decomposition rates (k-values) were due to CO2- and O3-mediated shifts in litter quality, particularly levels of carbohydrates, nitrogen, and tannins. These results suggest that in early-successional forests of the future, elevated concentrations of CO2 will likely reduce leaf litter decomposition, although the magnitude of effect will vary among species and in response to interactions with tropospheric O3.  相似文献   

3.
Chung H  Zak DR  Lilleskov EA 《Oecologia》2006,147(1):143-154
Atmospheric CO2 and O3 concentrations are increasing due to human activity and both trace gases have the potential to alter C cycling in forest ecosystems. Because soil microorganisms depend on plant litter as a source of energy for metabolism, changes in the amount or the biochemistry of plant litter produced under elevated CO2 and O3 could alter microbial community function and composition. Previously, we have observed that elevated CO2 increased the microbial metabolism of cellulose and chitin, whereas elevated O3 dampened this response. We hypothesized that this change in metabolism under CO2 and O3 enrichment would be accompanied by a concomitant change in fungal community composition. We tested our hypothesis at the free-air CO2 and O3 enrichment (FACE) experiment at Rhinelander, Wisconsin, in which Populus tremuloides, Betula papyrifera, and Acer saccharum were grown under factorial CO2 and O3 treatments. We employed extracellular enzyme analysis to assay microbial metabolism, phospholipid fatty acid (PLFA) analysis to determine changes in microbial community composition, and polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) to analyze the fungal community composition. The activities of 1,4-β-glucosidase (+37%) and 1,4,-β-N-acetylglucosaminidase (+84%) were significantly increased under elevated CO2, whereas 1,4-β-glucosidase activity (−25%) was significantly suppressed by elevated O3. There was no significant main effect of elevated CO2 or O3 on fungal relative abundance, as measured by PLFA. We identified 39 fungal taxonomic units from soil using DGGE, and found that O3 enrichment significantly altered fungal community composition. We conclude that fungal metabolism is altered under elevated CO2 and O3, and that there was a concomitant change in fungal community composition under elevated O3. Thus, changes in plant inputs to soil under elevated CO2 and O3 can propagate through the microbial food web to alter the cycling of C in soil.  相似文献   

4.
The consequences for plant-insect interactions of atmospheric changes in alpine ecosystems are not well understood. Here, we tested the effects of elevated CO2 on leaf quality in two dwarf shrub species (Vaccinium myrtillus and V. uliginosum) and the response of the alpine grasshopper (Miramella alpina) feeding on these plants in a field experiment at the alpine treeline (2,180 m a.s.l.) in Davos, Switzerland. Relative growth rates (RGR) of M. alpina nymphs were lower when they were feeding on V. myrtillus compared to V. uliginosum, and were affected by elevated CO2 depending on plant species and nymph developmental stage. Changes in RGR correlated with CO2-induced changes in leaf water, nitrogen, and starch concentrations. Elevated CO2 resulted in reduced female adult weight irrespective of plant species, and prolonged development time on V. uliginosum only, but there were no significant differences in nymphal mortality. Newly molted adults of M. alpina produced lighter eggs and less secretion (serving as egg protection) under elevated CO2. When grasshoppers had a choice among four different plant species grown either under ambient or elevated CO2, V. myrtillus and V. uliginosum consumption increased under elevated CO2 in females while it decreased in males compared to ambient CO2-grown leaves. Our findings suggest that rising atmospheric CO2 distinctly affects leaf chemistry in two important dwarf shrub species at the alpine treeline, leading to changes in feeding behavior, growth, and reproduction of the most important insect herbivore in this system. Changes in plant-grasshopper interactions might have significant long-term impacts on herbivore pressure, community dynamics and ecosystem stability in the alpine treeline ecotone.  相似文献   

5.
To test whether the impact of an enriched-CO2 environment on the growth and biomass allocation of first-season Quercus suber L. seedlings can modify the drought response under shade or sun conditions, seedlings were grown in pots at two CO2 concentrations × two watering regimes × two irradiances. Compared to CO2, light and water treatment had greater effects on all morphological traits measured (height, stem diameter, number of leaves, leaf area, biomass fractions). Cork oak showed particularly large increases in biomass in response to elevated CO2 under low-watered (W−) and high-illuminated conditions (L+). Allocation shifted from shoot to root under increasing irradiance (L+), but was not affected by CO2. Changes in allocation related to water limitation were only modest, and changed over time. Relative growth rate (RGR) and net assimilation rate (NAR) were significantly greatest in the L+/W+ treatment for both CO2 concentrations. Changes in RGR were mainly due to NAR. Growth responses to increased light, water or CO2 were strongest with light, medium with water availability and smallest for CO2, in terms of RGR. The rise in NAR for light and water treatments was counterbalanced by a decrease in SLA (specific leaf area) and LMF (leaf mass fraction). Results suggest that elevated CO2 caused cork oak seedlings to improve their performance in dry and high light environments to a greater extent than in well-irrigated and low light ones, thus ameliorating the effects of soil water stress and high light loads on growth.  相似文献   

6.
This study examined the effects of carbon dioxide (CO2)-, ozone (O3)-, and genotype-mediated changes in quaking aspen (Populus tremuloides) chemistry on performance of the forest tent caterpillar (Malacosoma disstria) and its dipteran parasitoid (Compsilura concinnata) at the Aspen Free-Air CO2 Enrichment (FACE) site. Parasitized and non-parasitized forest tent caterpillars were reared on two aspen genotypes under elevated levels of CO2 and O3, alone and in combination. Foliage was collected for determination of the chemical composition of leaves fed upon by forest tent caterpillars during the period of endoparasitoid larval development. Elevated CO2 decreased nitrogen levels but had no effect on concentrations of carbon-based compounds. In contrast, elevated O3 decreased nitrogen and phenolic glycoside levels, but increased concentrations of starch and condensed tannins. Foliar chemistry also differed between aspen genotypes. CO2, O3, genotype, and their interactions altered forest tent caterpillar performance, and differentially so between sexes. In general, enriched CO2 had little effect on forest tent caterpillar performance under ambient O3, but reduced performance (for insects on one aspen genotype) under elevated O3. Conversely, elevated O3 improved forest tent caterpillar performance under ambient, but not elevated, CO2. Parasitoid larval survivorship decreased under elevated O3, depending upon levels of CO2 and aspen genotype. Additionally, larval performance and masses of mature female parasitoids differed between aspen genotypes. These results suggest that host-parasitoid interactions in forest systems may be altered by atmospheric conditions anticipated for the future, and that the degree of change may be influenced by plant genotype.  相似文献   

7.
The impact of elevated CO2 (1000 μmol/mol) was assessed on the common weed,Arabidopsis thaliana (Landsberg erecta), which is used as a model plant system. Elevated CO2 stimulated relative growth rate (RGR) and leaf area gain ofArabidopsis beginning from the cotyledon stage and continuing through the juvenile stage. This early advantage in growth enabled the plants grown in elevated CO2 to gain more DW despite similar RGRs throughout the latter stages of development. The greater accumulation of DW in leaves grown in elevated CO2 resulted in a lower specific leaf area (SLA). However, the amount of cell wall investment per unit of leaf area, specific “wall” area (SWA), was similar indicating that elevated CO2 did not affect the distribution of cell carbon to the cell wall of leaves beyond that needed for cell and leaf expansion. Furthermore, cell wall composition changed with time due to developmental changes and was not affected by elevated CO2. Associated with the increase in RGR by elevated CO2 was a concomitant increase in the activity of UDP-Glc dehydrogenase (E.C. 1.1.1.22), a key enzyme in the nucleotide-sugar interconversion pathway necessary for biosynthesis of many cell-wall polysaccharides.  相似文献   

8.
Effects of elevated atmospheric CO2 (elevated CO2 vs. ambient CO2) and temperature (+0.67–0.79°C vs. ambient temperature) on the developmental life cycle of Spodoptera litura and the food utilization of the fourth‐instar larvae fed on soybean (resistant cultivar Lamar vs. susceptible landrace JLNMH) grown in open‐top chambers were studied from 2013 to 2015. The results indicated that: (i) compared with ambient CO2, elevated CO2 significantly prolonged the duration of larva and pupa, and adult longevity; significantly decreased the pupation rate, pupal weight, fecundity, the relative growth rate (RGR), efficiency of conversion of ingested food (ECI) and efficiency of conversion of digested food (ECD); and increased the relative consumption rate (RCR) and approximate digestibility (AD). (ii) Compared with ambient temperature, elevated temperature significantly shortened the duration of larva and pupa; significantly decreased the pupal weight; and increased the RGR, RCR, ECD and ECI. (iii) Compared with the susceptible soybean accession JLNMH, the resistant soybean cultivar Lamar significantly prolonged the duration of larva and pupa; significantly decreased the pupation rate, pupal weight, adult longevity, fecundity and RGR, RCR and AD; and increased the indexes of ECD. (iv) At elevated temperature, S. litura fed on resistant vs. susceptible cultivars showed opposite trends in the RGR, RCR, AD, ECD and ECI. In addition, elevated temperature under elevated CO2 significantly decreased the RGR (2014), ECD (2013 & 2014) and ECI (2013) and increased the AD (2013 & 2014) compared with other treatment combinations when S. litura fed on Lamar. Future climatic change of temperature and CO2 concentration would likely affect growth and food utilization of S. litura, with increased food intake, but the reduced fecundity may compensate for the increased food consumption, resulting in no significant reduction in insect‐induced yield loss in soybean production. Nevertheless, use of insect resistant soybean cultivars will aid in ecological management of S. litura and reduce the insecticide load in soybean production.  相似文献   

9.
高浓度二氧化碳和臭氧对蒙古栎叶片活性氧代谢的影响   总被引:3,自引:0,他引:3  
利用开顶箱熏蒸法,研究了高浓度O3(≈80 nmol·mol-1)和高浓度CO2(≈700 μmol·mol-1)及其复合处理对蒙古栎叶片活性氧代谢的影响.结果表明:高浓度O3显著增加了蒙古栎叶片超氧阴离子(O2)产生速率、过氧化氢(H2O2)和丙二醛(MDA)含量和电解质外渗率(P<0.05),显著降低了超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性和抗坏血酸(AsA)含量(P<0.05).高浓度CO2对蒙古栎叶片活性氧代谢影响不显著.高浓度O3和CO2复合处理的叶片O2产生速率、H2O2和MDA含量和电解质外渗率上升不明显,说明高浓度CO2缓解了高浓度O3对蒙古栎叶片的氧化胁迫.复合处理的叶片SOD、CAT、APX活性以及AsA和总酚含量显著高于O3处理的叶片(P<0.05),说明高浓度CO2缓解了高浓度O3对叶片抗氧化系统的消极影响.  相似文献   

10.
11.
den Hertog  J.  Stulen  I.  Lambers  H. 《Plant Ecology》1993,104(1):369-378
The response ofPlantago major ssp,pleiosperma plants, grown on nutrient solution in a climate chamber, to a doubling of the ambient atmospheric CO2 concentration was investigated. Total dry matter production was increased by 30% after 3 weeks of exposure, due to a transient stimulation of the relative growth rate (RGR) during the first 10 days. Thereafter RGR returned to the level of control plants. Photosynthesis, expressed per unit leaf area, was stimulated during the first two weeks of the experiment, thereafter it dropped and nearly reached the level of the control plants. Root respiration was not affected by increased atmospheric CO2 levels, whereas shoot, dark respiration was stimulated throughout the experimental period. Dry matter allocation over leaves stems and roots was not affected by the CO2 level. SLA was reduced by 10%, which can partly be explained by an increased dry matter content of the leaves. Both in the early and later stages of the experiment, shoot respiration accounted for a larger part of the carbon budget in plants grown at elevated atmospheric CO2. Shifts in the total carbon budget were mainly due to the effects on shoot respiration. Leaf growth accounted for nearly 50% of the C budget at all stages of the experiment and in both treatments.Abbreviations LAR leaf area ratio - LWR leaf weight ratio - RGR relative growth rate - R/S root to shoot ratio - RWR root weight ratio - SLA specific leaf area - SWR stem weight ratio  相似文献   

12.
Summary Detailed growth analysis in conjunction with information on leaf display and nitrogen uptake was used to interpret competition between Abutilon theophrasti, a C3 annual, and Amaranthus retroflexus, a C4 annual, under ambient (350 l l-1) and two levels of elevated (500 and 700 l l-1) CO2. Plants were grown both individually and in competition with each other. Competition caused a reduction in growth in both species, but for different reasons. In Abutilon, decreases in leaf area ratio (LAR) were responsible, whereas decreased unit leaf rate (ULR) was involved in the case of Amaranthus. Mean canopy height was lower in Amaranthus than Abutilon which may explain the low ULR of Amaranthus in competition. The decrease in LAR of Abutilon was associated with an increase in root/shoot ratio implying that Abutilon was limited by competition for below ground resources. The root/shoot ratio of Amaranthus actually decreased with competition, and Amaranthus had a much higher rate of nitrogen uptake per unit of root than did Abutilon. These latter results suggest that Amaranthus was better able to compete for below ground resources than Abutilon. Although the growth of both species was reduced by competition, generally speaking, the growth of Amaranthus was reduced to a greater extent than that of Abutilon. Regression analysis suggests that the success of Abutilon in competition was due to its larger starting capital (seed size) which gave it an early advantage over Amaranthus. Elevated CO2 had a positive effect upon biomass in Amaranthus, and to a lesser extent, Abutilon. These effects were limited to the early part of the experiment in the case of the individually grown plants, however. Only Amaranthus exhibited a significant increase in relative growth rate (RGR). In spite of the transitory effect of CO2 upon size in individually grown plants, level of CO2 did effect final biomass of competitively grown plants. Abutilon grown in competition with Amaranthus had a greater final biomass than Amaranthus at ambient CO2 levels, but this difference disappeared to a large extent at elevated CO2. The high RGR of Amaranthus at elevated CO2 levels allowed it to overcome the difference in initial size between the two species.This study was supported by a grant from the US Department of Energy  相似文献   

13.
Kellomäki  Seppo  Wang  Kai-Yun 《Plant Ecology》1998,136(2):229-248
Starting in early spring of 1994, naturally regenerated, 30-year-old Scots pine (Pinus sylvestris L.) trees were grown in open-top chambers and exposed in situ to doubled ambient O3,doubled ambient CO2 and a combination of O3 and CO2 from 15 April to 15 September. To investigate daily and seasonal responses of CO2 exchange to elevated O3 and CO2, the CO2 exchange of shoots was measured continuously by an automatic system for measuring gas exchange during the course of one year (from 1 Januray to 31 December 1996). A process-based model of shoot photosynthesis was constructed to quantify modifications in the intrinsic capacity of photosynthesis and stomatal conductance by simulating the daily CO2 exchange data from the field. Results showed that on most days of the year the model simulated well the daily course of shoot photosynthesis. Elevated O3 significantly decreased photosynthetic capacity and stomatal conductance during the whole photosynthetic period. Elevated O3 also led to a delay in onset of photosynthetic recovery in early spring and an increase in the sensitivity of photosynthesis to environmental stress conditions. The combination of elevated O3 and CO2 had an effect on photosynthesis and stomatal conductance similar to that of elevated O3 alone, but significantly reduced the O3-induced depression of photosynthesis. Elevated CO2 significantly increased the photosynthetic capacity of Scots pine during the main growing season but slightly decreased it in early spring and late autumn. The model calculation showed that, compared to the control treatment, elevated O3 alone and the combination of elevated O3 and CO2 decreased the annual total of net photosynthesis per unit leaf area by 55% and 38%, respectively. Elevated CO2 increased the annual total of net photosynthesis by 13%.  相似文献   

14.
Ross  D. J.  Tate  K. R.  Newton  P. C. D.  Clark  H. 《Plant and Soil》2002,240(2):275-286
Elevated concentrations of atmospheric CO2 can influence the relative proportions, biomass and chemical composition of plant species in an ecosystem and, thereby, the input of litter nutrients to soil. Plant growth under elevated CO2 appears to have no consistent effect on rates of litter decomposition; decomposition can, however, differ in C3 and C4 plant material from the same CO2 environment. We here describe the decomposability of leaf litter of two grass species – the C3 Holcus lanatus L. (Yorkshire fog) and C4 Pennisetum clandestinum Hochst. (kikuyu) - from an unfertilized, ungrazed grassland at a cold CO2 spring in Northland, New Zealand. Decomposability was measured by net CO2–C production from litter incubated for 56 days at 25 °C in a gley soil from the site; net mineral-N production from litter was also determined. Both litter and soils were sampled under `low' and `high' concentrations of atmospheric CO2. Decomposition of H. lanatus litter was greater than that of P. clandestinum litter throughout the 56-day incubation. Decomposition tended to be greater in `high-CO2' than in `low-CO2' H. lanatus litter, but lower in `high-CO2' than `low-CO2' P. clandestinum litter; differences were, however, non-significant after 28 days. Overall, litter decomposition was greater in the `low-CO2' than `high-CO2' soil. Differences in decomposition rates were related negatively to litter N concentrations and positively to C:N ratios, but were not predictable from lignin:total N ratios. Net mineral-N production from litter decomposition did not differ significantly in `high-CO2' and `low-CO2' samples incubated in `low-CO2' soil; in `high-CO2' soil some net immobilization was observed. Overall, results indicate the likely complexity of litter decomposition in the field but, nevertheless, strongly suggest that rates of decomposition will not necessarily decline in a `high-CO2' environment.  相似文献   

15.
Peterson AG  Neofotis PG 《Oecologia》2004,141(4):629-640
In this study we apply new extensions of classical growth analysis to assess the interactive effects of elevated CO2 and differences in water availability on the leaf-nitrogen and transpiration productivities of velvet mesquite (Prosopis velutina Woot.) seedlings. The models relate transpiration productivity (biomass gained per mass of water transpired per day) and leaf-nitrogen productivity (biomass gain per unit leaf N per day) to whole-plant relative growth rate (RGR) and to each other, allowing a comprehensive hierarchical analysis of how physiological and morphological responses to the treatments interact with each other to affect plant growth. Elevated CO2 led to highly significant increases in N and transpiration productivities but reduced leaf N per unit leaf area and transpiration per unit leaf area, resulting in no net effect of CO2 on the RGR of seedlings. In contrast, higher water availability led to an increase in leaf-tissue thickness or density without affecting leaf N concentration, resulting in a higher leaf N per unit leaf area and consequently a higher assimilatory capacity per unit leaf area. The net effect was a marginal increase in seedling RGR. Perhaps most important from an ecological perspective was a 41% reduction in whole-plant water use due to elevated CO2. These results demonstrate that even in the absence of CO2 effects on integrative measures of plant growth such as RGR, highly significant effects may be observed at the physiological and morphological level that effectively cancel each other out. The quantitative framework presented here enables some of these tradeoffs to be identified and related directly to each other and to plant growth.  相似文献   

16.
Atmospheric change may affect plant phenolic compounds, which play an important part in plant survival. Therefore, we studied the impacts of CO2 and O3 on the accumulation of 27 phenolic compounds in the short‐shoot leaves of two European silver birch (Betula pendula Roth) clones (clones 4 and 80). Seven‐year‐old soil‐grown trees were exposed in open‐top chambers over three growing seasons to ambient and twice ambient CO2 and O3 concentrations singly and in combination in central Finland. Elevated CO2 increased the concentration of the phenolic acids (+25%), myricetin glycosides (+18%), catechin derivatives (+13%) and soluble condensed tannins (+19%) by increasing their accumulation in the leaves of the silver birch trees, but decreased the flavone aglycons (?7%) by growth dilution. Elevated O3 increased the concentration of 3,4′‐dihydroxypropiophenone 3‐β‐d ‐glucoside (+22%), chlorogenic acid (+19%) and flavone aglycons (+4%) by inducing their accumulation possibly as a response to increased oxidative stress in the leaf cells. Nevertheless, this induction of antioxidant phenolic compounds did not seem to protect the birch leaves from detrimental O3 effects on leaf weight and area, but may have even exacerbated them. On the other hand, elevated CO2 did seem to protect the leaves from elevated O3 because all the O3‐derived effects on the leaf phenolics and traits were prevented by elevated CO2. The effects of the chamber and elevated CO2 on some compounds changed over time in response to the changes in the leaf traits, which implies that the trees were acclimatizing to the altered environmental conditions. Although the two clones used possessed different composition and concentrations of phenolic compounds, which could be related to their different latitudinal origin and physiological characteristics, they responded similarly to the treatments. However, in some cases the variation in phenolic concentrations caused by genotype or chamber environment was much larger than the changes caused by either elevated CO2 or O3.  相似文献   

17.
M. F. Cotrufo  P. Ineson 《Oecologia》1996,106(4):525-530
The effect of elevated atmospheric CO2 and nutrient supply on elemental composition and decomposition rates of tree leaf litter was studied using litters derived from birch (Betula pendula Roth.) plants grown under two levels of atmospheric CO2 (ambient and ambient +250 ppm) and two nutrient regimes in solar domes. CO2 and nutrient treatments affected the chemical composition of leaves, both independently and interactively. The elevated CO2 and unfertilized soil regime significantly enhanced lignin/N and C/N ratios of birch leaves. Decomposition was studied using field litter-bags, and marked differences were observed in the decomposition rates of litters derived from the two treatments, with the highest weight remaining being associated with litter derived from the enhanced CO2 and unfertilized regime. Highly significant correlations were shown between birch litter decomposition rates and lignin/N and C/N ratios. It can be concluded, from this study, that at levels of atmospheric CO2 predicted for the middle of the next century a deterioration of litter quality will result in decreased decomposition rates, leading to reduction of nutrient mineralization and increased C storage in forest ecosystems. However, such conclusions are difficult to generalize, since tree responses to elevated CO2 depend on soil nutritional status.  相似文献   

18.
Lenssen  G. M.  Lamers  J.  Stroetenga  M.  Rozema  J. 《Plant Ecology》1993,(1):379-388
The growth response of Dutch salt marsh species (C3 and C4) to atmospheric CO2 enrichment was investigated. Tillers of the C3 speciesElymus athericus were grown in combinations of 380 and 720 11-1 CO2 and low (O) and high (300 mM NaCl) soil salinity. CO2 enrichment increased dry matter production and leaf area development while both parameters were reduced at high salinity. The relative growth response to CO2 enrichment was higher under saline conditions. Growth increase at elevated CO2 was higher after 34 than 71 days. A lower response to CO2 enrichment after 71 days was associated with a decreased specific leaf area (SLA). In two other experiments the effect of CO2 (380 and 720 11-1) on growth of the C4 speciesSpartina anglica was studied. In the first experiment total plant dry weight was reduced by 20% at elevated CO2. SLA also decreased at high CO2. The effect of elevated CO2 was also studied in combination with soil salinity (50 and 400 mM NaCl) and flooding. Again plant weight was reduced (10%) at elevated CO2, except under the combined treatment high salinity/non-flooded. But these effects were not significant. High salinity reduced total plant weight while flooding had no effect. Causes of the salinity-dependent effect of CO2 enrichment on growth and consequences of elevated CO2 for competition between C3 and C4 species are discussed.  相似文献   

19.
This study examined the effects of season-long exposure of Chinese pine (Pinus tabulaeformis) to elevated carbon dioxide (CO2) and/or ozone (O3) on indole-3-acetic acid (IAA) content, activities of IAA oxidase (IAAO) and peroxidase (POD) in needles. Trees grown in open-top chambers (OTC) were exposed to control (ambient O3, 55 nmol mol−1 + ambient CO2, 350 μmol mol−1, CK), elevated CO2 (ambient O3 + high CO2, 700 μmol mol−1, EC) and elevated O3 (high O3, 80 ± 8 nmol mol−1 + ambient CO2, EO) OTCs from 1 June to 30 September. Plants grown in elevated CO2 OTC had a growth increase of axial shoot and needle length, compared to control, by 20% and 10% respectively, while the growth in elevated O3 OTC was 43% and 7% less respectively, than control. An increase in IAA content and POD activity and decrease in IAAO activity were observed in trees exposed to elevated CO2 concentration compared with control. Elevated O3 decreased IAA content and had no significant effect on IAAO activity, but significantly increased POD activity. When trees pre-exposed to elevated CO2 were transferred to elevated O3 (EC–EO) or trees pre-exposed to elevated O3 were transferred to elevated CO2 (EO–EC), IAA content was lower while IAAO activity was higher than that transferred to CK (EC–CK or EO–CK), the change in IAA content was also related to IAAO activity. The results indicated that IAAO and POD activities in Chinese pine needles may be affected by the changes in the atmospheric environment, resulting in the change of IAA metabolism which in turn may cause changes in Chinese pine’s growth. An erratum to this article can be found at  相似文献   

20.
The anatomical features of leaves in 11 species of plants grown in a temperature gradient and a temperature + CO2 gradient were studied. The palisade parenchyma thickness, the spongy parenchyma thickness and the total leaf thickness were measured and analyzed to investigate the effects of elevated temperature and CO2 on the anatomical characteristics of the leaves. Our results show that with the increase of temperature, the leaf thickness of C4 species increased while the leaf thickness of C3 species showed no constant changes. With increased CO2, seven out of nine C3 species exhibited increased total leaf thickness. In C4 species, leaf thickness decreased. As for the trend on the multi-grades, the plants exhibited linear or non-linear changes. With the increase of temperature or both temperature and CO2 for the 11 species investigated, leaf thickness varied greatly in different plants (species) and even in different branches on the same plant. These results demonstrated that the effect of increasing CO2 and temperature on the anatomical features of the leaves were species-specific. Since plant structures are correlated with plant functions, the changes in leaf anatomical characteristics in elevated temperature and CO2 may lead to functional differences. Translated from Acta Ecologica Sinica, 2006, 26(2): 326–333 [译自: 生态学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号