首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Slowly cooled cells of an extreme thermophilic eubacterium Calderobacterium hydrogenophilum possess ribosomes with weakly associated subunits. These ribosomal subunits are capable of association to 70S ribosomes either at higher Mg2+ concentrations (30–40 mM) or at 4–10 mM Mg2+ and in the presence of polyamines. The contribution of 30S and 50S subunits to the hydrodynamic stability of ribosomes was examined by forming hybrid 30S–50S couples from C. hydrogenophilum and Escherichia coli. At lower Mg2+ (4–10 mM) heterogeneous subunits containing 30S E. coli and 50S C. hydrogenophilum and homogeneous subunits of the thermophilic bacterium associated only in the presence of polyamines. Ribosomal subunits associated at 30 mM Mg2+ lose thermal stability and activity concerning poly(AUG)-dependent binding of f[3H]Met-tRNA to the P-site on 70S ribosomes or translation of poly(UG). Poly(AUG), deacylated-tRNA or initiator-tRNA have no valuable effect on association of 30S and 50S subunits. Protein synthesis initiation factor IF3 of C. hydrogenophilum prevents association of ribosomal subunits to 70S ribosomes at physiological temperature (70°C). The factor also stimulates dissociation of 70S ribosomes of E. coli at 37°C. The codon-specific binding of f[3H]Met-tRNA to homogeneous 70S ribosomes of C. hydrogenophilum at 70°C is dependent on the presence of initiation factors and concentrations of tri-pentaamines. However, excess of polyamines inhibited the reaction. Our results indicate that tri-pentaamines enhance conformational stability of 70S initiation complex at elevated temperatures.  相似文献   

2.
The functional significance of ribosomal proteins is still relatively unclear. Here, we examined the role of small subunit protein S20 in translation using both in vivo and in vitro techniques. By means of lambda red recombineering, the rpsT gene, encoding S20, was removed from the chromosome of Salmonella enterica var. Typhimurium LT2 to produce a ΔS20 strain that grew markedly slower than the wild type while maintaining a wild-type rate of peptide elongation. Removal of S20 conferred a significant reduction in growth rate that was eliminated upon expression of the rpsT gene on a high-copy-number plasmid. The in vitro phenotype of mutant ribosomes was investigated using a translation system composed of highly active, purified components from Escherichia coli. Deletion of S20 conferred two types of initiation defects to the 30S subunit: (i) a significant reduction in the rate of mRNA binding and (ii) a drastic decrease in the yield of 70S complexes caused by an impairment in association with the 50S subunit. Both of these impairments were partially relieved by an extended incubation time with mRNA, fMet-tRNAfMet, and initiation factors, indicating that absence of S20 disturbs the structural integrity of 30S subunits. Considering the topographical location of S20 in complete 30S subunits, the molecular mechanism by which it affects mRNA binding and subunit docking is not entirely obvious. We speculate that its interaction with helix 44 of the 16S ribosomal RNA is crucial for optimal ribosome function.  相似文献   

3.
Ribosomes from the psychrotroph,Bacillus insolitus, were successfully dissociated into 30S and 50S ribosomal subunits, which were active in carrying out in vitro protein synthesis, measured by the poly U-directed incorporation of14C-l-phenylalanine into polyphenylalanine. As opposed to the undissociated ribosomes, which are heat sensitive (30°C), the dissociated ribosomes were not thermally sensitive. The heat-sensitive component(s) was found to be removed from the ribosomes during dissociation into 30S and 50S ribosomal subunits; when added back to the ribosomal subunits, heat sensitivity was conferred.  相似文献   

4.
The accessibility of the 5'-end region of 16S rRNA (A8GAGUUUG15) inEscherichia coli ribosomes for complementary binding with the synthetic octanucleotide d(CAAACTCT) has been studied. Nonequilibrium gel-filtration was used to evaluate parameters of the binding of this oligonucleotide with free 16S rRNA, ribosomal subunits, and 70S ribosomes. A simple approach is presented to calculate the apparent association constants and the number of binding sites based upon the data obtained under those conditions. Free 16S rRNA, 30S subunits, and 70S ribosomes were found to form rather stable complexes with the octanucleotide, the association constants being similar in all three cases. These data strongly suggest the surface location of the 16S rRNA 5'-end inE. coli ribosomes.  相似文献   

5.
The in vivo assembly of ribosomal subunits requires assistance by auxiliary proteins that are not part of mature ribosomes. More such assembly proteins have been identified for the assembly of the 50S than for the 30S ribosomal subunit. Here, we show that the RimP protein (formerly YhbC or P15a) is important for the maturation of the 30S subunit. A rimP deletion (ΔrimP135) mutant in Escherichia coli showed a temperature-sensitive growth phenotype as demonstrated by a 1.2-, 1.5-, and 2.5-fold lower growth rate at 30, 37, and 44 °C, respectively, compared to a wild-type strain. The mutant had a reduced amount of 70S ribosomes engaged in translation and showed a corresponding increase in the amount of free ribosomal subunits. In addition, the mutant showed a lower ratio of free 30S to 50S subunits as well as an accumulation of immature 16S rRNA compared to a wild-type strain, indicating a deficiency in the maturation of the 30S subunit. All of these effects were more pronounced at higher temperatures. RimP was found to be associated with free 30S subunits but not with free 50S subunits or with 70S ribosomes. The slow growth of the rimP deletion mutant was not suppressed by increased expression of any other known 30S maturation factor.  相似文献   

6.
Summary The appearance of a protein (association factor I) in ribosomes from Bacillus stearothermophilus at stationary phase of growth is described. Association factor I is present on 30S subunits and 30S–50S ribosomal couples, but not on 50S subunits. This protein is responsible for the low levels of polyphenylalanine synthesis shown by stationary phase ribosomes. Association factor I is able to bind to free 30S–50S ribosomal couples but not to polysomes, and exerts its effect by inhibiting the initiation step of protein synthesis. Ribosomes preincubated with association factor I have a decreased ability for polypeptide snythesis directed phage mRNA or poly(U).  相似文献   

7.
The interaction of ribosomal subunits from Escherichia coli has been studied using crosslinking reagents. Radioactive 35S-labeled 50 S subunits and non-radioactive 30 S subunits were allowed to reassociate to form 70 S ribosomes. The 70 S particles, containing radioactivity only in the 50 S protein moiety, were incubated with glutaraldehyde or formaldehyde. As a result of this treatment a substantial fraction of the 70 S particles did not dissociate at 1 mm-Mg2+. This fraction was isolated and the ribosomal proteins were extracted. The protein mixture was analyzed by the Ouchterlony double diffusion technique by using eighteen antisera prepared against single 30 S ribosomal proteins (all except those against S3, S15 and S17). As a result of the crosslinking procedure it was found that only anti-S16 co-precipitated 35S-labeled 50 S protein. It is concluded that the 30 S protein S16 is at or near the site of interaction between subunits and can become crosslinked to one or more 50 S ribosomal proteins.  相似文献   

8.
The reaction pattern with N-[14C]ethylmaleimide served to follow conformational changes of 30 S ribosomal subunits that are induced by association with 50 S subunits and by the binding of aminoacyl-tRNA to 70 S ribosomes either enzymatically or non-enzymatically.The usefulness of the reaction with N-ethylmaleimide in discerning different conformational forms of the ribosome was previously demonstrated (Ginzburg et al., 1973) in an analysis of inactive and active 30 S subunits (as obtained at low Mg2+ and after heat reactivation, respectively). The reaction pattern of the 30 S moiety of 70 S ribosomes differs from the pattern of isolated active subunits (the only form capable of forming 70 S ribosomes) in both the nature of the labeled proteins and in being Mg2+-dependent. The reaction at 10 mm-Mg2+ reveals the following differences between isolated and reassociated 30 S subunits: (1) proteins S1, S18 and S21 that are not labeled in isolated active subunits, but are labeled in the inactive subunits, are highly reactive in 70 S ribosomes; (2) proteins S2, S4, S12 and S17 that uniquely react with N-ethylmaleimide in active subunits are all rendered inaccessible to modification after association; and (3) proteins S9, S13 and S19, that react in both active and inactive 30 S subunits, are labeled to a lesser extent in the 70 S ribosomes than in isolated subunits. This pattern is altered in two respects when the reaction with the maleimide is carried out at 20 mm-Mg2+; protein S18 is not modified while S17 becomes labeled.The differences in reaction pattern are considered as manifesting the existence of different conformational forms of the 30 S subunit in the dissociated and associated states as well as of different forms of 70 S ribosomes. The 30 S moiety of 70 S ribosomes at 10 mm-Mg2+ resembles the inactive subunit, while some of the features of the active subunit are preserved in the 70 S ribosome at 20 mmMg2+. The structural changes appear to be expressed in the functioning of the ribosome: non-enzymatic binding of aminoacyl-tRNA to active 30 S subunits is suppressed by 50 S subunits at 10 mm but not at 20 mm-Mg2+ (Kaufmann &; Zamir, 1972). The fact that elongation factor Tu-mediated binding is not suppressed by 50 S subunits raises the possibility that the function of the elongation factor might involve the facilitation of a conformational change of the ribosome. The analysis of different ribosomal binding complexes with N-ethylmaleimide showed that the binding of poly(U) alone results in a decrease in the labeling of S1 and S18. Binding of aminoacyl-tRNA, on the other hand, is closely correlated with the exposure of S17 for reaction with the maleimide. A model is outlined that accounts for this correlation as well as for the proposed role of elongation factor Tu.  相似文献   

9.
The nucleotide at position 791(G791) of E. coli 16S rRNA was previously identified as an invariant residue for ribosomal function. In order to characterize the functional role of G791, base substitutions were introduced at this position, and mutant ribosomes were analyzed with regard to their protein synthesis ability, via the use of a specialized ribosome system. These ribosomal RNA mutations attenuated the ability of ribosomes to conduct protein synthesis by more than 65%. A transition mutation (G to A) exerted a moderate effect on ribosomal function, whereas a transversion mutation (G to C or U) resulted in a loss of protein synthesis ability of more than 90%. The sucrose gradient profiles of ribosomes and primer extension analysis showed that the loss of protein-synthesis ability of mutant ribosomes harboring a base substitution from G to U at position 791 stems partially from its inability to form 70S ribosomes. These findings show the involvement of the nucleotide at position 791 in the association of ribosomal subunits and protein synthesis steps after 70S formation, as well as the possibility of using 16S rRNA mutated at position 791 for the selection of second-site revertants in order to identify ligands that interact with G791 in protein synthesis.  相似文献   

10.
Summary The peptide antibiotic viomycin at a concentration of 10 M inhibits E. coli ribosomes to the extent of about 70% as measured in the poly(U) system, and to about 85% in a natural mRNA (R17) system. Ribosomes from M. smegmatis show no activity at all at this concentration of the antibiotic. Experiments on the Mg2+ dependent dissociation and association of the ribosomal subunits revealed that viomycin stabilizes the 70S couples and promotes association of ribosomal subunits. This response is related to the drug action as indicated by the observation that viomycin resistant strains are not affected by viomycin with respect to dissociation and 70S couple information. A model for the inhibitory action of the drug is proposed.  相似文献   

11.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

12.
Association of nascent polypeptide with 30S ribosomal subunits   总被引:1,自引:1,他引:0  
1. Crude extracts of Escherichia coli were used to synthesize nascent peptides under the direction of endogenous mRNA and in the presence of radioactive amino acids. Analysis of such extracts by sucrose-gradient centrifugation in low Mg2+ concentration has shown that after 2min of incubation approximately 14% of the total labelled protein recovered on the gradient, in association with whole ribosomes, sediments with 30S ribosomal subunits; this value rises to approximately 24% after 30min of incubation. The labelled protein associated with 30S ribosomal subunits is insoluble in hot trichloroacetic acid. 2. Similar results were also obtained in extracts that synthesized polypeptides under the direction of either of the synthetic polyribonucleotides poly(A) or poly(A,G,C,U). In contrast, however, analysis of crude extracts programmed in protein synthesis by poly(U) has indicated that under these conditions 30S ribosomal subunits have no associated polyphenylalanine; similarly there is little associated peptide after programming of extracts by poly(U,C).  相似文献   

13.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

14.
Free 80S ribosomes of eukaryotic organisms are dissociated by KCl (0.8–1.0 m) in the presence of 2-mercaptoethanol and magnesium ions (10–15mm); the large and small subunits so formed can be recombined to yield 80S monomers. We have now studied the ability of ribosomal subunits from protozoa (Tetrahymena pyriformis), fungi (Allomyces arbuscula, Saccharomyces cerevisiae), plants (pea, wheat), and mammals (rat, mouse, rabbit) to combine to form hybrid ribosomes. In general, both subunits of the species studied participate in the formation of hybrid particles, with the exception of the 60S subunit of Tetrahymena, which does not combine with the small subunit of fungal, plant, or mammalian ribosomes. The interaction of subunits from rat and Tetrahymena ribosomes has been visualized by an electron microscope study of negatively stained preparations. The base sequences of the ribosomal RNAs of these organisms have been compared to those of Saccharomyces by nucleic acid hybridization-competition.This work was supported by a fellowship #PF-529 from the American Cancer Society and by United States Public Health Service, National Institutes of Health grant GM 12449.  相似文献   

15.
70S ribosomes and 30S ribosomal subunits from Escherichia coli MRE 600 were exposed to gamma irradiation at -80szC. Exponential decline of activity with dose was observed when the ability of ribosomes to support the synthesis of polyphenylalanine was assayed. Irradiated ribosomes showed also an increased thermal lability. D37 values of 2.2 MR and 4.8 MR, corresponding to radiation-sensitive molecular weights of 3.1 × 105 and 1.4 × 105, were determined for inactivation of 70S ribosomes and 30S subunits, respectively. Zone sedimentation analysis of RNA isolated from irradiated bacteria or 30S ribosomal subunits showed that at average, one chain scission occurs per four hits into ribosomal RNA. From these results it was concluded that the integrity of only a part of ribosomal proteins (the sum of their molecular weights not exceeding 1.4 × 105) could be essential for the function of the 30S subunit in the polymerization of phenylalanine. This amount is smaller if the breaks in the RNA chain inactivate the ribosome.  相似文献   

16.
Summary A cytoplasmic mutant of Saccharomyces cerevisiae (E23-1) has been isolated that is resistant to erythromycin and cold sensitive for growth on nonfermentable carbon sources at 18°. Genetic analysis has shown that both of these properties probably result from a single mutation at the rib2 locus which maps close to or within the gene for the 21S rRNA of the mitochondrial 50S ribosomal subunit. Electrophoresis of total RNA extracted from purified mitochondria demonstrated that the 21S and 14S rRNA species from both mutant and wild-type cells were present in roughly equimolar quantities regardless of growth temperature. The mutant is therefore not defective in the synthesis of the 21S rRNA. Sucrose gradient analysis of the mitochondrial ribosomes in Mg2+-containing buffers revealed that approximate values for the ratio of 50S to 37S subunits were 1:1 for wild-type cells grown at either 18° or 32°, 0.5:1 for the mutant grown at 32° and 0.2:1 for the mutant grown at 18°. The subunit ratios were approximately 1:1 when Ca2+-containing buffers were used, however, In alls cases, 50S particles from the mutant grown at 18° lacked or contained markedly reduced amounts of two distinctive protein components that were present in the mutant at 32° and in the wild-type at both temperatures. In addition, no intact 21S RNA could be recovered from the mitochondrial ribosomes of the mutant grown at the restrictive temperature, even in the presence of Ca2+. These findings indicate that mitochondrial 50S ribosomal subunits produced by the mutant at 18° are structurally defective and raise the possibility that the defect results from an alteration in the gene for 21S rRNA.A preliminary report of this work was presented at the meeting on The Molecular Biology of Yeast, Cold Spring Harbor Laboratory, August 18–22, 1977  相似文献   

17.
Modification of 30 S ribosomal subunits with kethoxal causes loss of their ability to associate with 50 S subunits under tight couple conditions. To identify those 16 S RNA sequences important for the association. 32P-labeled 30 S subunits were partially inactivated by reaction with kethoxal. The remaining association-competent 30 S subunits were selected from the modified population by their ability to form 70 S ribosomes. Comparison of kethoxal diagonal maps of the association-competent subunits with those of the total population of modified subunits reveals nine sites in 16 S RNA whose modification leads to loss of association activity. Eight of these sites were previously found to be protected from kethoxal attack and one was shown to have enhanced reactivity in 70 S ribosomes (Chapman &; Noller, 1977). As before, these sites are not distributed thoughout the molecule, but are found to be clustered in two regions, at the middle and at the 3′ terminus of the 16 S RNA chain.We interpret these findings in terms of a simple preliminary model for the functional organization of 16 S RNA, supported by the observations of other investigators, in which we divide the molecule into four domains. (1) Residues 1 to 600 are involved mainly in structural organization and assembly. (2) Residues 600 to 850 include sites which make contact with the 50 S subunit and are essential for subunit association. (3) Sites from the domain comprising residues 850 to 1350 line a pocket at the interface between the two ribosomal subunits. and contribute to the binding site(s) for transfer RNA. (4) Residues 1350 to 1541 also contain sequences which bind the 50 S subunit, but some sites in this domain alternatively participate in the initiation of protein synthesis.  相似文献   

18.
Phosphoprotein phosphatase activities which remove phosphoryl groups from ribosomal protein have been partially purified from rabbit reticulocytes by chromatography on DEAE-cellulose. Two major peaks of phosphoprotein phosphatase activity were observed when 40S ribosomal subunits, phosphorylated in vitro with cyclic AMP-regulated protein kinases and (γ-32P)ATP, were used as substrate. The phosphatase activity eluting at 0.14 M KCl was characterized further using ribosomal subunits phosphorylated in situ by incubation of intact reticulocytes with radioactive inorganic phosphate. Phosphate covalently bound to 40S ribosomal subunits and 80S ribosomes was removed by the phosphatase activity. The enzyme was not active with phosphorylated proteins associated with 60S ribosomal subunits.  相似文献   

19.
Ribopolymers of variable base composition and 5′-terminal structure were synthesized with polynucleotide phosphorylase. Under primer-dependent conditions, m7GpppGmpC (m7G-cap)2, its alkali-treated m7G ring-opened derivative, GpppGpC and ppGpC but not m7GpppGmpCp, m7GpppGm or GpppG were incorporated as 5′-termini. The ribopolymers were compared with reovirus mRNA, which contains m7G-cap, for their ability to form initiation complexes with wheat germ 40 S ribosomal subunits and 80 S ribosomes. The presence of 5′-terminal m7G was required for stable complex formation by some ribopolymers while for others binding was increased by two- to fourfold. The final level of binding observed was similar to that with reovirus mRNA. In addition to 5′-terminal m7G, the base composition of the ribopolymers markedly influenced binding. Some ribopolymers including m7G-cap (A)n did not bind significantly; m7G-cap (U)n formed 40 S complexes while m7G-cap (A,U)n bound to 80 S ribosomes. The ribopolymer m7G-cap (A2,U2,G)n directed protein synthesis as measured by amino acid incorporation into polypeptides, methionine tRNA association with 40 S complexes, and puromycin reactivity of 80 S-associated methionine and, like reovirus mRNA, its binding to ribosomes was inhibited by 7-methylguanosine 5′-monophosphate.  相似文献   

20.
The trmD operon is located at 56.7 min on the genetic map of the Escherichia coli chromosome and contains the genes for ribosomal protein (r-protein) S16, a 21-kDa protein (RimM, formerly called 21K), the tRNA (m1G37)methyltransferase (TrmD), and r-protein L19, in that order. Previously, we have shown that strains from which the rimM gene has been deleted have a sevenfold-reduced growth rate and a reduced translational efficiency. The slow growth and translational deficiency were found to be partly suppressed by mutations in rpsM, which encodes r-protein S13. Further, the RimM protein was shown to have affinity for free ribosomal 30S subunits but not for 30S subunits in the 70S ribosomes. Here we have isolated several new suppressor mutations, most of which seem to be located close to or within the nusA operon at 68.9 min on the chromosome. For at least one of these mutations, increased expression of the ribosome binding factor RbfA is responsible for the suppression of the slow growth and translational deficiency of a ΔrimM mutant. Further, the RimM and RbfA proteins were found to be essential for efficient processing of 16S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号