首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison of two methods of measuring liver mitochondrial redox state demonstrated that a linear correlation exists between acetoacetate/beta-hydroxybutyrate ratio in arterial blood (arterial ketone body ratio; AKBR) and oxidized flavoprotein/reduced pyridine nucleotide in human liver tissue (FP/PN) as measured by tissue fluorescence spectroscopy, such that [FP/PN] = 0.64 + 0.49 x [AKBR] (r = 0.84, P less than 0.001). This result supports the validity of AKBR as a method of measuring the hepatic mitochondrial redox state of pyridine nucleotide using arterial blood.  相似文献   

2.
It has been suggested that the x2 glycosphingolipid (GSL) could offer a structural basis for a P-like antigen activity found in blood group p individuals [Kannagi R., Fukuda, M.N., Hakomori, S. (1982) J. Biol. Chem. 257, 4438]. The structures of the x2 and sialosyl-x2 GSLs have been confirmed unequivocally as shown below by +FAB-MS, methylation analysis by GC-MS, and 1H-NMR. We have established a [formula: see text] monoclonal antibody (TH2) specific for the GalNAc beta 1----3Gal beta 1----4GlcNAc epitope, the terminal trisaccharide of x2 GSL. Application of MAb TH2 on TLC immunoblotting together with chemical analysis indicates the following points of interest: (i) the existence of extended type GSLs having the same x2 terminal structure; (ii) the chemical quantities of x2, sialosyl-x2, and extended x2 found in blood cells and in various tissues including carcinomas being nearly the same; (iii) considerably larger quantities of x2 and x2-derived structures found in blood samples of rare blood group p individuals. The accumulation of x2 and its derivatives in blood cells of p individuals is in contrast to the occurrence of these GSLs as extreme minor components in normal human red blood cells and tissues, and they may be responsible for the reported P-like activity in blood group p individuals [Naiki, M., & Marcus, D. M. (1977) J. Immunol. 119, 537].  相似文献   

3.
The changes in blood pressure, cardiac output, and total peripheral conductance evoked by the novel hypotensive arginine vasopressin (AVP) - like peptide, d(CH2)5[D-Tyr(Et)2,Arg3,Val4,Arg7,Eda9]AVP (HYPO-AVP), were recorded in conscious unrestrained Sprague-Dawley rats implanted with radiotelemetry pressure transducers and ultrasonic transit-time flowprobes. Intravenous infusions of 0.6, 1.0, 2.0, and 4.0 microg x kg(-1) x min(-1) of HYPO-AVP evoked dose-related decreases in blood pressure. At the lowest dose of 0.6 microg x kg(-1) x min(-1), the fall in blood pressure was associated with a small but significant increase in total peripheral conductance. Cardiac output was unchanged. In contrast, at the three higher doses of 1.0, 2.0, and 4.0 microg x kg(-1) x min(-1), the fall in blood pressure was related to a dramatic fall in cardiac output. Indeed, total peripheral conductance decreased, preventing blood pressure from falling further. These hemodynamic findings should help to direct future research into the mechanism of the putative hypotensive property of vasopressin, a property that attenuates the well established blood pressure elevating actions of the peptide.  相似文献   

4.
We have applied a multiple isotope dilution technique to examine junctional permeability of human umbilical vein endothelial cells (HUVEC) in vitro. Primary cultures were grown to confluence on porous Cytodex-3 microcarrier beads, packed into 0.3 ml columns (3 x 10(6) cells) and perfused at varying flow rates (0.3-1.2 ml/min) with HEPES-buffered Tyrodes solution containing unlabeled cyanocobalamin, insulin, and albumin. Columns were challenged periodically with mixtures of radioactive tracers of different molecular size. Permeability to 22Na+, [57Co]cyanocobalamin (1.3 kD), [125I]insulin (6 kD) or [125I]albumin (66 kD) was assessed relative to [131I]IgG (160 kD, impermeant reference tracer) by comparing column elution profiles. Although the single passage extraction of [125I]albumin by beads alone approximated 40%, the presence of confluent HUVEC rendered these beads effectively impermeable to albumin. High junctional extractions were measured for cyanocobalamin (0.79 +/- 0.02, n = 28) and insulin (0.51 +/- 0.05, n = 14) in cultures perfused at 0.3-0.4 ml/min, and tracer extraction decreased as perfusion rates increased. Permeability coefficients for cyanocobalamin (9.66 x 10(-5) cm/s) and insulin (4.18 x 10(-5) cm/s) increased significantly during perfusion with thrombin (10 U/ml) or cytochalasin D (1 microgram/ml), whereas permeability to albumin (0.39 x 10(-5) cm/s) remained unchanged. Morphological studies, using the glycocalyx stain ruthenium red, revealed that thrombin or cytochalasin D increased the penetration of the stain into junctions between endothelial cells.  相似文献   

5.
A hydroponic experiment has been carried out to study the influence of iodine species [iodide (I(-)), iodate ([Formula: see text]), and iodoacetic acid (CH(2)ICOO(-))] and concentrations on iodine uptake by water spinach. Results show that low levels of iodine in the nutrient solution can effectively stimulate the growth of biomass of water spinach. When iodine levels in the nutrient solution are from 0 to 1.0 mg/l, increases in iodine levels can linearly augment iodine uptake rate by the leafy vegetables from all three species of iodine, and the uptake effects are in the following order: [Formula: see text]. In addition, linear correlation was observed between iodine content in the roots and shoots of water spinach, and their proportion is 1:1. By uptake of I(-), vitamin C (Vit C) content in water spinach increased, whereas uptake of [Formula: see text] and CH(2)ICOO(-) decreased water spinach Vit C content. Furthermore, through uptake of I(-) and [Formula: see text], the nitrate content in water spinach was increased by different degrees.  相似文献   

6.
Experimental determinations of glucose carbon recycling using 14C or 13C glucose tracer often underestimate true Cori cycle activity because of dilution and exchange of isotope tracer through the tricarboxylic acid (TCA) cycle. The term glucose isotope recycling therefore is used to distinguish recycling of isotope from recycling of glucose carbon, the actual quantity of circulating glucose recycled. Recently, per-labeled glucose ([U-13C6]glucose) has been used to estimate glucose appearance rate and glucose isotope recycling. Chemical structural information determined by mass isotopomer analysis has been used to correct for dilution of isotope through the TCA cycle. In this report, we present experiments in the study of glucose turnover and recycling using [U-13C6]glucose. Methods of single injection and continuous infusion of [U-13C6]glucose are compared. A formula for the calculation of a dilution factor using TCA cycle parameters is derived. In this study of six rabbits, glucose turnover rate ranged from 3.4 to 8.8 mg/kg/min, and glucose m + 3 mass isotopomer recycling from 7 to 12%. The rate of pyruvate carboxylation (Y) was comparable to that of citrate synthetase, having an average relative flux of 0.89. Applying the correction factor for tracer dilution to the observed mass isotopomer recycling, we determined glucose carbon recycling (or Cori cycle activity) to be 22-35% of hepatic glucose output.  相似文献   

7.
We measured time course and extent of xanthine dehydrogenase (XD) to xanthine oxidase (XO) conversion in ischemic human and rat intestine. To model normothermic no-flow ischemia, we incubated fresh biopsies for 0, 2, 4, 8 and 16 h. At [Formula: See Text] XO was less in humans than in rats [Formula: See Text] while XD was essentially the same [Formula: See Text] After 16 h incubation at 37°C, there was no appreciable XD-to-XO conversion and no change in neither XO nor XD activity in human intestine. In contrast, the rat intestine had [Formula: See Text] ratio doubled in the first 2 h and then maintained that value until [Formula: See Text] In conclusion, no XO-to-XD conversion was appreciable after 16 h no-flow normothermic ischemia in human intestine; in contrast, XO activity in rats increased sharply after the onset of ischemia. An immunohistochemical labelling study shows that, whereas [Formula: See Text] expression in liver tissue is localised in both hepatocytes and endothelial cells, in the intestine that expression is mostly localised in epithelial cells. We conclude that XO may be considered as a major source of reactive oxygen species in rats but not in humans.  相似文献   

8.
The reduction by dithionite ion (in excess) of methemerythrin-anion adducts, Hr+X-, to deoxyhemerythrin, Hr degree, has been examined at 25 degrees and pH 6.3 and 8.2. The results accord with the scheme: S2O42- in equilibrium 2SO2- rapid Hr+X- in equilibrium Hr++X- k-1, k1 Hr++SO2- leads to PRODUCT k2 with X- = Br-, HCO2-, CNO-, and F-, k2[SO2-] greater than k1[X-], and the pseudo first-order rate constant, kobs (= k-1), is independent of [X-] and [S2O42-]. Only with X- = NCS- is k2[SO2-] approximately k1[X-] and kobs = a[S2O42-]1/2 (b[NCS-] + [S2OR2-]1/2)-1. Values at pH 6.3 of k-1 (sec-1) and k1 (M-1 sec-1), obtained by anation and anion displacement reactions, are 2.3 x 10(-3), 1.6 x 10(-2) (Br-); 1.5 x 10(-3), 1.2 x 10(-2) (HCO2-); 1.3 x 10(-4), 0.52 (CNO-) and approximately 2 x 10(-4), 3.3 x 10(-3) (CN-, pH 7.0). Values of k-1 from reduction and displacement methods are in good agreement with each other. The value of k2 (1.6 x 10(5) M-1 sec-1, pH 6.3) in somewhat smaller than that for reduction of the met form of hemoproteins. There is only a small effect of pH on rates. Direct reduction of Hr+CN- does not occur, in contrast with Mb+CN-.  相似文献   

9.
In this study we investigated the effect of pedal cadence on the cycling economy, accumulated oxygen deficit (AOD), maximal oxygen consumption (VO2max) and blood lactate transition thresholds of ten high-performance junior endurance cyclists [mean (SD): 17.4 (0.4) years; 183.8 (3.5) cm, 71.56 (3.75) kg]. Cycling economy was measured on three ergometers with the specific cadence requirements of: 90-100 rpm for the road dual chain ring (RDCR90-100 rpm) ergometer, 120-130 rpm for the track dual chain ring (TDCR120-130 rpm) ergometer, and 90-130 rpm for the track single chain ring (TSCR90-130 rpm) ergometer. AODs were then estimated using the regression of oxygen consumption (VO2) on power output for each of these ergometers, in conjunction with the data from a 2-min supramaximal paced effort on the TSCR90-130 rpm ergometer. A regression of VO2 on power output for each ergometer resulted in significant differences (P<0.001) between the slopes and intercepts that produced a lower AOD for the RDCR90-100 rpm [2.79 (0.43) l] compared with those for the TDCR120-130 rpm [4.11 (0.78) l] and TSCR90-130 rpm [4.06 (0.84) l]. While there were no statistically significant VO2max differences (P = 0.153) between the three treatments [RDCR90-100 rpm: 5.31 (0.24) l x min(-1); TDCR120-130 rpm; 5.33 (0.25) 1 x min(-1); TSCR90-130 rpm: 5.44 (0.27) l x min(-1)], all pairwise comparisons of the power output at which VO2max occurred were significantly different (P<0.001). Statistically significant differences were identified between the RDCR90-100 rpm and TDCR120-130 rpm tests for power output (P = 0.003) and blood lactate (P = 0.003) at the lactate threshold (Thla-), and for power output (P = 0.005) at the individual anaerobic threshold (Thiat). Our findings emphasise that pedal cadence specificity is essential when assessing the cycling economy, AOD and blood lactate transition thresholds of high-performance junior endurance cyclists.  相似文献   

10.
It has been demonstrated in various murine tumor models that radiolabeled RGD-peptides can be used for noninvasive determination of alphavbeta3 integrin expression. Introduction of sugar moieties improved the pharmacokinetic properties of these peptides and led to tracer with good tumor-to-background ratios. Here we describe the synthesis, radiolabeling, and the metabolic stability of a glycosylated RGD-peptide ([18F]Galacto-RGD) and give first radiation dose estimates for this tracer. The peptide was assembled on a solid support using Fmoc-protocols and cyclized under high dilution conditions. It was conjugated with a sugar amino acid, which can be synthesized via a four-step synthesis starting from pentaacetyl-protected galactose. For radiolabeling of the glycopeptide, 4-nitrophenyl-2-[18F]fluoropropionate was used. This prosthetic group allowed synthesis of [18F]Galacto-RGD with a maximum decay-corrected radiochemical yield of up to 85% and radiochemical purity >98%. The overall radiochemical yield was 29 +/- 5% with a total reaction time including final HPLC preparation of 200 +/- 18 min. The metabolic stability of [18F]Galacto-RGD was determined in mouse blood and liver, kidney, and tumor homogenates 2 h after tracer injection. The average fraction of intact tracer in these organs was approximately 87%, 76%, 69%, and 87%, respectively, indicating high in vivo stability of the radiolabeled glycopeptide. The expected radiation dose to humans after injection of [18F]Galacto-RGD has been estimated on the basis of dynamic PET studies with New Zealand white rabbits. According to the residence times in these animals the effective dose was calculated using the MIRDOSE 3.0 program as 2.2 x 10(-2) mGy/MBq. In conclusion, [18F]Galacto-RGD can be synthesized in high radiochemical yields and radiochemical purity. Despite the time-consuming synthesis of the prosthetic group 185 MBq of [18F]Galacto-RGD, a sufficient dose for patient studies, can be produced starting with approximately 2.2 GBq of [18F]flouride. Moreover, the fast excretion, the suitable metabolic stability and the low estimated radiation dose allow to evaluate this tracer in human studies.  相似文献   

11.
Measurement of venous function in vivo is inherently difficult. In this study, we used the Hilbert transform to examine the dynamic relationships between venous pressure and cardiac output (CO) in rainbow trout whose blood volume was continuously increased and decreased by ramp infusion and withdrawal (I/W). The dorsal aorta and ductus Cuvier were cannulated percutaneously and connected to pressure transducers; a flow probe was placed around the ventral aorta. Whole blood from a donor was then I/W via the dorsal aortic cannula at a rate of 10% of the estimated blood volume per minute, and the duration of I/W was varied from 40, 60, 80, 90, 120, 230, 240, 260, 300, and 340 s. Compliance [change in (delta) blood vol/deltavenous pressure] was 2.8 +/- 0.2 ml x mmHg-1x g-1 (N = 25 measurements; 6 fish with closed pericardium) and 2.8 +/- 0.3 ml. mmHg-1x kg-1 (N = 19 measurements, 4 fish with open pericardium). Compliance was positively correlated with the duration of I/W, indicative of cardiovascular reflex responses at longer I/W durations. In trout with closed pericardium, CO followed venous pressure oscillations with an average time lag of 4.2 +/- 1.0 s (N = 9); heart rate (HR) was inversely correlated with CO. These studies show that CO is entrained by modulation of venous pressure, not by HR. Thus, although trout have a rigid pericardium, venous pressure (vis-a-tergo), not cardiac suction (vis-a-fronte), appears to be the primary determinant of CO. Estimation of venous compliance by ramp-modulation of venous pressure is faster and less traumatic than classical capacitance measurements and appears applicable to a variety of vertebrate species, as does the Hilbert transform, which permits analysis of signals with disparate frequencies.  相似文献   

12.
Before and 7-12 days after an Himalayan expedition CO2 equilibration curves were determined in the blood plasma of 12 mountaineers by in vitro and in vivo CO2 titration; in vivo osmolality changes (delta Osm x deltaPCO2(-1), deltaOsm x delta pH(-1), where PCO2 is the partial pressure of CO2) during the latter experiments yielded estimates of whole body CO2 storage. In vitro -delta[HCO3-] x delta pH(-1) [nonbicarbonate buffer capacity (beta) of blood] was increased 7 days after descent [before 31.3 (SEM 0.4) mmol x kgH2O(-1), after 38.3 (SEM 3.9) mmol x kgH2O(-1); P<0.05] resulting from an increased proportion of young erythrocytes; in additional experiments an augmented beta was found in young (low density cells) compared to old cells [<1.097 g x ml(-1): 0.216 (SEM 0.028) mmol x gHb(-1), >1.100 g x ml(-1): 0.145 (SEM 0.013) mmol x gHb(-1), where Hb is haemoglobin; P < 0.02]. In spite of increased Hb mass in vivo delta[CO2total] x deltaPCO2(-1) [0.192 (SEM 0.010) mmol x kgH2O(-1) x mmHg(-1)] and -delta[HCO3-] x delta pH(-1) [17.9 (SEM 1.0) mmol x kgH2O(-1)] as indicators of extracellular beta rose only slightly after altitude (7 days +16%, P<0.02; +7%, NS) because of haemodilution. The deltaOsm x deltaPCO2(-1) [0.230 (SEM 0.015) mosmol x kgH2O(-1) x mmHg(-1)] remained unchanged. Prealtitude differences in deltaOsm x delta pH(-1) between hypercapnia [-41 (SEM 5) mosmol x kgH2O(-1)] and hypocapnia [-20 (SEM 3) mosmol x kgH2O(-1); P<0.01] disappeared temporarily after return since the former slope was reduced. The high value during hypercapnia before ascent probably resulted from mechanisms stabilizing intracellular pH during moderate hypercapnia which were attenuated after descent.  相似文献   

13.
To assess the effects of inordinate physical inactivity on the distensibility of the aorta we measured aortic pulse wave velocity (APWV) and estimated physical activity index (PAI) by a 7-day total activity recall in visually impaired subjects. A group of 12 blind students (blind group) and 28 sighted male students, including 14 runners (runner group) and 14 sedentary subjects (sedentary group), participated in this study. There were no significant differences in body height, body mass, or blood pressure among the three groups. The PAI of the blind group [310 (SD 330) kcal x week(-1)] was significantly lower than that of the runner group [6300 (SD 1920) kcal week(-1), P < 0.0001] and the sedentary group [810 (SD 780) kcal x week(-1); P < 0.05]. The PAI of the runner group (P < 0.0001) was significantly higher than that of the sedentary group. The APWV and APWV index (standardized APWV for diastolic blood pressure: APWVI) of the runner group [5.22 (SD 0.42) m x s(-1) and 5.54 (SD 0.57) m x s(-1) P < 0.01, respectively] were significantly lower than those of the sedentary group [5.88 (SD 0.51) m x s(-1) and 6.16 (SD 0.48) m x s(-1)]. The APWV and APWVI of the blind group [5.29 (SD 0.49) m x s(-1) and 5.40 (SD 0.60) m x s(-1) P < 0.01, respectively] were significantly lower than those of the sedentary group, but there was no significant difference in the values of the APWV and APWVI between the blind and runner groups. These results would suggest that increased physical activity provides subjects with a distensible aorta, as does the inordinately decreased physical activity in the blind.  相似文献   

14.
Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output during repeated bouts of short-term maximal exercise. On two separate occasions, seven healthy males performed two 30-s bouts of sprint exercise (sprints I and II), with 4 min of passive recovery in between, on a cycle ergometer. The sprints were performed in both a normal environment [18.7 (1.5) degrees C, 40 (7)% relative humidity (RH; mean SD)] and a hot environment [30.1 (0.5) degrees C, 55 (9)% RH]. The order of exercise trials was randomised and separated by a minimum of 4 days. Mean power, peak power and decline in power output were calculated from the flywheel velocity after correction for flywheel acceleration. Peak power output was higher when exercise was performed in the heat compared to the normal environment in both sprint I [910 (172) W vs 656 (58) W; P < 0.01] and sprint II [907 (150) vs 646 (37) W; P < 0.05]. Mean power output was higher in the heat compared to the normal environment in both sprint I [634 (91) W vs 510 (59) W; P < 0.05] and sprint II [589 (70) W vs 482 (47) W; P < 0.05]. There was a faster rate of fatigue (P < 0.05) when exercise was performed in the heat compared to the normal environment. Arterialised-venous blood samples were taken for the determination of acid-base status and blood lactate and blood glucose before exercise, 2 min after sprint I, and at several time points after sprint II. Before exercise there was no difference in resting acid-base status or blood metabolites between environmental conditions. There was a decrease in blood pH, plasma bicarbonate and base excess after sprint I and after sprint II. The degree of post-exercise acidosis was similar when exercise was performed in either of the environmental conditions. The metabolic response to exercise was similar between environmental conditions; the concentration of blood lactate increased (P < 0.01) after sprint I and sprint II but there were no differences in lactate concentration when comparing the exercise bouts performed in a normal and a hot environment. These data demonstrate that when brief intense exercise is performed in the heat, peak power output increases by about 25% and mean power output increases by 15%; this was due to achieving a higher pedal cadence in the heat.  相似文献   

15.
A radioimmunoassay (RIA) for human pro-LRF(14-69)OH was developed with an antiserum, generated in a rabbit, to [Tyr67]pro-LRF(47-67)NH2 conjugated to BSA. This antiserum bound 28-32% of [125I]pro-LRF(14-69)OH at a final dilution of 1:2500 and the binding was inhibited by pro-LRF(14-69)OH in a dose-dependent manner. The sensitivity of the RIA was 31.2-62.5 pg and the dose that inhibited 50% of the binding to the tracer was 280-320 pg. Intra- and inter-assay coefficients of variation at 50% inhibition were 8 and 12%, respectively. Neither LRF nor pro-LRF(14-37)OH was recognized by the antiserum. The dilution curve generated with human hypothalamic extract was parallel to that of pro-LRF(14-69)OH. In addition the extract yielded a major immunoreactive peak emerging in elution volumes concordant with [125I]pro-LRF(14-69)OH on Sephadex G-50 chromatography.  相似文献   

16.
The general unireactant modifier mechanism in the absence of product can be described by the following linked reactions: E + S k1 in equilibrium k-1 ES k3----E + P; E + I k5 in equilibrium k-5 EI; EI + S k2 in equilibrium k-2 ESI k4----EI + P; and ES + I k6 in equilibrium k-6 ESI where S is a substrate and I is an effector. A full steady state treatment yields a velocity equation that is second degree in both [S] and [I]. Two different conditions (or assumptions) permit reduction of the velocity equation to one that is first degree in [S] and [I]. These are (a) that k-2k3 = k-1k4 (Frieden, C., J. Biol. Chem. 239, pp. 3522-3531, (1964)) and (b) that the I-binding reactions are at equilibrium (Reinhart, G. D., Arch. Biochem. Biophys. 224, pp. 389-401 (1983)). It is shown that each condition gives rise to the other (i.e., if the I-binding reactions are at equilibrium, then k-2k3 must equal k-1k4 and vice-versa). If one assumes equilibrium for the I-binding steps, the velocity equation derived by the method of Cha (J. Biol. Chem. 243, pp. 820-825 (1968)) is apparently second degree in [I] (Segel, I. H., Enzyme Kinetics, p. 838, Wiley-Interscience (1975)), but reduces to a first degree equation when the relationship derived by Frieden is inserted. If one starts by assuming a single equilibrium condition for I binding, e.g., k-5[EI] = k5[E][I] or k-6[ESI] = k6[ES][I], then a traditional algebraic manipulation of the remaining steady state equations provides first degree expressions for the concentrations of all enzyme species and also discloses the Frieden relationship.  相似文献   

17.
Methionine metabolism forms homocysteine via transmethylation. Homocysteine is either 1) condensed to form cystathionine, which is cleaved to form cysteine, or 2) remethylated back to methionine. Measuring this cycle with the use of isotopically labeled methionine tracers is problematic, because the tracer is infused into and measured from blood, whereas methionine metabolism occurs inside cells. Because plasma homocysteine and cystathionine arise from intracellular metabolism of methionine, plasma homocysteine and cystathionine enrichments can be used to define intracellular methionine enrichment during an infusion of labeled methionine. Eight healthy, postabsorptive volunteers were given a primed continuous infusion of [1-13C]methionine and [methyl-2H(3)]methionine for 8 h. Enrichments in plasma methionine, [13C]homocysteine and [13C]cystathionine were measured. In contrast to plasma methionine enrichments, the plasma [13C]homocysteine and [13C]cystathionine enrichments rose to plateau slowly (rate constant: 0.40 +/- 0.03 and 0.49 +/- 0.09 h(-1), respectively). The enrichment ratios of plasma [13C]homocysteine to [13C]methionine and [13C]cystathionine to [13C]methionine were 58 +/- 3 and 54 +/- 3%, respectively, demonstrating a large intracellular/extracellular partitioning of methionine. These values were used to correct methionine kinetics. The corrections increase previously reported rates of methionine kinetics by approximately 40%.  相似文献   

18.
The reaction of myeloperoxidase compound I (MPO-I) with chloride ion is widely assumed to produce the bacterial killing agent after phagocytosis. Two values of the rate constant for this important reaction have been published previously: 4.7 x 106 M-1.s-1 measured at 25 degrees C [Marquez, L.A. and Dunford, H.B. (1995) J. Biol. Chem. 270, 30434-30440], and 2.5 x 104 M-1.s-1 at 15 degrees C [Furtmüller, P.G., Burner, U. & Obinger, C. (1998) Biochemistry 37, 17923-17930]. The present paper is the result of a collaboration of the two groups to resolve the discrepancy in the rate constants. It was found that the rate constant for the reaction of compound I, generated from myeloperoxidase (MPO) and excess hydrogen peroxide with chloride, decreased with increasing chloride concentration. The rate constant published in 1995 was measured over a lower chloride concentration range; the 1998 rate constant at a higher range. Therefore the observed conversion of compound I to native enzyme in the presence of hydrogen peroxide and chloride ion cannot be attributed solely to the single elementary reaction MPO-I + Cl- --> MPO + HOCl. The simplest mechanism for the overall reaction which fit the experimental data is the following: MPO+H2O2 ⇄k-1k1 MPO-I+H2O MPO-I+Cl- ⇄k-2k2 MPO-I-Cl- MPO-I-Cl- -->k3 MPO+HOCl where MPO-I-Cl- is a chlorinating intermediate. We can now say that the 1995 rate constant is k2 and the corresponding reaction is rate-controlling at low [Cl-]. At high [Cl-], the reaction with rate constant k3 is rate controlling. The 1998 rate constant for high [Cl-] is a composite rate constant, approximated by k2k3/k-2. Values of k1 and k-1 are known from the literature. Results of this study yielded k2 = 2.2 x 106 M-1.s-1, k-2 = 1.9 x 105 s-1 and k3 = 5.2 x 104 s-1. Essentially identical results were obtained using human myeloperoxidase and beef spleen myeloperoxidase.  相似文献   

19.
The present study was designed to measure the relationships between maternal arterial glucose concentration [( GI]A) and fetal arterial glucose concentration [( GI]a), uteroplacental glucose consumption (UPGC), and the rate of uteroplacental glucose transfer to the fetus (UPGT) in pregnant sheep in late gestation. [GI]A was controlled by a glucose clamp technique and the glucose flux rates of the uteroplacenta were quantified by the Fick principle. [GI]A varied from 1.81 to 154.7 mg/dl; [GI]a was directly related to [GI]A: [GI]a = 0.374 [GI]A + 1.81, r = 0.873, P less than 0.001. Fetal arterial blood oxygen content decreased with [GI]A (P less than 0.05) and fetal arterial blood lactate concentration increased with [GI]A (P less than 0.001). There was no significant effect of [GI]A on the rates of uteroplacental lactate production, uteroplacental oxygen consumption, fetal oxygen consumption, or uterine or umbilical blood flow. Both UPGC and UPGT were directly related to [GI]A: UPGC = -2.221 x 10(-3) chi 2 + 0.646 x -6.016, r = 0.80; UPGT = -1.208 x 10(-3) chi 2 + 0.405 x -2.416, r = 0.90. UPGC and UPGT were approximately parallel over the range of [GI]A studied (UPGC = 1.19 UPGT + 3.79, r = 0.764). These results demonstrate the importance of UPGC to maternal-fetal glucose homeostasis and indicate that factors regulating uteroplacental glucose consumption and transfer to the fetus become limiting at comparable levels of [GI]A and [GI]a. The estimated kinetic constants for UPGC represent the metabolism of glucose by the uteroplacental tissues, but the estimated kinetic constants for UPGT represent the metabolism of glucose by the fetus as well as the transfer of glucose by the uteroplacenta to the fetus.  相似文献   

20.
New types of X-ray computed tomography (CT), fluorescent X-ray CT and phase-contrast X-ray CT are being developed for biomedical research. While fluorescent scanning X-ray CT (FXCT) can detect specific contrast elements, or endogenous iodine, at very low content (less than 400 pg iodine of tissue in a volume of 8 x 10(-6) ml), the phase-contrast X-ray CT (PCCT) is a highly sensitive imaging technique to differentiate between different biological tissue types (based on their specific gravity variation) without the use of a contrast agent. Therefore, we can expect functional diagnosis with FXCT, and high contrast, high resolution biological imaging with PCCT. In this paper, a human thyroid gland imaged by FXCT, and a metastatic human cancerous lesion depicted using PCCT are presented. The latter method used a newly manufactured, large, monolithic, X-ray interferometer, which is described in this paper in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号