首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
  • 1 In order to test for nitrogen limitation and examine ammonium uptake by stream sediments, ammonium hydroxide was added continuously at concentrations averaging 100 μg1-1 for 70 days to a second- order reach of Walker Branch, an undisturbed woodland stream in Tennessee.
  • 2 Ammonium uptake during the first 4h of addition corresponded to adsorption kinetics rather than to first-order uptake or to Michaelis- Menten kinetics. However, the calculated adsorption partition coefficient was two to four orders of magnitude greater than values reported for physical adsorption of ammonium, suggesting that the uptake was largely biotic.
  • 3 Mass balance indicated that the uptake of ammonium from the water could be accounted for by increased nitrogen content in benthic organic detritus. Nitrification, inferred from longitudinal gradients in NO3, began soon after enrichment and increased dramatically near the end of the experiment.
  • 4 Both ammonium and nitrate concentrations dropped quickly to near background levels when input ceased, indicating little desorption or nitrification of excess nitrogen stored in the reach.
  • 5 There was no evidence of nitrogen limitation as measured by weight loss, oxygen consumption, phosphorus content, and macroinvertebrate density of red oak leaf packs, or by chlorophyll content and aufwuchs biomass on plexiglass slides. A continuous phosphorus enrichment 1 year earlier had demonstrated phosphorus limitation in Walker Branch.
  相似文献   

2.
SUMMARY.
  • 1 The uptake of phosphate and inorganic nitrogen by sediment and phytoplankton was studied under natural conditions (1977) and during lake fertilization with phosphorus and nitrogen (1978–79) in Lake Gunillajaure, a small, stratified, subarctic lake in northern Sweden. The experiments were performed in situ in plexiglass cylinders, to which additions of nutrients were made, and the uptake followed by consecutive sampling and analysis of the water phase.
  • 2 Additions of HgCl2 to the experimental vessels reduced the phosphate uptake to the sediment to less than 10% and it could therefore be concluded that the sediment uptake was mainly of biological nature.
  • 3 Dark assimilation was 30–40% of that in light. Since light clearly stimulated the sediment uptake the epipelic algae were probably responsible.
  • 4 The phosphate uptake to the sediment could be described by Michaelis-Menten kinetics and the calculated constants (Vmax, ks) were very alike in 1977 and 1978 but appeared to have increased in 1979.
  • 5 The sediment uptake of ammonium and nitrate was very slow indrcating that the epipelic algae were not nitrogen starved.
  • 6 Even though the epipelic algae had a potential for efficient uptake of phosphorus, the phytoplankton took up 92–96% of the phosphate added to the lake on each fertilization occasion due to the relatively large water volume in the epilimnion in relation to the bottom area available for the epipelic algae.
  相似文献   

3.
Abstract

Copper speciation and bioavailability for Scenedesmus quadricauda has been studied in natural waters and in synthetic culture media. Other elements were studied simultaneously. When phosphorus and nitrogen limitation were excluded by adding these elements, copper was limiting algal growth in some natural waters. In the toxic range, growth inhibition by copper was highly correlated with copper detected by electrochemical methods and with calculated free copper.

Copper was toxic to S. quadricauda when free copper concentrations roughly exceeded 10?10.5 M, and was limiting for values somewhere lower than 10?12.5 M. Because we found copper limitation in some natural water samples, free copper concentration in those water samples therefore must have been lower than 10?12.5 M.

The hypothesis that the free metal concentration rather than the total concentration determines bioavailability was confirmed for copper, cobalt and zinc.  相似文献   

4.
Nutrient limitation of the primary production of phytoplankton at some stations in southern and central Lake Baikal was studied by nutrient enrichment experiments in August 2002. Chlorophyll (Chl.) a concentrations ranged from 0.7 to 5.8μgl−1. Inorganic nutrient concentrations were low: soluble reactive phosphorus ranged from 0.05 to 0.20μmoll−1, ammonia from 0.21 to 0.41μmoll−1, and nitrite plus nitrate from 0.33 to 0.37μmoll−1. In the five enrichment experiments, phosphate spikes and phosphate plus nitrate spikes always stimulated primary production. Nitrate spikes also stimulated primary production in four of the experiments. Significant differences were detected between the controls and phosphate spikes and between the controls and phosphate plus nitrate spikes. Thus, the first limiting nutrient is thought to be phosphorus, but once phosphorus is supplied to the surface water, the limiting nutrient will quickly shift from phosphorus to nitrogen.  相似文献   

5.
SUMMARY.
  • 1 Leaf decomposition was compared in two streams at the Coweeta Hydrologic Laboratory, North Carolina. U.S.A. One stream drains an undisturbed hardwood watershed, while the other drains a successional watershed subject to an insect outbreak. The successional watershed has elevated nitrate concentrations in the streamwater.
  • 2 Both black locust (Robinia pseudo-acacia) and sweet birch (Betula lenta) leaf litter decomposed 2.8 times more rapidly in the stream with high nitrate concentrations.
  • 3 The more rapid decay rates appeared to be partly due to accelerated microbial processing in response to nitrate enrichment, because microbial biomass (as ATP) was higher in the nitrate-enriched stream.
  • 4 At each point in time, nitrogen and phosphorus content of the litter was lower in the high nitrate stream; however, there was no significant difference in nitrogen or phosphorus content at the same state of leaf decay in the two streams.
  相似文献   

6.
Growth patterns and bloom formation of the green seaweed Ulva rigida were analysed in the eutrophic Sacca di Goro lagoon (Po River Delta, Italy). Variations of standing biomasses and elemental composition of Ulva were analysed through an annual cycle with respect to nitrogen, phosphorus and iron. Growth rates, nutrient and iron uptake and nitrate storage by macroalgal thalli were also assessed with field experiments during the formation of a spring bloom. The control of Ulva growth and the bloom formation depended on multiple factors, especially on nitrogen availability and iron deficiency. In the nitrate rich waters of the Sacca di Goro lagoon, nitrate accumulation in Ulva thalli was inversely related with Fe uptake, indicating an influence of Fe limitation on N acquisition. Since length and magnitude of nitrate luxury uptake are inversely related to the size of the intracellular nitrate pools, in nitrate rich waters the fast growing Ulva may face risk of N-limitation not only when exposed to low N concentrations or at high biomass levels, but also when exposed to pulsed dissolved nitrate concentrations at low iron availability. The potential Fe limitation could be affected by processes controlled by geochemical reactions and by macroalgal growth and decomposition. Both Fe oxidation during the active macroalgal growth and the formation of insoluble FeS and FeS2 during bloom collapse can result in a drastic decrease of soluble iron. Thus, a potential limitation of Fe to macroalgae can occur, determining positive feedbacks and potentially controlling the extent of bloom development and persistence.  相似文献   

7.
8.
Summary Strain T1 is a denitrifying bacterium that is capable of toluene degradation under anaerobic conditions. During anaerobic growth on toluene, the specific growth rate of strain T1 was 0.14 h–1. Nitrite accumulated in the medium stoichiometrically with the depletion of nitrate. When nitrate was nearly depleted from the medium nitrite reduction and dinitrogen formation began. A non-kinetic model was formulated that was based on a hypothesis of non-simultaneous nitrate and nitrite reduction, independent of the concentrations of nitrate and nitrite. The model was verified experimentally over a wide range of conditions that included nitrate and nitrite limitation, toluene limitation, and various ratios of nitrate to nitrite. The model and its experimental verification demonstrated that strain T1 reduces nitrate and nitrite non-simultaneously, even if nitrite is initially present in the medium in addition to nitrate. Offprint requests to: L. Y. Young  相似文献   

9.
The biochemical basis for variations in the critical nitrogen‐to‐phosphorus (N:P) ratio, which defines the transition between N‐ and P‐limitation of growth rate, is currently not well understood. To assess this issue, we cultured the cryptophyte Rhinomonas reticulata NOVARINO in chemostats with inflow nitrate‐to‐phosphate ratios ranging from 5 to 60 mol N·(mol P)?1 at two light intensities. The nitrate‐to‐phosphate ratio marking the transition between N‐ and P‐limitation was independent of light intensity and was between 30 and 45 mol N/mol P. In N‐limited cells, the particulate N:P ratio was stable at around 23 mol N/mol P over a range of inflow nitrate‐to‐phosphate from 5 to 30, whereas in P‐limited cells this ratio was around 90 mol N/mol P at inflow nitrate‐to‐phosphate ratios of 45 and 60. Cell phosphorus decreased with increasing nitrate‐to‐phosphate ratio up to the critical nitrate‐to‐phosphate ratio for each light intensity, above which they remained stable. The C:P of R. reticulata cells increased with increasing inflow nitrate‐to‐phosphate from around the Redfield value (106 mol C/mol P) to around 700. There was a significant effect of light on C:P in the N‐ limited cells, with higher C:P under high light conditions that was not observed in the P‐limited chemostats. Cellular RNA was not influenced by light but was greatly influenced by the type of nutrient limitation. In contrast, chl a, C, N, and protein were not influenced by the nitrate‐to‐phosphate in the inflow medium. Total protein per RNA was independent of light intensity but exhibited a maximum at inflow nitrate‐to‐phosphate of 30. Our results suggest a strong “two‐level” homeostatic mechanism of cellular N and P content in R. reticulata with two distinct states that are determined by the type of nutrient limitation and not by light.  相似文献   

10.
Nitrogen to phosphorus ratios and concentrations of nitrate and soluble reactive phosphate are presented for an array of Southwestern streams as evidence that nitrogen is the limiting nutrient where such limitation occurs. Nitrate uptake in sections of intermittent streams was attributable to autotrophic activity. Uptake of soluble reactive phosphate was unrelated to any indicator of autotrophic activity, thus concentrations of this nutrient in desert and semi-desert stream waters may be controlled by other factors.  相似文献   

11.
12.
Plant communities from oligotrophic, poorly buffered waters are seriously threatened by both, acidification and eutrophication/alkalinization. Acidification is mainly caused by atmospheric deposition of acidifying substances while eutrophication is often the result of inlet of nutrient enriched, calcareous brook- or groundwater. The plant production in very soft waters is often limited by low levels of inorganic carbon, nitrogen and/or phosphorus. This paper deals with the possibilities for restoration of formerly oligotrophic but now eutrophied and alkalinized softwater systems. Restoration based upon nitrogen limitation is not likely to be successful as the atmospheric deposition of nitrogen in The Netherlands is very high. Phosphorus limitation can also be a problem. One can stop the input of phosphorus and remove the mud layer, but the problem remains that also the deeper mineral sandy sediments are saturated with phosphate. A possible remedy, however, is a combination of carbon- and phosphorus limitation. Many plants from eutrophic environments never occur in very soft waters, probably as a result of carbon limitation. In addition, mobilisation of phosphate is much lower in waters with very low bicarbonate levels. Restoration of a former oligotrophic softwater lake by reducing the inlet of calcareous surface water, in combination with removal of the organic sediment layer, appeared to be very successful. Many endangered plant species such asIsoetes echinospora, Luronium natans, Deschampsia setacea andEchinodorus repens developed spontaneously from the still viable seedbank.  相似文献   

13.
Diesel fuel pollution in coastal waters, resulting from recreational boating and commercial shipping operations, is common and can adversely affect marine biota. The purpose of this study was to examine the effect of additions of particulate organic carbon (POC) in the form of naturally-occurring marsh grass (Spartina alterniflora), inorganic nutrients (nitrogen and phosphorus), inert particles, and dissolved organic carbon (DOC) on diesel fuel biodegradation and to attempt to formulate an effective bioremedial treatment for small diesel fuel spills in marine waters. Various combinations of treatments were added to water samples from a coastal marina to stimulate diesel fuel biodegradation. Diesel fuel was added in concentrations approximating those found in a spill and biodegradation of straight chain aliphatic constituents was estimated by measuring mineralization of 14C hexadecane added to diesel fuel. All treatments that included POC showed stimulation of biodegradation. However, the addition of inert particles (glass fiber filters and nylon screening) caused no stimulation of biodegradation. The addition of nitrogen and phosphorus alone did not result in stimulation of biodegradation, but nitrogen and Spartina (although not phosphorus and Spartina) did result in stimulation above that of Spartina alone. Maximum biodegradation rates were obtained by the addition of the Spartina POC, ammonium, and phosphate. The addition of mannitol, a labile DOC source with POC and phosphate resulted in a decrease in diesel fuel biodegradation as compared to POC and phosphate alone. The seasonal pattern of diesel fuel biodegradation showed a maximum in the summer and a minimum in the winter. Therefore, of the treatments tested, the most effective for bioremediation of diesel fuel in marine waters is the addition of POC, nitrogen, and phosphorus.  相似文献   

14.
Removal of nitrogen and phosphorus from wastewater by two green microalgae (Chlorella vulgaris and Scenedesmus rubescens) was investigated using a novel method of algal cell immobilization, the twin-layer system. In the twin-layer system, microalgae are immobilized by self-adhesion on a wet, microporous, ultrathin substrate (the substrate layer). Subtending the substrate layer, a second layer, consisting of a macroporous fibrous tissue (the source layer), provides the growth medium. Twin-layers effectively separate microalgae from the bulk of their growth medium, yet allow diffusion of nutrients. In the twin-layer system, algae remain 100% immobilized, which compares favourably with gel entrapment methods for cell immobilization. Both microalgae removed nitrate efficiently from municipal wastewater. Using secondary, synthetic wastewater, the two algae also removed phosphate, ammonium and nitrate to less than 10% of their initial concentration within 9 days. It is concluded that immobilization of C. vulgaris and S. rubescens on twin-layers is an effective means to reduce nitrogen and phosphorus levels in wastewater.  相似文献   

15.
The short- and long-term uptake of nitrate and phosphate ions, and their interactions, were studied as functions of the preconditioning of Pavlova lutheri (Droop) Green. Populations were preconditioned in continuous culture at a variety of growth rates and N:P supply ratios. The maximum uptake rates cell?1 for nitrate and phosphate were of similar magnitudes, in spite of the forty-fold smaller requirement for phosphorus. Short-term phosphate uptake was independent of the nitrate concentration, but the short-term nitrate uptake rate was reduced in the presence of phosphate. The severity of inhibition of nitrate uptake by phosphate was positively correlated with the preconditioning N:P supply ratio and the preconditioning growth rate. In response to large additions of nutrients, P. lutheri was able to increase its phosphorus content sixty-fold, but was only able to take up enough nitrate to double its nitrogen content. The high rate of phosphate uptake relative to its requirement, the inhibition of nitrate uptake by phosphate, and the large capacity for phosphorus storage relative to its requirement, all of which were observed even under N limitation, may imply that even where nitrogen is limiting there can be interspecific competition for available phosphate.  相似文献   

16.
17.
We investigated whether phytoplankton communities in two lakes in SW Greenland were phosphorus or nitrogen limited. The study lakes have contrasting water chemistry (mean conductivities differ ten fold) and are located near Kangerlussuaq, SW Greenland (~67°N, 51°W). A microcosm nutrient enrichment experiment was performed in June 2003 to determine whether nitrate or phosphate addition stimulated phytoplankton growth. Samples were analysed for species composition, biomass, and alkaline phosphatase activity (APA). Initially, both lakes had extremely low total phosphorus but high total nitrogen concentrations and high APA, suggesting that the phytoplankton were phosphorus limited prior to the start of the experiment. The phytoplankton composition and biomass (mainly Ochromonas spp.) responded to phosphate but not to nitrate addition. In both lakes, chlorophyll a increased significantly when phosphate was added. Furthermore, APA was significantly lower in the two lakes when phosphate was added compared to the control and the nitrogen addition treatment. The dominance of mixotrophic phytoplankton and high DOC values suggest that these lakes may be regulated by microbial loop processes.  相似文献   

18.
Klapwijk  S. P.  Bolier  G.  van der Does  J. 《Hydrobiologia》1989,188(1):189-199
Four hundred and forty bioassays with Scenedesmus quadricauda (Turp.) Bréb. as a test organism have been carried out with samples from canals and lakes in the western part of the Netherlands. The results are used to assess the algal growth potential (AGP) and to determine the limiting nutrient(s) for maximum biomass production. Special attention has been paid to the effects of deep-freezing and autoclaving as pretreatment of water samples on pH and nutrient concentrations.The AGP ranged from very low in the relatively isolated polder lakes to very high in canals and lakes, which form part of the basin system of Rijnland. The lowest yields are observed in nitrogen and phosphorus co-limited waters, while the highest are found in waters limited by nitrogen alone. AGP proved to be primarily determined by the amount of nitrogen, especially nitrate, in the samples and only secondarily by the amount of phosphorus.The observed ranges indicating phosphorus limitation, > 50 for inorganic and > 30 for total N/P ratios, lie considerably higher than reported so far. It is concluded that, once the relations between AGP and nutrients are established, AGP tests do not have to be carried out routinely, but still can be very useful in special studies, e.g. in lake restoration projects.  相似文献   

19.
The influence of different phosphorus and nitrogen sources on Lactococcus lactis subsp. lactis NIZO 22186 growth and nisin production was studied in batch fermentations using a complex medium. KH2PO4 was found to be the best phosphorus source for nisin production. Increasing initial phosphate concentrations from 0 to 5% KH2PO4 exerted a double effect, creating favourable pH conditions and particularly stimulating the nisin production levels, which were highest at 5% KH2PO4. Up to now, no such high initial phosphate concentrations have been reported for the production of other antibiotics or bacteriocins. Nisin, a lanthionine-containing peptide antibiotic with bacteriocin properties, clearly behaved as a primary metabolite, since its formation was linked with active growth and was not suppressed by phosphate concentrations up to 5%. A complex medium supplemented with cotton seed meal as nitrogen source also gave very high nisin yields. Correspondence to: L. De Vuyst  相似文献   

20.
Nitrogen and phosphorus were studied in a 168-km stretch of the Guadalupe River that had five main-stream impoundments. Flow through the study area was controlled by releases from these five reservoirs and from Canyon Reservoir, a deep-storage reservoir, located 30 km upstream. Parameters measured monthly on a diel basis at 16 stations were nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, Kjeldahl nitrogen, inorganic phosphate phosphorus, organic phosphate phosphorus, and total phosphate phosphorus.Inorganic nitrogen concentrations observed in this study were as high or higher than that previously reported for other bodies of water. Nitrate nitrogen entered the study area in relatively high concentrations from Comal Springs which was a major source of water for the Guadalupe River. Water from Canyon Reservoir, the other major source of water, was relatively low in nitrate nitrogen. The concentration of nitrate nitrogen was, therefore, dependent in part upon the portion of the total river flow originating from the two sources. Increased discharge from Canyon Reservoir and utilization by plants in areas of high chlorophyll a resulted in low nitrate-nitrogen levels. Retention of water in reservoirs reduced the concentration of nitrate nitrogen due to increased utilization by plants in areas of low flow. Nitrate nitrogen, in general, reached seasonal minima in summer and maxima in winter. Nitrite nitrogen showed considerable variation with no meaningful pattern except that higher concentrations occurred in association with high chlorophyll a and high Kjeldahl nitrogen, regions and periods of low river flow, and large phytoplankton populations. There was no increase in concentration of any form of nitrogen in the vicinity of sewage outfalls and no downstream accrual.Phosphorus levels in the study area were as high or higher than those reported in studies of other bodies of water. Sewage treatment plants at New Braunfels and Seguin, Texas, were major sources of phosphorus to the Guadelupe River. Total phosphate phosphorus was determined to be the most critical phosphate parameter in assessing eutrophication. Seasonally, it ranged from a winter high to a summer low. Concentrations were highest immediately below sewage outfalls and decreased as water progressed downstream. Inorganic-phosphate-phosphorus concentrations showed no clear seasonal trend but were clearly associated with sewage outfalls. Since large standing crops of phytoplankton were observed in areas of low inorganic phosphate phosphorus, it was not considered to limit photosynthesis. Total organic phosphate phosphorus varied seasonally, with high concentrations occurring during the spring and low concentrations in the fall. Total organic phosphate phosphorus showed no correlation with sewage outfalls, but was correlated to a degree with total Kjeldahl nitrogen and chlorophyll a. No consistent pattern of diel fluctuations was evident for any phosphorus or nitrogen compounds analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号