首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resonance Energy Transfer between N-(7-nitro-2,1,3 benzoxadiazol -4 yl) phosphatidyl ethanolamine and N-Lissamine-Rhodamine B sulfonyl) phosphatidyl ethanolamine embedded in two different populations of small unilamellar vesicles made of phosphatidyl serine has been used to study the fusion process induced by Zn2+ and Ca2+. Lipid intermixing demonstrating fusion of liposome membranes can already be observed at 125 and 250 mumol/l of Zn2+. After short time pre-incubations with micromolar concentrations of Zn2+ as low as 150 mumol/l, Ca2+ induces an instantaneous increase of vesicle fusion. The lipid intermixing induced by micromolar concentrations of Ca2+ (250-500 mumol/l) could be increased up to 4 times when pre-incubated with 150 or 200 mumol/l of Zn2+. The effect of 1 mM of Ca2+ alone on lipid intermixing can be mimicked by 150 mumol/l of Zn2+ followed by 500 mumol/l of Ca2+. Our data demonstrate that Zn2+ and Ca2+ act synergistically to affect cation-induced membrane fusion. We suggest that Zn2+ specifically alters the physical state of phospholipid membranes making them more prone to calcium-triggered fusion.  相似文献   

2.
Fluorescence quenching of 1-acyl-2-[6[(7 nitro-2,1,3-benzoxadiazol-4yl) amino]caproyl] phosphatidyl choline in small unilamellar vesicles consisting of phosphatidyl serine has been used to monitor the lipid phase separation induced by Zn2+ and Ca2+. Phase separation of vesicle membranes was observed with Zn2+ at concentrations as low as 125 microM. Low concentrations of Zn2+ required long incubation times to reach maximal quenching (120 minutes at 375 microM). When low concentrations of Ca2+ were added to the preparation during the developing phase of Zn2+-induced quenching, an explosive increase in fluorescence quenching was instantenously observed. Phase separation induced by sub-millimolar concentrations of Ca2+ could be increased at least 4 times when vesicles were pre-incubated with 250 microM of Zn2+.  相似文献   

3.
Egg yolk phosphatidyl choline liposomes containing variable amounts of phosphatidyl ethanolamine, phosphatidyl inositol or phosphatidyl serine demonstrated important variations in the fluorescence of 3.3' dipropylthiodicarbocyanine. When the membrane contained no cholesterol, fluorescence was not correlated with membrane fluidity as measured by diphenyl hexatriene polarization. Increasing cholesterol concentration in valinomycin containing liposome membranes decreased the potassium induced apparent membrane potential and prevented sorption of dye to the membrane. Discontinuity in the apparent potential occurred at 30 mol% cholesterol but could not be correlated with changes in microviscosity. These results indicate that great care should be taken when correlating rapid variations of fluorescence to changes in membrane potential. We propose that changes in phospholipid metabolism could well explain fluorescent changes when monitoring the fluorescence of cyanine dye molecules sorbed to biological membranes.  相似文献   

4.
The effects of proteins on divalent cation-induced phospholipid vesicle aggregation and phospholipid vesicle-monolayer membrane interactions (fusion) were examined. Glycophorin (from human erythrocytes) suppressed the membrane interactions more than N-2 protein (from human brain myelin) when these proteins were incorporated into acidic phospholipid vesicle membranes. The threshold concentrations of divalent cations which induced vesicle aggregation were increased by protein incorporation, and the rate of vesicle aggregation was reduced. A similar inhibitory effect by the proteins, incorporated into lipid vesicle membranes, was observed for Ca2+-induced lipid vesicle-monolayer interactions. However, when these proteins were incorporated only in the acidic phospholipid monolayers, the interaction (fusion) of the lipid vesicle-monolayer membranes, induced by divalent cations, was not appreciably altered by the presence of the proteins.In contrast to these two proteins, the presence of synexin in the solution did enhance the Ca2+-induced aggregation of phosphatidylserine vesicles, but did not seem to affect the degree of Ca2+-induced fusion between phosphatidylserine/phosphatidylcholine (1:1) and phosphatidylserine vesicles and monolayer membranes.  相似文献   

5.
R A Parente  B R Lentz 《Biochemistry》1986,25(5):1021-1026
The sensitivity of the fluorescence lifetime of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]- 3-sn-phosphatidylcholine (DPHpPC) to its local concentration in lipid bilayers was used to monitor both lipid mixing and phase separation occurring during membrane vesicle fusion. Vesicles containing 2 mol % DPHpPC were mixed with a 10-fold excess of vesicles devoid of probe. Upon addition of a fusogen, mixing of bilayer lipids associated with fusion was followed as an increase in the fluorescence lifetime of DPHpPC. Ca2+-induced fusion of phosphatidylserine vesicles served to test the method and was shown to have an exponential half-time of 7 s. Phase separation (between the phosphatidylserine head groups of bulk lipid and the phosphatidylcholine head groups of the probe) was monitored by DPHpPC under the same conditions used to follow lipid mixing due to fusion. Phase separation was not significant until 10 min after Ca2+ addition and was completely reversible by disodium ethylenediaminetetraacetate addition. Vesicle aggregation induced by Ca2+ addition to mixed phosphatidylserine/phosphatidylcholine vesicles did not alter the DPHpPC lifetime, indicating that close association of vesicles did not promote intervesicular exchange of the probe. In addition, we have investigated the effects of CA2+ on the fluorescence properties of this probe and of the head-group-labeled fluorescent probes N-(4-nitro-2,1,3-benzoxadiazolyl)phosphatidylethanolamine and N-(lissamine Rhodamine B sulfonyl)dioleoyl-phosphatidylethanolamine, which are used in the fluorescence energy transfer assay of Struck et al.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. The predominant lipids of nerve cords, ganglion and brain from horseshoe crabs were cholesterol (11% of lipid) and phospholipid (81% of lipid). 2. Major phospholipids were phosphatidyl ethanolamine and phosphatidyl choline with lesser amounts of phosphatidyl serine and phosphatidyl inositol and sphingomyelin. 3. The phospholipid fraction was characterized by a high content of plasmalogen, i.e. alk-1-enyl acyl phosphatides, so that 42% of the ethanolamine phosphatides were the plasmalogen, phosphatidal ethanolamine. 4. Phosphatidyl choline and phosphatidyl ethanolamine were high in polyunsaturation with 20:4 and 20:5 major fatty acids. Sphingomyelin had predominantly long chain saturated fatty acids. 5. Cerebrosides and gangliosides, which are associated with vertebrate nerve tissues, were absent from nerves of horseshoe crabs.  相似文献   

7.
The interaction of macrophages with red blood cells (RBC) displaying phosphatidylserine (PS) in their surface membranes was investigated after the transfer of an exogenously supplied fluorescent lipid analog to the RBC. Nonfluorescent (quenched) lipid vesicles were formed by ultrasonication from 1-acyl-2-[(N-4-nitro-benzo-2-oxa-1,3 diazole)aminocaproyl]phosphatidyl-serine (NBD-PS) or 1-acyl-2[(N-4-nitrobenzo-2-oxa-1,3 diazole)aminocaproyl]phosphatidylcholine (NBD-PC). The interaction of these vesicles with RBC was monitored as a function of vesicle concentration by assessment of the degree to which cell-associated lipid fluorescence was dequenched after vesicle treatment. When vesicle concentrations of less than 100 ng/ml were used, lipid fluorescence was largely dequenched, indicating that lipid transfer was the predominant mechanism of both NBD-PS and NBD-PC uptake; however, when vesicle concentrations were increased to greater than 100 ng/ml, a concentration-dependent increase in the fraction of quenched cell-associated lipid was observed, indicating that another mechanism, possibly vesicle-cell adhesion, also occurred. Using NBD-PS at concentrations at which dilution of all the phospholipid analog in the recipient cell membrane could be unequivocally confirmed, we observed that the uptake of NBD-PS-treated RBC by macrophages was increased 5-fold over that of controls, whereas the uptake of RBC containing an equivalent amount of exogenously supplied NBD-PC was unaltered. Furthermore, preincubation of macrophage monolayers with vesicles containing PS resulted in a approximately 60% inhibition in the uptake of NBD-PS-treated RBC, whereas no inhibition in the uptake of control, opsonized, or NBD-PC-treated RBC was observed. These findings suggest that PS in the outer leaflet of RBC might serve as a signal for triggering their recognition by macrophages.  相似文献   

8.
Bovine erythrocytes, which normally lack phosphatidyl choline in their membranes, when treated with either H2O2 or diamide (1-3 mM), showed a partial appearance of phosphatidyl ethanolamine (PE 40%) and phosphatidyl serine (PS, 30-33%) in the external leaflet of the bilayer and a concomitant increased (four- to five-fold) propensity to adhere to cultured bovine aortic endothelial cells. Similar treatment of normal human erythrocytes caused an alteration in the organization of the phospholipid bilayer and also resulted in their increased adherence to endothelial cells derived either from human umbilical vein or bovine aorta. Treatment of RBCs with H2O2 at low concentration (0.5 mM) resulted in cross-linking of spectrin without significant changes in the orientation of aminophospholipids but the RBCs exhibited 15-20% increase in adherence to endothelial cells. Pretreatment of either human or bovine erythrocytes with antioxidants such as vitamin E (2 mM) prevented both oxidant-induced reorganization of phospholipids in the bilayer and enhancement of adherence to endothelial cells. Introduction of either phosphatidyl serine or phosphatidyl ethanolamine but not phosphatidyl choline into erythrocyte membranes increased their adherence to endothelial cells threefold. Oxidant-treated RBCs exhibited enhanced binding and fluorescence of Merocyanine 540 dye (MC-540), which is sensitive to the packing of lipids in the lipid bilayer. On flow cytometric analysis, 78% of H2O2 (0.5 mM)-treated erythrocytes compared to 30% of untreated RBCs exhibited MC-540 binding and fluorescence, indicating differences in the lipid packing in the outer leaflet of the bilayer. Oxidant-treated erythrocytes adhere preferentially to endothelial cells rather than to bovine aortic smooth muscle cells and skin fibroblasts. It is suggested that the alterations in the erythrocyte membrane surface due to spectrin cross-linking and the organization of the phospholipids concomitant with less ordered packing in the external leaflet of the bilayer, either induced by oxidative manipulation in normal RBC or in pathological erythrocytes, play a role in erythrocyte-endothelial cell interaction.  相似文献   

9.
The kinetics of lipid mixing during membrane aggregation and fusion was monitored by two assays employing resonance energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (NBD-PE) and N-(lissamine Rhodamine B sulfonyl)phosphatidylethanolamine (Rh-PE). For the "probe mixing" assay, NBD-PE and Rh-PE were incorporated into separate populations of phospholipid vesicles. For the "probe dilution" assay, both probes were incorporated into one population of vesicles, and the assay monitored the dilution of the molecules into the membrane of unlabeled vesicles. The former assay was found to be very sensitive to aggregation, even when the internal aqueous contents of the vesicles did not intermix. Examples of this case were large unilamellar vesicles (LUV) composed of phosphatidylserine (PS) in the presence of Mg2+ and small unilamellar vesicles (SUV) composed of phosphatidylserine in the presence of high concentrations of Na+. No lipid mixing was detected in these cases by the probe dilution assay. Under conditions where membrane fusion (defined as the intermixing of aqueous contents with concomitant membrane mixing) was observed, such as LUV (PS) in the presence of Ca2+, the rate of probe mixing was faster than that of probe dilution, which in turn was faster than the rate of contents mixing. Two assays monitoring the intermixing of aqueous contents were also compared. The Tb/dipicolinic acid assay reported slower fusion rates than the 1-aminonaphthalene-3,6,8-trisulfonic acid/N,N'-p-xylylene-bis(pyridinium bromide) assay for PS LUV undergoing fusion in the presence of Ca2+. These observations point to the importance of utilizing contents mixing assays in conjunction with lipid mixing assays to obtain the rates of membrane destabilization and fusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Peptides corresponding to the amino terminal region of pardaxin from Pardachirus pavoninus (Gly-Phe-Phe-Ala-Leu-Ile-Pro-Lys-Ile-Ile-Ser-Ser-Pro-Leu-Phe) have been synthesized and their interaction with model membranes of phosphatidyl choline and serine studied by 90 degrees C light scattering and fluorescence spectroscopy. The amino terminal 8-residue peptide and the protected 15-residue peptide cause only aggregation of lipid vesicles. The deprotected 15-residue peptide has the ability to cause aggregation and release of entrapped carboxyfluorescein with both phosphatidyl choline and serine lipid vesicles, like pardaxin. The membrane-perturbing ability of the amino terminal 15-residue peptide can be attributed to its ability to adopt an alpha-helical conformation which is amphiphilic in nature in a hydrophobic environment.  相似文献   

11.
The reactions of the hydrated electron (eaq-), produced during pulse radiolysis, have been used to study the binding of phosphatidyl choline (PC), phosphatidyl serine (PS), phosphatidyl ethanolamine (PE), and phosphatidyl inositol (PI) vesicles with horse-heart cytochrome C. An interaction could only be detected between cytochrome C and either PS or PI. An apparent equivalence point in the binding was reached for both phospholipids at a molar ratio of phospholipid : protein of 6 : 1. At this point, the reactivity of (eaq-) towards the cytochrome C was very markedly reduced. Indeed, the rate of disappearance of (eaq-) under such conditions was the same as the rate of eaq- disappearance in triply-distilled water. The inclusion of cholesterol at a molar ratio of 1 : 1 within the phospholipid vesicles changed the stoichiometry of the interaction. Evidence that protonated epsilon-amino groups of lysine residues are involved in the interaction is presented. Possible models for the complexes formed are discussed.  相似文献   

12.
Summary The lipid content and composition from an axolemma-rich preparation isolated from squid retinal axons was analyzed.The lipids, which accounted for 45.5% of the dry weight of this membrane, were composed of 22% cholesterol, 66.7% phospholipids and 5.2% free fatty acids. The negatively charged species phosphatidyl ethanolamine (37%), phosphatidyl serine (10%) and lysophosphatidyl ethanolamine (4%) made up 51% of the phospholipids. The amphoteric phosphatidyl choline and sphingomyelin accounted for 39% and 4%, respectively.The relative distribution of fatty acids in each of the isolated phospholipids was studied. The most remarkable feature of these phospholipids was the large proportion of long-chain polyunsaturated fatty acids. The 226 acyl chain accounted for 37% in phosphatidyl ethanolamine, 21.7% in phosphatidyl choline, 17.5% on phosphatidyl serine and 20.3% in sphingomyelin (all expressed as area %).The molar fraction of unsaturated fatty acids reached 65% in phosphatidyl ethanolamine and 42.0 and 44.8% in phosphatidyl choline and phosphatidyl serine, respectively. The double bond index in these species varied between 1.0 and 2.6.The lipid composition of the axolemma-rich preparation isolated from squid retinal axons appears to be similar to other excitable plasma membranes in two important features: (a) a low cholesterol/phospholipid molar ratio of 0.61; and (b) the polyunsaturated nature of the fatty acid of their phospholipids.This particular chemical composition may contribute a great deal to the molecular unstability of excitable membranes.The preceding papers of this series were published inArchives of Biochemistry and Biophysics.  相似文献   

13.
We have investigated the interaction between isolated membrane vesicles from chromaffin granules and large unilamellar phospholipid vesicles (liposomes). Mixing of membrane lipids has been monitored continuously, utilizing the fluorescence resonance energy transfer assay described by Struck et al. ((1982) Biochemistry 20, 4093–4099). To demonstrate coalescence of the internal vesicle volumes the transfer of colloidal gold from the liposomes to the interior of the granule membrane vesicles has been examined. Efficient fusion of the liposomes with the granule membranes was observed. Significant fusion occurred in the absence of Ca2+, although the extent of interaction was enhanced in its presence. The sensitivity of the interaction to pretreatment of the granule membranes with trypsin showed the fusion reaction to be a protein-mediated process.  相似文献   

14.
1. A 50-kDa fragment representing the NH2-terminus of the heavy subunit of botulinum type A neurotoxin was found, at low pH, to evoke the release of K+ from lipid vesicles loaded with potassium phosphate. Similar K+ release was also observed with the intact neurotoxin, its heavy chain and a fragment consisting of the light subunit linked the 50-kDa NH2-terminal heavy chain fragment. The light subunit alone, however, was inactive. 2. In addition to K+, the channels formed in lipid bilayers by botulinum neurotoxin type A or the NH2-terminal heavy chain fragment were found to be large enough to permit the release of NAD (Mr 665). 3. The optimum pH for the release of K+ was found to be 4.5. Above this value K+ release rapidly decreased and was undetectable above pH 6.0. 4. The binding of radiolabelled botulinum toxin to a variety of phospholipids was assessed. High levels of toxin binding were only observed to lipid vesicles with an overall negative charge; much weaker binding occurred to lipid vesicles composed of electrically neutral phospholipids. 5. A positive correlation between the efficiency of toxin-binding and the efficiency of K+ release from lipid vesicles was not observed. Whereas lipid vesicles containing the lipids cardiolipin or dicetyl phosphate bound the highest levels of neurotoxin, the toxin-evoked release of K+ was low compared to vesicles containing either phosphatidyl glycerol, phosphatidyl serine or phosphatidyl inositol. 6. The implications of these observations to the mechanism by which the toxin molecule is translocated into the nerve ending are discussed.  相似文献   

15.
The fusion behavior of large unilamellar liposomes composed of N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium (DOTMA) and either phosphatidylcholine (PC) or phosphatidylethanolamine (PE) has been investigated by a fluorescence resonance energy transfer assay for lipid mixing, dynamic light scattering, and electron microscopy. Polyvalent anions induced the fusion of DOTMA/PE (1:1) liposomes with the following sequence of effectiveness: citrate greater than EDTA greater than phosphate, in the presence 100 mM NaCl, pH 7.4. Sulfate, dipicolinate, and acetate were ineffective. DOTMA/PC (1:1) vesicles were completely refractory to fusion in the presence of multivalent anions in the concentration range studied, consistent with the inhibitory effect of PC in divalent cation induced fusion of negatively charged vesicles. DOTMA/PE vesicles could fuse with DOTMA/PC vesicles in the presence of high concentrations of citrate, but not of phosphate. Mixing of DOTMA/PE liposomes with negatively charged phosphatidylserine (PS)/PE or PS/PC (1:1) vesicles resulted in membrane fusion in the absence of multivalent anions. DOTMA/PC liposomes also fused with PS/PE liposomes and, to a limited extent, with PS/PC liposomes. These observations suggest that the interaction of the negatively charged PS polar group with the positively charged trimethylammonium of DOTMA is sufficient to mediate fusion between the two membranes containing these lipids and that the nature of the zwitterionic phospholipid component of these vesicles is an additional determinant of membrane fusion.  相似文献   

16.
Effects of prolactin (PRL), bromocriptine (Br), testosterone propionate (TP), dihydrotestosterone (DHT) and the combination of these androgens with PRL/Br on the total lipid, total cholesterol, total glyceride glycerols, total phospholipid and their fractions in seminal vesicles of castrated mature monkeys were studied. Glyceride glycerols formed the major portion (50%) of total lipids in normal monkeys. Cholesterol and phospholipids were of equal share (25%). Esterified cholesterol formed major share (75%) of total cholesterol. Diacyl glycerol was the major (60%) glyceride glycerol and phosphatidyl choline and ethanolamine were the major phospholipid classes. Except triacyl glycerol castration markedly decreased all the lipid classes. PRL restored normal free and esterified cholesterol and phosphatidyl inositol but Br invariably decreased all the lipid classes. TP/DHT treatment stimulated the free and esterified cholesterol more than the control; it restored the normal glyceride glycerols. Phosphatidyl inositol, choline and ethanolamine were stimulated by androgens and other phospholipid classes were brought to normal. Addition of PRL + TP/DHT markedly increased esterified cholesterol, phosphatidyl inositol, choline, ethanolamine and phosphatidic acid. In all these aspects, Br counteracted the effects of androgens and PRL.  相似文献   

17.
Recent studies suggest that phosphoinositide kinases may participate in intracellular trafficking or exocytotic events. Because both of these events ultimately require fusion of biological membranes, the susceptibility of membranes containing polyphosphoinositides (PPIs) to divalent cation-induced fusion was investigated. Results of these investigations indicated that artificial liposomes containing PPI or phosphatidic acid required lower Ca2+ concentrations for induction of membrane fusion than similar vesicles containing phosphatidylserine, phosphatidylinositol, or phosphatidylcholine. This trend was first observed in liposomes composed solely of one type of phospholipid. In addition, however, liposomes designed to mimic the phospholipid composition of the endofacial leaflet of plasma membranes (i.e., liposomes composed of combinations of PPI, phosphatidylethanolamine, and phosphatidylcholine) also required lower Ca2+ concentrations for induction of aggregation and fusion. Liposomes containing PPI and phosphatidic acid also had increased sensitivity to Mg(2+)-induced fusion, an observation that is particularly intriguing given the intracellular concentration of Mg2+ ions. Moreover, the fusogenic effects of Ca2+ and Mg2+ were additive in vesicles containing phosphatidylinositol bisphosphate. These data suggest that enzymatic modification of the PPI content of intracellular membranes could be an important mechanism of fusion regulation.  相似文献   

18.
Lung surfactant secretion in alveolar type II cells occurs following lamellar body fusion with plasma membrane. Annexin A7 is a Ca2+-dependent membrane-binding protein that is postulated to promote membrane fusion during exocytosis in some cell types including type II cells. Since annexin A7 preferably binds to lamellar body membranes, we postulated that specific lipids could modify the mode of annexin A7 interaction with membranes and its membrane fusion activity. Initial studies with phospholipid vesicles containing phosphatidylserine and other lipids showed that certain lipids affected protein interaction with vesicle membranes as determined by change in protein tryptophan fluorescence, protein interaction with trans membranes, and by protein sensitivity to limited proteolysis. The presence of signaling lipids, diacylglycerol or phosphatidylinositol-4,5-bisphosphate, as minor components also modified the lipid vesicle effect on these characteristics and membrane fusion activity of annexin A7. In vitro incubation of lamellar bodies with diacylglycerol or phosphatidylinositol-4,5-bisphosphate caused their enrichment with either lipid, and increased the annexin A7 and Ca2+-mediated fusion of lamellar bodies. Treatment of isolated lung lamellar bodies with phosphatidylinositol- or phosphatidylcholine phospholipase C to increase diacylglycerol, without or with preincubation with phosphatidylinositol-4,5-bisphosphate, augmented the fusion activity of annexin A7. Thus, increased diacylglycerol in lamellar bodies following cell stimulation with secretagogues may enhance membrane fusion activity of annexin A7.  相似文献   

19.
An assay is presented that allows continuous and sensitive monitoring of membrane fusion in both artificial and biological membrane systems. The method relies upon the relief of fluorescence self-quenching of octadecyl Rhodamine B chloride. When the probe is incorporated into a lipid bilayer at concentrations up to 9 mol% with respect to total lipid, the efficiency of self-quenching is proportional to its surface density. Upon fusion between membranes labeled with the probe and nonlabeled membranes, the decrease in surface density of the fluorophore results in a concomitant, proportional increase in fluorescence intensity, allowing kinetic and quantitative measurements of the fusion process. The kinetics of fusion between phospholipid vesicles monitored with this assay were found to be the same as those determined with a fusion assay based on resonance energy transfer [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099]. Octadecyl Rhodamine B chloride can be readily inserted into native biological membranes by addition of an ethanolic solution of the probe. Evidence is presented showing that the dilution of the fluorophore, occurring when octadecyl Rhodamine containing influenza virus is mixed with phospholipid vesicles at pH 5.0, but not pH 7.4, resulted from virus-vesicle fusion and was not related to processes other than fusion. Furthermore, by use of this method, the kinetics of fusion between Sendai virus and erythrocyte ghosts and virus-induced fusion of ghosts were readily revealed. Dilution of the probe was not observed upon prior treatment of fluorescently labeled Sendai virus with trypsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Summary Plasma membranes were isolated from rat and mouse livers, one rat hepatoma (and its subline) and two mouse hepatomas, and their lipid class compositions were determined. Lipids accounted for 30 to 35% of the dry weight of the membranes of livers and mouse hepatomas, and for 45% in the case of rat hepatoma-subline. Of the total lipids of rat-liver plasma membranes, 60% consisted of phospholipids, the corresponding values for mouse-liver and rat-hepatoma plasma membranes amounting to 55% and for both mouse-hepatoma plasma membranes to about 50%. The free cholesterol and cholesteryl ester contents of all hepatoma plasma membranes were significantly increased as compared with normal. Evidence is presented that the increase of free cholesterol was not a preparative artefact. The major phospholipid classes in all plasma membranes were phosphatidyl choline, sphingomyelin, phosphatidyl ethanolamine and phosphatidyl serine. The relative proportions in each plasma membrane species could differ appreciably, the mouse- and rat-liver membranes showing the closest resemblance. Possible reasons for (a) the higher level of phosphatidyl serine as compared with published values, and (b) the wide divergencies which may be found among the phospholipid profiles of rat-liver plasma membranes reported by other authors, are presented. Cardiolipin was absent from liver plasma membranes, but some could be found in the hepatoma membranes due to mitochondrial contamination. No consistent phospholipid profile characterized hepatoma as distinct from liver plasma membranes, nor did the hepatoma data-including plasmalogens-resemble the few available data on other hepatomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号