首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
分泌性白细胞蛋白酶抑制因子(secretory leukocyte protease inhibitor, SLPI)是一个可抑制多种丝氨酸蛋白酶活性的阳离子蛋白质。SLPI羧基端具有抑制糜蛋白酶、胰弹性蛋白酶等抗蛋白酶活性,氨基端的功能尚不清楚,可能具有抗菌、抗真菌、抗病毒、抗炎和免疫调节等活性。近年来研究发现,SLPI在有些癌症,如卵巢癌、肺癌、胃癌、结肠癌中表达升高,但在有些癌症如乳腺癌、前列腺癌、口腔癌中表达降低。目前,尚未完全了解SLPI在调控致癌效应中的作用。本文就SLPI在肿瘤及抗肿瘤中的可能作用及其机制进行综述,为SLPI在抗肿瘤中的应用提供新思路。  相似文献   

3.
目的:原核表达并制备重组蜱kunitz型丝氨酸蛋白酶抑制剂IsKuI-1,检测其抗凝血及抑制蛋白酶活性。方法:构建pET32a-sumo/IsKuI-1原核表达质粒,并转入到E. coli BL21(DE3)中,用IPTG诱导表达。表达产物经Ni-NTA亲和层析,在层析柱上用SUMO蛋白酶切割融合伴侣,纯化后得到重组目的多肽rIsKuI-1。用PT及aPTT法检测重组目的多肽的抗凝活性,发色底物法检测rIsKuI-1对丝氨酸蛋白酶的抑制活性。结果:用原核表达系统获得了rIsKuI-1,其无延长PT及aPTT活性,对人中性粒细胞弹性蛋白酶具有较好的抑制活性(IC50=1.83μM),且特异性强。结论:IsKuI-1是一种活性较好的人NE抑制剂。因此为进一步探讨rIsKuI-1的生物学功能及其作为新药开发应用奠定了基础。  相似文献   

4.
The protease inhibitory spectra of the eight homozygous Thoroughbred Pi types against trypsin, elastase and chymotrypsin have been determined. The alpha 1-protease inhibitor proteins exhibit three classes of inhibitory specificity towards these enzymes. The Pi types F, I, N and U exhibit class I (trypsin, elastase and chymotrypsin) and class II (trypsin and elastase) types of inhibition and fit Juneja et al.'s (1979) classification of two separate genetic systems Pi 1 and Pi 2 based on differences in the inhibitory spectra against trypsin and chymotrypsin. The remaining four Pi types are exceptions to Juneja et al.'s (1979) classification. Types G, L, S1 and S2 possess class I but not class II proteins. A third class of proteins (class III) which exclusively inhibit chymotrypsin was detected in all eight protease inhibitor types. Type G is well represented by class III proteins because two of the three major proteins of the ISO-DALT pattern inhibit only chymotrypsin and is thus an exception to Juneja et al.'s (1979) classification.  相似文献   

5.
The protease inhibitory spectra of the eight homozygous Thoroughbred Pi types against trypsin, elastase and chymotrypsin have been determined. The α1-protease inhibitor proteins exhibit three classes of inhibitory specificity towards these enzymes. The Pi types F, I, N and U exhibit class I (trypsin, elastase and chymotrypsin) and class II (trypsin and elastase) types of inhibition and fit Juneja et al.s (1979) classification of two separate genetic systems Pi 1 and Pi 2 based on differences in the inhibitory spectra against trypsin and chymotrypsin. The remaining four Pi types are exceptions to Juneja et al.s (1979) classification. Types G, L, S1 and S2 possess class I but not class II proteins. A third class of proteins (class III) which exclusively inhibit chymotrypsin was detected in all eight protease inhibitor types. Type G is well represented by class III proteins because two of the three major proteins of the ISO-DALT pattern inhibit only chymotrypsin and is thus an exception to Juneja et al.s (1979) classification.  相似文献   

6.
We purified the R1 alpha-1-protease inhibitor from rat serum and developed a convenient assay for its detection during purification procedures. Purification was accomplished by desalting, DEAE-Sephacel, zinc chelate, and reactive green-agarose columns. The resultant antiprotease had a molecular weight of 54,000 and inhibited elastase, chymotrypsin, and trypsin. By isoelectric focusing, five bands were produced with pI values from 4.3 to 4.7. Functional assays utilizing protease substrates imbedded in agarose plates were evaluated for the ability to distinguish the R1 alpha-1-protease inhibitor from the other serum antiproteases eluted in column chromatography fractions. This technique of screening for anti-protease activity was compared to conventional spectrophotometric methods and was found to correlate well when quantifying inhibition of elastase and chymotrypsin, but not trypsin. The presence of alpha-1-protease inhibitor was most reliably detected by testing for anti-elastase activity. Technician time and expense were saved by employing protease substrate plates to test chromatogrpahy fractions. This technique may facilitate purification of other protease inhibitors.  相似文献   

7.
A low molecular weight protein complexed with chymase was isolated from hamster cheek pouch tissues. This protein had an apparent molecular mass of about 10 kDa on SDS-PAGE and the N-terminal sequence showed some homology to secretory leukocyte protease inhibitor (SLPI), which is known as the predominant inhibitor of neutrophil elastase and cathepsin G. Remarkably enhanced inhibition of chymase activity was achieved in the presence of heparin, indicating that the functional property was also similar to SLPI. These findings suggest that this SLPI-like protein is a candidate for a physiological inhibitor of chymase.  相似文献   

8.
Secretory leukocyte protease inhibitor (SLPI) is a protease inhibitor of the whey acidic protein-like family inhibiting chymase, chymotrypsin, elastase, proteinase 3, cathepsin G and tryptase. Performing in vitro enzymatic assays using both Western blotting and liquid chromatography/mass spectrometry techniques we showed that, of the proteases known to interact with SLPI, only chymase could uniquely cleave this protein. The peptides of the cleaved SLPI (cSLPI) remain coupled due to the disulfide bonds in the molecule but under reducing conditions the cleavage can be observed as peptide products. Subsequent ex vivo studies confirmed the presence of SLPI in human saliva and its susceptibility to cleavage by chymase. Furthermore, inhibitors of chymase activity are able to inhibit this cleavage. Human saliva from both normal and allergic individuals was analyzed for levels of cSLPI and a correlation between the level of cSLPI and the extent of allergic symptoms was observed, suggesting the application of cSLPI as a biomarker of chymase activity in humans.  相似文献   

9.
Human lungs contain secretory leukocyte protease inhibitor (SLPI), elafin and its biologically active precursor trappin-2 (pre-elafin). These important low-molecular weight inhibitors are involved in controlling the potentially deleterious proteolytic activities of neutrophil serine proteases including elastase, proteinase 3 and cathepsin G. We have shown previously that trappin-2, and to a lesser extent, elafin can be linked covalently to various extracellular matrix proteins by tissue transglutaminases and remain potent protease inhibitors. SLPI is composed of two distinct domains, each of which is about 40% identical to elafin, but it lacks consensus transglutaminase sequence(s), unlike trappin-2 and elafin. We investigated the actions of type 2 tissue transglutaminase and plasma transglutaminase activated factor XIII on SLPI. It was readily covalently bound to fibronectin or elastin by both transglutaminases but did not compete with trappin-2 cross-linking. Cross-linked SLPI still inhibited its target proteases, elastase and cathepsin G. We have also identified the transglutamination sites within SLPI, elafin and trappin-2 by mass spectrometry analysis of tryptic digests of inhibitors cross-linked to mono-dansyl cadaverin or to a fibronectin-derived glutamine-rich peptide. Most of the reactive lysine and glutamine residues in SLPI are located in its first N-terminal elafin-like domain, while in trappin-2, they are located in both the N-terminal cementoin domain and the elafin moiety. We have also demonstrated that the transglutamination substrate status of the cementoin domain of trappin-2 can be transferred from one protein to another, suggesting that it may provide transglutaminase-dependent attachment properties for engineered proteins. We have thus added to the corpus of knowledge on the biology of these potential therapeutic inhibitors of airway proteases.  相似文献   

10.
We have purified to homogeneity two forms of a new serine protease inhibitor specific for elastase/chymotrypsin from the ovary gland of the desert locust Schistocerca gregaria. This protein, greglin, has 83 amino acid residues and bears putative phosphorylation sites. Amino acid sequence alignments revealed no homology with pacifastin insect inhibitors and only a distant relationship with Kazal-type inhibitors. This was confirmed by computer-based structural studies. The most closely related homologue is a putative gene product from Ciona intestinalis with which it shares 38% sequence homology. Greglin is a fast-acting and tight binding inhibitor of human neutrophil elastase (k(ass)=1.2x10(7) M(-1) x s(-1), K(i)=3.6 nM) and subtilisin. It also binds neutrophil cathepsin G, pancreatic elastase and chymotrypsin with a lower affinity (26 nM< or =K(i)< or =153 nM), but does not inhibit neutrophil protease 3 or pancreatic trypsin. The capacity of greglin to inhibit neutrophil elastase was not significantly affected by exposure to acetonitrile, high temperature (90 degrees C), low or high pH (2.5-11.0), N-chlorosuccinimide-mediated oxidation or the proteolytic enzymes trypsin, papain and pseudolysin from Pseudomonas aeruginosa. Greglin efficiently inhibits the neutrophil elastase activity of sputum supernatants from cystic fibrosis patients. Its biological function in the locust ovary gland is currently unknown, but its physicochemical properties suggest that it can be used as a template to design a new generation of highly resistant elastase inhibitors for treating inflammatory diseases.  相似文献   

11.
Site-specific mutagenesis techniques have been used to construct active site variants of the Kunitz-type protease inhibitor domain present in the Alzheimer's beta-amyloid precursor protein (APP-KD). Striking alteration of its protease inhibitory properties were obtained when the putative P1 residue, arginine, was replaced with the small hydrophobic residue valine. The altered protein was no longer inhibitory toward bovine pancreatic trypsin, human Factor XIa, mouse epidermal growth factor-binding protein, or bovine chymotrypsin, all of which are strongly inhibited by the unaltered APP-KD (Sinha, S., Dovey, H. F., Seubert, P., Ward, P. J., Blacher, R. W., Blaber, M., Bradshaw, R. A., Arici, M., Mobley, W. C., and Lieberburg, I. (1990) J. Biol. Chem. 265, 8983-8985). Instead, the P1-Val-APP-KD was a potent inhibitor of human neutrophil elastase, with a Ki = 0.8 nM, as estimated by the inhibition of the activity of human neutrophil elastase measured using a chromogenic substrate. It also inhibited the degradation of insoluble elastin by the enzyme virtually stoichiometrically. Replacement of the P1' (Ala) and P2' (Met) residues of P1-Val-MKD with the corresponding residues (Ser, Ile) from alpha 1-proteinase inhibitor resulted in an inactive protein, underscoring the mechanistic differences between the serpins from the Kunitz-type protease inhibitor family. These results confirm the importance of the P1 arginine residue of APP-KD in determining inhibitory specificity, and are also the first time that a single amino acid replacement has been shown to generate a specific potent human neutrophil elastase inhibitor from a human KD sequence.  相似文献   

12.
Secretory leucoprotease inhibitor (SLPI) is a non-glycosylated protein produced by epithelial cells, macrophages, and neutrophils and was initially identified as a serine protease inhibitor of the neutrophil proteases elastase and cathepsin G. In addition to its antiprotease activity, SLPI has been shown to exhibit anti-inflammatory properties including down-regulation of tumor necrosis factor-alpha expression by lipopolysaccharide (LPS) in monocytes, inhibition of NF-kappaB activation by IgG immune complexes in a rat model of acute lung injury, and prevention of human immunodeficiency virus infectivity in monocytic cells via as yet unidentified mechanisms. In this report we have shown that SLPI prevents LPS-induced NF-kappaB activation by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. We have also demonstrated that SLPI prevents LPS-induced interleukin-1 receptor-associated kinase and IkappaBbeta degradation. In addition, we have demonstrated that oxidized SLPI, a variant of SLPI that has diminished antiprotease activity, cannot prevent LPS-induced NF-kappaB activation or Inhibitor kappaB alpha/beta degradation indicating that the anti-inflammatory effect of SLPI on the LPS-signaling pathway is dependent on its antiprotease activity. These results suggest that SLPI may be inhibiting proteasomal degradation of NF-kappaB regulatory proteins, an effect that is dependent on the antiprotease activity of SLPI.  相似文献   

13.
A serine protease inhibitor, termed TsCEI, was purified from adult-stage Trichuris suis by acid precipitation, affinity chromatography (elastase-agarose), and reverse-phase HPLC. The molecular weight of TsCEI was estimated at 6.437 kDa by laser desorption mass spectrometry. TsCEI potently inhibited both chymotrypsin (K(i) = 33.4 pM) and pancreatic elastase (K(i) = 8.32 nM). Neutrophil elastase, chymase (mouse mast cell protease-1, mMCP-1), and cathepsin G were also inhibited by TsCEI, whereas trypsin, thrombin, and factor Xa were not. The cDNA-derived amino acid sequence of the mature TsCEI consisted of 58 residues including 9 cysteine residues with a molecular mass of 6.196 kDa. TsCEI displayed 48% sequence identity to a previously characterized trypsin/chymotrypsin inhibitor of T. suis, TsTCI. TsCEI showed 36% sequence identity to a protease inhibitor from the hemolymph of the honeybee Apis mellifera. Sequence similarity was also detected with the trypsin/thrombin inhibitor of the European frog Bombina bombina, the elastase isoinhibitors of the nematode Anisakis simplex, and the chymotrypsin/elastase and trypsin inhibitors of the nematode Ascaris suum. The inhibitors of T. suis, an intestinal parasite of swine, may function as components of a parasite defense mechanism by modulating intestinal mucosal mast cell-associated, protease-mediated, host immune responses.  相似文献   

14.
The secretory leukocyte protease inhibitor (SLPI) is a low-molecular-weight inhibitor of proteases, such as elastase and cathepsin G which are released from leukocytes during phagocytosis. The purpose of this study was to determine whether or not SLPI is able to inhibit IgE-mediated histamine release. Nasal mucosa from 11 test subjects without atopic disposition was used for this in vitro study. We found that SLPI inhibited histamine release in a dose-dependent way but was without influence on the spontaneous release.  相似文献   

15.
The human secretory leukocyte protease inhibitor (SLPI) has been shown to possess anti-protease, anti-inflammatory and antimicrobial properties. Its presence in saliva is believed to be a major deterrent to oral transmission of human immunodeficiency virus-1. The 11.7 kDa peptide is a secreted, nonglycosylated protein rich in disulfide bonds. Currently, recombinant SLPI is only available as an expensive bacterial expression product. We have investigated the utility of the methylotrophic yeast Pichia pastoris to produce and secrete SLPI with C-terminal c-myc and polyhistidine tags. The post-transformational vector amplification protocol was used to isolate strains with increased copy number, and culturing parameters were varied to optimize SLPI expression. Modification of the purification procedure allowed the secreted, recombinant protein to be isolated from the cell-free fermentation medium with cobalt affinity chromatography. This yeast-derived SLPI was shown to have an anti-protease activity comparable to the commercially available bacterial product. Thus, P. pastoris provides an efficient, cost-effective system for producing SLPI for structure function analysis studies as well as a wide array of potential therapeutic applications.  相似文献   

16.
Secretory leukocyte protease inhibitor (SLPI) is a 11.7 kDa mucosal protein with potent anti-microbial, anti-inflammatory, and wound healing activities. Previous efforts to express and purify the non-glycosylated cationic protein as a recombinant protein in bacteria required extensive denaturation and renaturation to refold the disulfide-rich protein into its biologically active form. To overcome this limitation, we have expressed human SLPI as a polyhistidine-tagged protein (bvHisSLPI) using a recombinant baculovirus expression system. Studies were conducted to determine the timing of maximal protein production following baculovirus infection of Sf21 cells. The 16.4kDa-tagged protein was then overexpressed in Sf21 cells following a 48-h infection with bvHisSLPI-encoding baculovirus, purified by nickel-chelating affinity chromatography under non-denaturing conditions, and analyzed by Coomassie-stained SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. Purified bvHisSLPI was further characterized by enterokinase digestion to remove the polyhistidine tag from its N-terminus. In serine protease inhibition assays, purified bvHisSLPI blocked substrate cleavage by two serine proteases, chymotrypsin and cathepsin G, comparable to bacterially expressed SLPI. The baculovirus expression and affinity purification strategy described here will facilitate further studies of the structural and biological properties of this important multifunctional protein.  相似文献   

17.
Protease inhibitory activity in jackfruit seed (Artocarpus integrifolia) could be separated into 5 fractions by chromatography on DEAE-cellulose at pH 7.6. A minor fraction (I) that did not bind to the matrix, had antitryptic, antichymotryptic and antielastase activity in the ratio 24:1.9:1.0. Fraction II bound least tightly to the ion exchanger eluting with 0.05 M NaCl and could be resolved into an elastase/chymotrypsin inhibitor and a chymotrypsin/trypsin inhibitor by chromatography on either immobilized trypsin or phenyl Sepharose CL-4B. Fractions III and IV eluted successively with 0.10 M NaCl and 0.15 M NaCl from DEAE-cellulose, inhibited elastase, chymotrypsin and trypsin in the ratio 1.0: 0.53:0.55 and 1.0:8.9:9.8 respectively. Fraction V, most strongly bound to the matrix eluting with 0.3 M NaCl and was a trypsin/chymotrypsin inhibitor accounting for 74% of total antitryptic activity. This inhibitor was purified further. The inhibitor with a molecular weight of 26 kd was found to be a glycoprotein. Galactose, glucose, mannose, fucose, xylose, glucosamine and uronic acid were identified as constitutent units of the inhibitor. Dansylation and electrophoresis in the presence of mercaptoethanol indicated that the inhibitor is made up of more than one polypeptide chain. The inhibitor combined with bovine trypsin and bovine α-chymotrypsin in a stoichiometric manner as indicated by gel chromatography. It had very poor action on subtilisin BPN′, porcine elastase, pronase,Streptomyces caespitosus protease andAspergillus oryzae protease. It powerfully inhibited the caseinolytic activities of rabbit and horse pancreatic preparations and was least effective on human and pig pancreatic extracts. Modification of amino groups, guanido groups and sulphydryl groups of the inhibitor resulted in loss of inhibitory activity. Reduction of disulphide bridges, reduction with sodium borohydride and periodate oxidation also decreased the inhibitory activity.  相似文献   

18.
Expression of secretory leukocyte protease inhibitor (SLPI) suppresses the ability of macrophages to respond to bacterial lipopolysaccharide (LPS). Here, addition of recombinant or native SLPI to the extracellular medium was non-suppressive, while transfection with a non-secretory form of SLPI was fully suppressive, an effect overcome by treatment with interferon-gamma. A portion of the SLPI produced by untransfected macrophages was localized in the cytosol. Thus, SLPI can act intracellularly to block macrophage activation by LPS.  相似文献   

19.
Secretory leukocyte protease inhibitor (SLPI) inhibits chymotrypsin, trypsin, elastase, and cathepsin G. This protein also exhibits proliferative effects, although little is known about the molecular mechanisms underlying this activity. We have generated SLPI-ablated epithelial sublines by stably transfecting the Ishikawa human endometrial cell line with an antisense human SLPI RNA expression vector. We demonstrate a positive correlation between cellular SLPI production and proliferation. We further show that Ishikawa sublines expressing low to undetectable SLPI have correspondingly increased and decreased expression, respectively, of transforming growth factor-beta 1 and cyclin D1 genes, relative to parental cells. SLPI selectively increased cyclin D1 gene expression, with the effect occurring in part at the level of promoter activity. Cellular SLPI levels negatively influenced the anti-proliferative and pro-apoptotic insulin-like growth factor-binding protein-3 expression. We also identified lysyl oxidase, a phenotypic inhibitor of the ras oncogenic pathway and a tumor suppressor, as SLPI-repressed gene, whose expression is up-regulated by transforming growth factor-beta1. Our results suggest that SLPI acts at the node(s) of at least three major interacting growth inhibitory pathways. Because expression of SLPI is generally high in epithelial cells exhibiting abnormal proliferation such as in carcinomas, SLPI may define a novel pathway by which cellular growth is modulated.  相似文献   

20.
Human inter-alpha-trypsin inhibitor (I alpha I) is a plasma proteinase inhibitor active against cathepsin G, leucocyte elastase, trypsin and chymotrypsin. It owes its broad inhibitory specificity to tandem Kunitz-type inhibitory domains within an N-terminal region. Sequence studies suggest that the reactive-centre residues critical for inhibition are methionine and arginine. Reaction of I alpha I with the arginine-modifying reagent butane-2,3-dione afforded partial loss of inhibitory activity against both cathepsin G and elastase but complete loss of activity against trypsin and chymotrypsin. Reaction of I alpha I with the methionine-modifying reagent cis-dichlorodiammineplatinum(II) resulted in partial loss of activity against cathepsin G and elastase but did not affect inhibition of either trypsin or chymotrypsin. Employment of both reagents eliminated inhibition of cathepsin G and elastase. These findings suggest that both cathepsin G and elastase are inhibited at either of the reactive centres of I alpha I. Trypsin and chymotrypsin, however, appear to be inhibited exclusively at the arginine reactive centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号