首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The inhibitor of NF-kappaB (IkappaB) family of proteins is believed to regulate NF-kappaB activity by cytoplasmic sequestration. We show that in cells depleted of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, a small fraction of p65 binds DNA and leads to constitutive activation of NF-kappaB target genes, even without stimulation, whereas most of the p65 remains cytoplasmic. These results indicate that although IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins could be dispensable for cytoplasmic retention of NF-kappaB, they are essential for preventing NF-kappaB-dependent gene expression in the basal state. We also show that in the absence of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, cytoplasmic retention of NF-kappaB by other cellular proteins renders the pathway unresponsive to activation.  相似文献   

3.
4.
5.
6.
The stimulated secretion of prostatic acid phosphatase (PAcP) has been known to be a hallmark of androgen action on human prostate epithelial cells for the last five decades. The molecular mechanism of androgen action on PAcP secretion, however, has remained mostly unknown. We investigated the molecular mechanism that promotes PAcP secretion in LNCaP human prostate carcinoma cells which express PAcP and are androgen-responsive. Treatment with 12-o-tetradecanoyl phorbol-13-acetate (TPA), a protein kinase C (PKC) activator, resulted in an increased secretion of PAcP in a dose- and time-dependent fashion. 4Alpha-phorbol, a biologically inactive isomer of TPA, had no effect. This TPA stimulation of PAcP secretion was observed 2 h after exposure, while TPA did not have a significant effect on the mRNA level even with a 6 h treatment. A23187 calcium ionophore, known to mobilize cellular calcium which is a co-factor of PKC, also activated PAcP secretion. This TPA stimulation of PAcP secretion was more potent than the conventional stimulating agent 5alpha-dihydrotestosterone (DHT) at the same concentration of 50 nM. Furthermore, the action of TPA and DHT on PAcP secretion was blocked by five different PKC inhibitors. Results also showed that DHT, as well as TPA, could rapidly modulate PKC activity. Therefore, PKC can regulate PAcP secretion, and may also be involved in DHT action on PAcP secretion.  相似文献   

7.
《Cellular signalling》2002,14(3):231-238
In adipocytes, protein kinase B (PKB) has been suggested to be the enzyme that phosphorylates phosphodiesterase 3B (PDE3B), a key enzyme in insulin's antilipolytic signalling pathway. In order to screen for PKB phosphatases, adipocyte homogenates were fractionated using ion-exchange chromatography and analysed for PKB phosphatase activities. PKB phosphatase activity eluted as one main peak, which coeluted with serine/threonine phosphatases (PP)2A. In addition, adipocytes were incubated with inhibitors of PP. Incubation of adipocytes with 1 μM okadaic acid inhibited PP2A by 75% and PP1 activity by only 17%, while 1 μM tautomycin inhibited PP1 activity by 54% and PP2A by only 7%. Okadaic acid, but not tautomycin, induced the activation of both PKBα and PKBβ. Finally, PP2A subunits were found in several subcellular compartments, including plasma membranes (PM) where the phosphorylation of PKB is thought to occur. In summary, our results suggest that PP2A is the principal phosphatase that dephosphorylates PKB in adipocytes.  相似文献   

8.
Nuclear factor-kappaB (NF-kappaB) is constitutively activated in diverse human malignancies by mechanisms that are not understood. The MUC1 oncoprotein is aberrantly overexpressed by most human carcinomas and, similarly to NF-kappaB, blocks apoptosis and induces transformation. This study demonstrates that overexpression of MUC1 in human carcinoma cells is associated with constitutive activation of NF-kappaB p65. We show that MUC1 interacts with the high-molecular-weight IkappaB kinase (IKK) complex in vivo and that the MUC1 cytoplasmic domain binds directly to IKKbeta and IKKgamma. Interaction of MUC1 with both IKKbeta and IKKgamma is necessary for IKKbeta activation, resulting in phosphorylation and degradation of IkappaBalpha. Studies in non-malignant epithelial cells show that MUC1 is recruited to the TNF-R1 complex and interacts with IKKbeta-IKKgamma in response to TNFalpha stimulation. TNFalpha-induced recruitment of MUC1 is dependent on TRADD and TRAF2, but not the death-domain kinase RIP1. In addition, MUC1-mediated activation of IKKbeta is dependent on TAK1 and TAB2. These findings indicate that MUC1 is important for physiological activation of IKKbeta and that overexpression of MUC1, as found in human cancers, confers sustained induction of the IKKbeta-NF-kappaB p65 pathway.  相似文献   

9.
Cytokine-stimulated IkappaBalpha degradation is impaired in HT-29 and primary intestinal epithelial cells. To gain more insight into the mechanism of this defect, we dissected cytokine-induced NF-kappaB signaling pathway in HT-29 cells. IL-1beta and TNF, alone or in combination with IFNgamma, failed to induce IkappaBalpha or IkappaBbeta degradation in HT-29 cells. Despite similar 125I-IL-1beta binding, HT-29 cells displayed no IRAK degradation, a 75% reduction of IKK activity, and decreased IkappaBalpha phosphorylation, NF-kappaB DNA binding activity and IL-8 mRNA accumulation in response to IL-1beta compared to Caco-2 cells. Selective activation of NF-kappaB pathway by adenoviral delivery of NF-kappaB-inducing kinase (Ad5NIK) or IKKbeta (Ad5IKKbeta) strongly activated IKK activity (>20 fold) in HT-29 cells with concomitant endogenous IkappaBalpha serine 32 phosphorylation and total IkappaBalpha degradation. In addition, NF-kappaB DNA binding activity and IL-8 secretion is higher in Ad5NIK-infected than in IL-1beta-stimulated HT-29 cells. These data show that altered NF-kappaB signaling is associated with impaired stimulation of an upstream IKK activator.  相似文献   

10.
11.
12.
Yoshimura Y  Sogawa Y  Yamauchi T 《FEBS letters》1999,446(2-3):239-242
Autophosphorylation-dependent translocation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) to postsynaptic densities (PSDs) from cytosol may be a physiologically important process during synaptic activation. We investigated a protein phosphatase responsible for dephosphorylation of the kinase. CaM kinase II was shown to be targeted to two sites using the gel overlay method in two-dimensional gel electrophoresis. Protein phosphatase 1 (PP1) was identified to dephosphorylate CaM kinase II from its complex with PSDs using phosphatase inhibitors and activators, and purified phosphatases. The kinase was released from PSDs after its dephosphorylation by PP1.  相似文献   

13.
IKKepsilon is part of a novel PMA-inducible IkappaB kinase complex   总被引:6,自引:0,他引:6  
Here we report the identification of a novel PMA-inducible IkappaB kinase complex, distinct from the well-characterized high-molecular weight IkappaB kinase complex containing IKKalpha, IKKbeta, and IKKgamma. We have characterized one kinase from this complex, which we designate IKKepsilon. Although recombinant IKKepsilon directly phosphorylates only serine 36 of IKBalpha, the PMA-activated endogenous IKKepsilon complex phosphorylates both critical serine residues. Remarkably, this activity is due to the presence of a distinct kinase in this complex. A dominant-negative mutant of IKKepsilon blocks induction of NF-kappaB by both PMA and activation of the T cell receptor but has no effect on the activation of NF-KB by TNFalpha or IL-1. These observations indicate that the activation of NF-kappaB requires multiple distinct IkappaB kinase complexes, which respond to both overlapping and discrete signaling pathways.  相似文献   

14.
The interferon (IFN)-inducible double-stranded-RNA (dsRNA)-activated serine-threonine protein kinase (PKR) is a major mediator of the antiviral and antiproliferative activities of IFNs. PKR has been implicated in different stress-induced signaling pathways including dsRNA signaling to nuclear factor kappa B (NF-kappaB). The mechanism by which PKR mediates activation of NF-kappaB is unknown. Here we show that in response to poly(rI). poly(rC) (pIC), PKR activates IkappaB kinase (IKK), leading to the degradation of the inhibitors IkappaBalpha and IkappaBbeta and the concomitant release of NF-kappaB. The results of kinetic studies revealed that pIC induced a slow and prolonged activation of IKK, which was preceded by PKR activation. In PKR null cell lines, pIC failed to stimulate IKK activity compared to cells from an isogenic background wild type for PKR in accord with the inability of PKR null cells to induce NF-kappaB in response to pIC. Moreover, PKR was required to establish a sustained response to tumor necrosis factor alpha (TNF-alpha) and to potentiate activation of NF-kappaB by cotreatment with TNF-alpha and IFN-gamma. By coimmunoprecipitation, PKR was shown to be physically associated with the IKK complex. Transient expression of a dominant negative mutant of IKKbeta or the NF-kappaB-inducing kinase (NIK) inhibited pIC-induced gene expression from an NF-kappaB-dependent reporter construct. Taken together, these results demonstrate that PKR-dependent dsRNA induction of NF-kappaB is mediated by NIK and IKK activation.  相似文献   

15.
Protein phosphatase 4 (PP4, previously named protein phosphatase X (PPX)), a PP2A-related serine/threonine phosphatase, has been shown to be involved in essential cellular processes, such as microtubule growth and nuclear factor kappa B activation. We provide evidence that PP4 is involved in tumor necrosis factor (TNF)-alpha signaling in human embryonic kidney 293T (HEK293T) cells. Treatment of HEK293T cells with TNF-alpha resulted in time-dependent activation of endogenous PP4, peaking at 10 min, as well as increased serine and threonine phosphorylation of PP4. We also found that PP4 is involved in relaying the TNF-alpha signal to c-Jun N-terminal kinase (JNK) as indicated by the ability of PP4-RL, a dominant-negative PP4 mutant, to block TNF-alpha-induced JNK activation. Moreover, the response of JNK to TNF-alpha was inhibited in HEK293 cells stably expressing PP4-RL in comparison to parental HEK293 cells. The involvement of PP4 in JNK signaling was further demonstrated by the specific activation of JNK, but not p38 and ERK2, by PP4 in transient transfection assays. However, no direct PP4-JNK interaction was detected, suggesting that PP4 exerts its positive regulatory effect on JNK in an indirect manner. Taken together, these data indicate that PP4 is a signaling component of the JNK cascade and involved in relaying the TNF-alpha signal to the JNK pathway.  相似文献   

16.
17.
18.
Processing of NF-kappaB2 precursor protein p100 to generate p52 is tightly controlled, which is important for proper function of NF-kappaB. Accordingly, constitutive processing of p100, caused by the loss of its C-terminal processing inhibitory domain due to nfkappab2 gene rearrangements, is associated with the development of various lymphomas and leukemia. In contrast to the physiological processing of p100 triggered by NF-kappaB-inducing kinase (NIK) and its downstream kinase, IkappaB kinase alpha (IKKalpha), which requires the E3 ligase, beta-transducin repeat-containing protein (beta-TrCP), and occurs only in the cytoplasm, the constitutive processing of p100 is independent of beta-TrCP but rather is regulated by the nuclear shuttling of p100. Here, we show that constitutive processing of p100 also requires IKKalpha, but not IKKbeta (IkappaB kinase beta) or IKKgamma (IkappaB kinase gamma). It seems that NIK is also dispensable for this pathogenic processing of p100. These results demonstrate a general role of IKKalpha in p100 processing under both physiological and pathogenic conditions. Additionally, we find that IKKalpha is not required for the nuclear translocation of p100. Thus, these results also indicate that p100 nuclear translocation is not sufficient for the constitutive processing of p100.  相似文献   

19.
Forward swimming of the Triton-extracted model of Paramecium is stimulated by cAMP. Backward swimming of the model induced by Ca(2+) is depressed by cAMP. Cyclic AMP and Ca(2+) act antagonistically in setting the direction of the ciliary beat. Some ciliary axonemal proteins from Paramecium caudatum are phosphorylated in a cAMP-dependent manner. In the presence of cAMP, axonemal 29- and 65-kDa polypeptides were phosphorylated by endogenous A-kinase in vitro. These phosphoproteins, however, were not dephosphorylated after in vitro phosphorylation, presumably because of the low endogenous phosphoprotein phosphatase activity associated with isolated axonemes. We purified the protein phosphatase that specifically dephosphorylated the 29- and 65-kDa phosphoproteins from Paramecium caudatum. The molecular weight of the protein phosphatase was 33 kDa. The protein phosphatase had common characteristics as protein phosphatase 2C (PP2C). The characteristics of the protein phosphatase were the same as those of the PP2C from Paramecium tetraurelia (PtPP2C) [Grothe et al., 1998: J. Biol. Chem. 273:19167-19172]. We concluded that the phosphoprotein phosphatase is the PP2C from Paramecium caudatum (PcPP2C). The PcPP2C markedly accelerated the backward swimming of the Triton-extracted model in the presence of Ca(2+). On the other hand, the PcPP2C slightly depressed the forward swimming speed. This indicates that the PP2C plays a role in the cAMP-dependent regulation of ciliary movement in Paramecium caudatum through dephosphorylation of 29- and/or 65-kDa regulatory phosphoproteins by terminating the action of cAMP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号