首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protamine is a cationic peptide with a molecular mass of approx. 4000 Da that is able to condense DNA. In the present study it was used to complex antisense oligonucleotides (ODNs) and to form solid particles with initial diameters of 90-150 nm. The reaction was very rapid and occurred by simple mixing of diluted solutions of the polycation with the oligonucleotide. The aggregation was dependent on the oligonucleotide chain length and the protamine/ODN mass ratio. Particle formation required a minimal chain length of nine nucleotides and a mass ratio of 0.5:1. The particle surface charge and the number of particles depended on the mass ratio. With increasing amounts of the peptide, the number of particles and the zeta potential increased. Both negatively and positively charged particles improved the stability of oligonucleotides against DNase I digestion. Above a mass ratio of 2.5:1 no degradation was found. The uptake of unbound rhodamine-labelled ODNs and its complexes with protamine was determined with Vero cells under in vitro cell culture conditions at 37 degrees C and 4 degrees C. At 37 degrees C the cellular uptake increased with increasing mass ratio. The internalized oligonucleotides were localized in the cytoplasm and in the nucleus of the cells. When Vero cells were treated with these samples at 4 degrees C for 4 h, no fluorescence could be detected inside the cells. Therefore, our data indicate an energy dependent endocytotic uptake mechanism. In contrast, spermine and spermidine, which are also known condensation agents, did not aggregate with oligonucleotides into nanoparticles under the same conditions.  相似文献   

3.
Single-stranded antisense oligonucleotides (SSOs) are used to modulate the expression of genes in animal models and are being investigated as potential therapeutics. To better understand why synthetic SSOs accumulate in the same intracellular location as the target RNA, we have isolated a novel mouse hepatocellular SV40 large T-antigen carcinoma cell line, MHT that maintains the ability to efficiently take up SSOs over several years in culture. Sequence-specific antisense effects are demonstrated at low nanomolar concentrations. SSO accumulation into cells is both time and concentration dependent. At least two distinct cellular pathways are responsible for SSO accumulation in cells: a non-productive pathway resulting in accumulation in lysosomes, and a functional uptake pathway in which the SSO gains access to the targeted RNA. We demonstrate that functional uptake, as defined by a sequence-specific reduction in target mRNA, is inhibited by brefeldin A and chloroquine. Functional uptake is blocked by siRNA inhibitors of the adaptor protein AP2M1, but not by clathrin or caveolin. Furthermore, we document that treatment of mice with an AP2M1 siRNA blocks functional uptake into liver tissue. Functional uptake of SSO appears to be mediated by a novel clathrin- and caveolin-independent endocytotic process.  相似文献   

4.
《Life sciences》1994,54(2):101-107
To investigate further the immunological properties of nucleic acids, the mitogenicity of a phosphorothioate oligonucleotide (S-oligo 1082) with anti-sense activity for herpes simplex virus was tested. This compound stimulated proliferation and antibody production by murine lymphocytes in in vitro cultures. Proliferation was dose-dependent and unaffected by T cell depletion. Furthermore, inclusion of a non-mitogenic DNA in the medium did not block stimulation. Since 1082 does not have homology to a known gene involved in lymphocyte activation, these observations suggest that S-oligo antisense compounds may display non-specific activating effects, at least on murine B cells.  相似文献   

5.
Previous studies have suggested that the caspase 8 inhibitor FLIP is a promising anti-cancer therapeutic target. In this study, we characterised a novel FLIP-targeted antisense phosphorothioate oligonucleotide (AS PTO). FLIP AS and control PTOs were assessed in vitro in transient transfection experiments and in vivo using xenograft models in Balb/c nude mice. FLIP expression was assessed by QPCR and Western. Apoptosis induction was determined by flow cytometry and Western. Of 5 sequences generated, one potently down-regulated FLIP. AS PTO-mediated down-regulation of FLIP resulted in caspase 8 activation and apoptosis induction in non-small cell lung (NSCLC) cells but not in normal lung cells. Similar results were observed in colorectal and prostate cancer cells. Furthermore, the FLIP AS PTO sensitized cancer cells but not normal lung cells to apoptosis induced by rTRAIL. Moreover, the FLIP AS PTO enhanced chemotherapy-induced apoptosis in NSCLC cells. Importantly, compared to a control non-targeted PTO, intra-peritoneal delivery of FLIP AS PTO inhibited the growth of NSCLC xenografts and enhanced the in vivo antitumour effects of cisplatin. We have identified a novel FLIP-targeted AS PTO that has in vitro and in vivo activity and which therefore has potential for further pre-clinical development.  相似文献   

6.
The AKT pathway is an important therapeutic target for cancer drug discovery as it functions as a main point for transducing extracellular and intracellular oncogenic signals. Moreover, alternations of the AKT pathway have been found in a wide range of cancers. In the present study, we found that an Akt1 antisense oligonucleotide (Akt1 AO) significantly downregulated the expression of AKT1 at both the mRNA and protein levels and inhibited cellular growth at nanomolar concentrations in various types of human cancer cells. Combined treatment of Akt1 AO with several cytotoxic drugs resulted in an additive growth inhibition of Caki‐1 cells. The in vivo effectiveness of Akt1 AO was determined using two different xenograft nude mouse models. Akt1 AO (30 mg/kg, i.v. every 48 h) significantly inhibited the tumor growth of nude mouse subcutaneously implanted with U251 human glioblastoma cells after 27 days treatment. Akt1 AO (30 mg/kg, i.p continuously via osmotic pump) also significantly inhibited the tumor formation in nude mice implanted with luciferase‐expressing MIA human pancreatic cancer cells (MIA‐Luc) after 14 days of treatment. The luciferase signals from MIA‐Luc cells were reduced or completely abolished after 2 weeks of treatment and the implanted tumors were barely detectable. Our findings suggest that Akt1 AO alone or in combination with other clinically approved anticancer agents should be further explored and progressed into clinical studies as a potential novel therapeutic agent. J. Cell. Biochem. 108: 832–838, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The aim of this study was to develop a whole body physiologically based model of the pharmacokinetics (PBPK) of the phosphorothioate oligonucleotide (PS-ODN) ISIS 1082 in vivo. Rats were administered an intravenous (i.v.) bolus dose of ISIS 1082 (10 mg/kg plus 3H tracer), and arterial blood and tissues were taken at specific times up to 72 hours. Radioactivity was measured in all samples. The parent compound was determined specifically in blood and tissues at 90 minutes and in liver and kidney also at 24 hours, using capillary gel electrophoresis (CGE). A whole body PBPK model was fitted to the combined blood and tissue radioactivity data using nonlinear regression analysis. CGE analysis indicated that the predominant species in plasma and all tissues is ISIS 1082, together with some n-1 and n-2 metabolites. Total radioactivity primarily reflects these species. The whole body model successfully described temporal events in all tissues. However, to adequately model the experimental data, all tissues had to be partitioned into vascular and extravascular spaces to accommodate the relatively slow distribution of ISIS 1082 out of blood because of a permeability rate limitation. ISIS 1082 distributes extensively into tissues, but the relative affinity varies enormously, being highest for kidney and liver and lowest for muscle and brain. A whole body PBPK model with a permeability rate limited tissue distribution was developed that adequately described events in both blood and tissue for an oligonucleotide. This model has the potential not only to characterize the events in individual tissues throughout the body for such compounds but also to scale across animal species, including human.  相似文献   

8.
Alkylation of the 22-mer DNA target pTGCCTGGAGCTGCTTGATGCCC (I) by oligodeoxynucleotide phosphorothioate derivatives (PTAO) GpsCpsApsTpsCpsApsApsGpsCpsApsGpsCpN(CH3)CH2(RCl)(II-PS) and (RCl)CH2N(CH3)pGpsCpsAps TpsCpsApsApsGpsCpsApsGpsC (III-PS) bearing a residue of an aromatic analogue of nitrogen lost (RCl=C6H4N(CH3)(CH2CH2Cl) at the 3′- or 5′-end was studied. It was shown that the internucleotide phosphorothioate bonds do not affect the regiospecificity of the target modification. The maximum degree of the target modification (att→∞) at 20°C was about 25% for both (II-PS) and (III-PS). The use of GCATCAAGCAGCpN(CH3)CH2(RCl)(II-PO), containing internucleotide phosphodiester bonds, under the same conditions gave about 65% of the modified DNA. Kinetics of the PTAO-induced complementarily addressed nucleic acid (NA) modification was analyzed. The rate constants of the reaction of the intermediate reactive ethylenimmonium ion with phosphorothioate groups of the reagents were evaluated both in solution and in duplex. The intramolecular alkylation of phosphorothioate groups considerably affected the DNA target modification by decreasing the effectiveness of the modification in a wide range of temperatures and changing the temperature dependence of the modification from a bell-like to an S-like profile. It was concluded that, in the course of the modification, the PTAO phosphorothioate groups are intramolecularly alkylated both in solution and in the complementary NA target-oligonucleotide duplex. For Part III, see [1].  相似文献   

9.
Antisense activity in living cells has been thought to occur via a mechanism involving both DNA-mediated hybridization arrest of target mRNA and RNase H-mediated mRNA digestion. Therefore an ideal antisense agent should be permeable to the cell and possess capacities (1) to form a thermally stable duplex in vivo with its target, (2) to discriminate between mRNAs with different degrees of complementarity, and (3) to form antisense/RNA complexes that are susceptible to RNase H hydrolysis. A trisamine-modified deoxyuridine derivative of a novel phosphorothioate DNA 15-mer that meets all these criteria is described here. Compared with the unmodified phosphorothioate oligomer, the phosphorothioate derivative exhibits a higher antisense activity as well as reduced cytotoxicity in cells infected with HIV-1. Our data suggest that the melting temperature (T(m)) between antisense DNA and the target mRNA is not only one of the factors contributing to this derivative's improved antisense activity. Also important are an enhanced ability to discriminate between sequences and an increased susceptibility of the DNA/mRNA complex to RNase H hydrolysis. These results will be useful in designing more active, clinically useful antisense drugs.  相似文献   

10.
Previously, we have shown that a phosphorothioate antisense oligonucleotide (ODN) targeted against c-raf RNA (ISIS5132; cRaf-AS) induces apoptosis in human tumor cells. We now show that the same ODN also efficiently triggers apoptosis in human tumor xenografts in nu/nu mice. Although cRaf-AS showed a clearly inhibitory effect on the growth of established tumors (approximately 150 mm3) compared to a mismatched control ODN (MM), tumor progression was not prevented. This correlated with a partial refractoriness of the tumor to cRaf-AS-induced cell killing, which seemed to be due to an inhomogeneous and inefficient penetration of the ODN into the tumor tissue rather than cellular resistance. In agreement with this conclusion, we found that growth of small tumors (<50 mm3) was completely inhibited concomitantly with an accumulation of the ODN throughout the tumor. These data show that the cRaf-AS is a highly efficacious antitumor agent, provided accessibility into the tumor tissue is warranted, and suggest that PS-AS-ODN treatment may be particularly useful in an adjuvant setting.  相似文献   

11.
Alkylation of the 22-mer DNA target pTGCCTGGAGCTGCTTGATGCCC (I) by oligodeoxynucleotide phosphorothioate derivatives (PTAO) GpsCpsApsTpsCpsApsApsGpsCpsApsGpsCpN(CH3)CH2(RCl) (II-PS) and (RCl)CH2N(CH3)pGpsCpsApsTpsCpsApsApsGpsCpsApsGpsC (III-PS) bearing a residue of an aromatic analogue of nitrogen lost (RCl = C6H4N(CH3)(CH2CH2Cl) at the 3'- or 5'-end was studied. It was shown that the internucleotide phosphorothioate bonds do not affect the regiospecificity of the target modification. The maximum degree of the target modification (at t-->infinity) at 20 degrees C was about 25% for both (II-PS) and (III-PS). The use of GCATCAAGCAGCpN(CH3)CH2(RCl) (II-PO), containing internucleotide phosphodiester bonds, under the same conditions gave about 65% of the modified DNA. Kinetics of the PTAO-induced complementarily addressed nucleic acid (NA) modification was analyzed. The rate constants of the reaction of the intermediate reactive ethylenimmonium ion with phosphorothioate groups of the reagents were evaluated both in solution and in duplex. The intramolecular alkylation of phosphorothioate groups considerably affected the DNA target modification by decreasing the effectiveness of the modification in a wide range of temperatures and changing the temperature dependence of the modification from a bell-like to an S-like profile. It was concluded that, in the course of the modification, the PTAO phosphorothioate groups are intramolecularly alkylated both in solution and in the complementary NA target-oligonucleotide duplex.  相似文献   

12.
In the past decade antisense oligonucleotides (ASOs) have proven to be a useful tool for dissection of gene function in molecular cell biology (Koller, E., Gaarde, W. A., and Monia, B. P. (2000) Trends Pharm. Sci., 21, 142-148), and validation of gene targets in animal models (Crooke, S. T. (1998) Biotechnol. Gen. Eng. Rev. 15, 121-157), as well as a means for therapeutic treatment of human diseases (Bennett, C. F. (1999) Exp. Opin. Invest. Drugs 8, 237-253). An important step toward usage of ASOs in the described applications is identification of an active ASO. This article describes the underlying basis and means for achieving this goal in cell culture.  相似文献   

13.
Several classes of oligonucleotide antisense compounds of sequence complementary to the start of the mRNA coding sequence for chloramphenicol acetyl transferase (CAT), including methylphosphonate, alkyltriester, and phosphorothioate analogues of DNA, have been compared to "normal" phosphodiester oligonucleotides for their ability to inhibit expression of plasmid-directed CAT gene activity in CV-1 cells. CAT gene expression was inhibited when transfection with plasmid DNA containing the gene for CAT coupled to simian virus 40 regulatory sequences (pSV2CAT) or the human immunodeficiency virus enhancer (pHIVCAT) was carried out in the presence of 30 microM concentrations of analogue. For the oligo-methylphosphonate analogue, inhibition was dependent on both oligomer concentration and chain length. Analogues with phosphodiester linkages that alternated with either methylphosphonate, ethyl phosphotriester, or isopropyl phosphotriester linkages were less effective inhibitors, in that order. The phosphorothioate analogue was about two-times more potent than the oligo-methylphosphonate, which was in turn approximately twice as potent as the normal oligonucleotide.  相似文献   

14.
Efforts have been made to improve the biological stability of phosphodiester (PO) oligonucleotides by the addition of various modifications to either the 3', 5' or both the 3' and 5' ends of an oligonucleotide. ISIS 1080, a phosphorothioate (PS) 21-mer oligonucleotide complementary to the internal AUG codon of UL13 mRNA in HSV-1, reduces the infectious yield of HSV-1 in HeLa cells to 9.0% +/- 11%. PO analogs of ISIS 1080 containing three PS linkages placed on the 3' (ISIS 1365), 5' (ISIS 1370), both the 3' and 5' (ISIS 1364) ends or with four linkages in the middle (ISIS 1400) demonstrated reduced antiviral efficacy compared to fully PS ISIS 1080. Thermal denaturation profiles demonstrated that these oligonucleotides hybridized to complementary DNA or RNA with equivalent binding affinities. All were able to support E. coli RNAse H cleavage of the HSV mRNA to which they were targeted. The stability of the congeners in cell culture medium containing 10% fetal calf serum (FCS), HeLa cytosolic extract, HeLa nuclear extract and in intact HeLa cells revealed that ISIS 1080 was most resistant to nucleolytic digestion through 48 hours. Partial PS oligonucleotides exhibited increased degradation compared to the fully thioated oligonucleotide by exonuclease activity in FCS and endonuclease activity in cell extracts or intact cells. Thus, the reduced efficacy of partial compared to fully PS oligonucleotides against HSV-1 in HeLa cells may result from increased degradation of the mixed PO/PS oligonucleotides.  相似文献   

15.
流感泰得在小鼠模型中抗流感病毒活性研究   总被引:2,自引:0,他引:2  
为了在动物整体水平评价流感泰得(flutide,FT)抗流感病毒活性,建立了流感病毒感染小鼠实验模型,并测定了FT在小鼠模型中的抗病毒活性和对小鼠的急性毒性作用。结果表明,流感病毒A/京防/86-1(H1N1)和A/沪防/93-9(H3N2)在小鼠体内连续传代6次时即对小鼠具有感染性,表现为小鼠体重下降,小鼠肺脏湿重增加并能检测到很高的病毒滴度。在小鼠模型中FT具有较高的抗病毒活性,表现在FT能明  相似文献   

16.
Chitooligosaccharides are nontoxic and water-soluble compounds obtained by enzymatic degradation of chitosan, which is derived from chitin by a deacetylation process. Chitooligosaccharides possess broad range of activities such as antitumour, antifungal, antibacterial activities. Sulfated chitooligosaccharides (SCOSs) with different molecular weights were synthesized by a random sulfation reaction. In the present study, anti-HIV-1 properties of SCOSs and the impact of molecular weight on their inhibitory activity were investigated. SCOS III (MW 3-5 kDa) was found to be the most effective compound to inhibit HIV-1 replication. At nontoxic concentrations, SCOS III exhibited remarkable inhibitory activities on HIV-1-induced syncytia formation (EC50 2.19 μg/ml), lytic effect (EC50 1.43 μg/ml), and p24 antigen production (EC50 4.33 μg/ml and 7.76 μg/ml for HIV-1RF and HIV-1Ba-L, respectively). In contrast, unsulfated chitooligosaccharides showed no activity against HIV-1. Furthermore, it was found that SCOS III blocked viral entry and virus-cell fusion probably via disrupting the binding of HIV-1 gp120 to CD4 cell surface receptor. These results suggest that sulfated chitooligosaccharides represent novel candidates for the development of anti-HIV-1 agent.  相似文献   

17.
A number of phosphoramidite monomers have been prepared and used in the synthesis of antisense phosphorothioate oligonucleotides bearing 5'-polyalkyl and cholesterol moieties. Similar groups have also been attached to the 3'-end of oligonucleotides by means of functionalised CPG. Melting temperatures of duplexes formed between phosphorothioate oligonucleotides with lipophilic end-groups and complementary DNA strands were found to be identical to those formed by the equivalent unmodified phosphorothioates.  相似文献   

18.
We describe the synthesis and characterization of a 5′ conjugate between a 2′-O-Me phosphorothioate antisense oligonucleotide and a bivalent RGD (arginine–glycine–aspartic acid) peptide that is a high-affinity ligand for the αvβ3 integrin. We used αvβ3-positive melanoma cells transfected with a reporter comprised of the firefly luciferase gene interrupted by an abnormally spliced intron. Intranuclear delivery of a specific antisense oligonucleotide (termed 623) corrects splicing and allows luciferase expression in these cells. The RGD–623 conjugate or a cationic lipid-623 complex produced significant increases in luciferase expression, while ‘free’ 623 did not. However, the kinetics of luciferase expression was distinct; the RGD–623 conjugate produced a gradual increase followed by a gradual decline, while the cationic lipid-623 complex caused a rapid increase followed by a monotonic decline. The subcellular distribution of the oligonucleotide delivered using cationic lipids included both cytoplasmic vesicles and the nucleus, while the RGD–623 conjugate was primarily found in cytoplasmic vesicles that partially co-localized with a marker for caveolae. Both the cellular uptake and the biological effect of the RGD–623 conjugate were blocked by excess RGD peptide. These observations suggest that the bivalent RGD peptide–oligonucleotide conjugate enters cells via a process of receptor-mediated endocytosis mediated by the αvβ3 integrin.  相似文献   

19.
The potential for reproductive toxicity of an antisense oligonucleotide designed to inhibit ICAM-1 was evaluated as part of the safety assessment for this compound. The human active ICAM-1 inhibitor (ISIS 2302) is not pharmacologically active in rabbits. Female rabbits were treated once daily on Day 6 through 18 of gestation. Rabbits were treated with 0, 1, 3, and 9 mg/kg ISIS 2302 by daily i.v. injection. Reproductive indices evaluated included estrus cycling, litter parameters, fetal development, and fetal body weight. Concentrations of oligonucleotide in plasma following the last dose, and in selected maternal target organs, placenta, and fetal tissues at scheduled necropsy were also measured. Maternal toxicity was evident as a decreased maternal body weight gain, decreased food consumption, and scant feces at doses > or =3 mg/kg. Increased spleen to body weight ratio and increased mononuclear cell infiltrates were indicative of a proinflammatory effect of ISIS 2302 at the 9 mg/kg dose level. Despite the maternal toxicity, there were no changes in litter parameters or fetal development in rabbits treated with ISIS 2302. The only change was a decrease in fetal body weight at the 9 mg/kg dose level, which was attributed to the maternal toxicity observed. Maternal liver and kidney contained dose-dependent concentrations of oligonucleotide, but there was relatively little or no oligonucleotide measured in placenta or fetal tissues. Thus, there was no dose-dependent exposure and maternal toxicity to ISIS 2302, but no reproductive toxicity in rabbits, and exposure of fetus or pups is negligible.  相似文献   

20.
In vitro ultrafiltration was used to determine the plasma protein-binding characteristics of phosphorothioate oligonucleotides (PS ODNs). Although there are binding data on multiple PS ODNs presented here, the focus of this research is on the protein-binding characteristics of ISIS 2302, a PS ODN targeting human intercellular adhesion molecule-1 (ICAM-1) mRNA, which is currently in clinical trials for the treatment of ulcerative colitis. ISIS 2302 was shown to be highly bound (> 97%) across species (mouse, rat, monkey, human), with the mouse having the least degree of binding. ISIS 2302 was highly bound to albumin and, to a lesser, extent alpha2-macroglobulin and had negligible binding to alpha1-acid glycoprotein. Ten shortened ODN metabolites (8, 10, and 12-19 nucleotides [nt] in length, truncated from the 3' end) were evaluated in human plasma. The degree of binding was reduced as the ODN metabolite length decreased. Three additional 20-nt (20-mer) PS ODNs (ISIS 3521, ISIS 2503, and ISIS 5132) of varying sequence but similar chemistry were evaluated. Although the tested PS ODNs were highly bound to plasma proteins, suggesting a commonality within the chemical class, these results suggested that the protein-binding characteristics in human plasma may be sequence dependent. Lastly, drug displacement studies with ISIS 2302 and other concomitant drugs with known protein-binding properties were conducted to provide information on potential drug interactions. Coadministered ISIS 2302 and other high-binding drugs evaluated in this study did not displace one another at supraclinical plasma concentrations and, thus, are not anticipated to cause any pharmacokinetic interaction in the clinic as a result of the displacement of binding to plasma proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号