首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we have investigated the interactions of a Staphylococcal recombinant fibronectin-binding protein A (rFnbA) with fibronectin, fibrinogen, and fibrin. Using analytical size-exclusion chromatography, we evaluated the stoichiometry of reversible binding of FnbA to fibronectin and demonstrated that, in solution, it can accommodate at least two molecules of fibronectin. Results of ELISA experiments demonstrated that rFnbA binds with equally high affinity to both immobilized fibrinogen and fibrin. When included into a thrombin-induced fibrin polymerization reaction, rFnbA strongly inhibited fibrin assembly in a dose-dependent manner. In this study, we have shown that rFnbA can act as a substrate for coagulation factor XIIIa. Factor XIIIa catalyzes the incorporation of amine donor (dansylacadaverine) and amine acceptor (peptide patterned on the N-terminal sequence of fibronectin) synthetic probes into rFnbA, suggesting that it serves as a bifunctional substrate containing reactive glutamine and lysine residues. We have demonstrated that the reversible complex formed by rFnbA and fibronectin or rFnbA and fibrin is covalently stabilized by the transglutaminase action of factor XIIIa. Incubation of rFnbA in the presence of either of its ligands and factor XIIIa results in the introduction of intermolecular epsilon-(gamma-glutamyl)lysine isopeptide bond(s) and the formation of high molecular mass heteropolymers. These findings suggest a novel mechanism by which pathogenic Staphylococcus aureus may utilize the transglutaminase activity of factor XIIIa for attachment to soluble proteins, cell surfaces, and matrixes.  相似文献   

2.
Severina E  Nunez L  Baker S  Matsuka YV 《Biochemistry》2006,45(6):1870-1880
In the present study we investigated the role of factor XIIIa reactive Gln and Lys sites of staphylococcal FnbA receptor in cross-linking reaction with alpha chains of fibrin. For this purpose we produced two recombinant FnbA mutants in which either a single Gln103 site (1Q FnbA) or all identified reactive Gln103, 105, 783, 830 and Lys157, 503, 620, 762 sites (4Q4K FnbA) were substituted with Ala residues. The results of FXIIIa-catalyzed incorporation of dansylcadaverine and dansylated peptide patterned on the NH2-terminal segment of fibronectin revealed that the reactivity of Gln substrate sites was drastically reduced in 1Q FnbA and 4Q4K FnbA mutants, while the reactivity of Lys substrate sites was only moderately decreased in 4Q4K FnbA. When it was tested in the FXIIIa-mediated fibrin cross-linking reaction, the 1Q FnbA mutant exhibited about 70-85% reduction in reactivity compared to that of the wild-type FnbA. These results demonstrate that FnbA participates in cross-linking to alpha chains of fibrin predominantly via its Gln103 reactive site. Several minor sites, including residues replaced in 4Q4K FnbA mutant, contributed to an additional 15-30% of the total fibrin cross-linking reactivity of FnbA. Comparison of amino acid sequences that follow the major reactive Gln site in FnbA and several known substrate proteins revealed that FXIIIa displays a preference for the glutamine residue in an xQAxBxPx sequence, where Q represents reactive glutamine, x is any amino acid residue, A is a polar residue, B is either valine or leucine, and P is proline.  相似文献   

3.
Biotinylated peptides Biot-Gln-Gln-Ile-Val and Biot-epsilon-Aca-Gln-Gln-Ile-Val were shown to act as acceptor substrates for amines in reactions catalyzed by both tissue transglutaminase and coagulation factor XIIIa. Moreover, the peptides could be employed for specifically blocking the potential amine donor sites of protein substrates participating in biological cross-linking with these enzymes. The presence of the biotin label allowed for ready detectability of the marked donor substrates during the cross-linking of crystallins in lens homogenate by the intrinsic transglutaminase and that of the alpha chains of human fibrin by factor XIIIa.  相似文献   

4.
Thrombin activation of platelets induces the release of a high molecular weight glycoprotein, thrombospondin. On treatment with factor XIII transglutaminase and [3H]putrescine, thrombospondin undergoes specific incorporation of this labeled amine, with 2-3 mol of putrescine being incorporated per mol of thrombospondin. Analysis of plasmin digests of [3H]putrescine-thrombospondin showed that the Mr 53,000-core peptide contains the glutamine site for amine incorporation. In the absence of amine substrate, thrombospondin was found to provide both donor (glutamine) and acceptor (lysine) sites for intermolecular cross-links by factors XIIIa, and high molecular weight protein complexes were formed. Homopolymers of thrombospondin were also observed by electron microscopy. Thrombin-cleaved thrombospondin has more cross-linking sites accessible for [3H]putrescine incorporation or for cross-linkage to itself than does the uncleaved native protein. Examination of thrombospondin cross-linkage in the presence of other protein substrates (fibronectin, collagen, fibrinogen, and von Willebrand factor) for factor XIIIa, resulted in reduced thrombospondin polymer formation. Electron microscopy and autoradiography of fibrin clots formed in the presence of 125I-thrombospondin showed an association of thrombospondin with fibrin fibrils. However, confirmation that this association involves covalent epsilon-(gamma-glutamyl)lysyl cross-links between thrombospondin and fibrin was not obtained.  相似文献   

5.
C1 inhibitor, a plasma proteinase inhibitor of the serpin superfamily involved in the regulation of complement classical pathway and intrinsic blood coagulation, has been shown to bind to several components of the extracellular matrix. These reactions may be responsible for C1 inhibitor localization in the perivascular space. In the study reported here, we have examined whether C1 inhibitor could function as a substrate for plasma (factor XIIIa) or tissue transglutaminase. We made the following observations: 1) SDS-polyacrylamide gel electrophoresis and autoradiography showed that C1 inhibitor exposed to tissue transglutaminase (but not to factor XIIIa) incorporated the radioactive amine donor substrate [(3)H]putrescine in a calcium-dependent manner; 2) the maximum stoichiometry for the uptake of [(3)H]putrescine by C1 inhibitor was 1:1; 3) proteolytic cleavage and peptide sequencing of reduced and carboxymethylated [(3)H]putrescine-C1 inhibitor identified Gln(453) (P'9) as the single amine acceptor residue; 4) studies with (125)I-labeled C1 inhibitor showed that tissue transglutaminase was also able to cross-link C1 inhibitor to immobilized fibrin; and 5) C1 inhibitor cross-linked by tissue transglutaminase to immobilized fibrin had inhibitory activity against its target enzymes. Thus, tissue transglutaminase-mediated cross-linking of C1 inhibitor to fibrin or other extracellular matrix components may serve as a mechanism for covalent serpin binding and influence local regulation of the proteolytic pathways inhibited by C1 inhibitor.  相似文献   

6.
Factor XIIIa-catalyzed ε-(γ-glutamyl)-lysyl bonds between glutamine and lysine residues on fibrin α and γ chains stabilize the fibrin clot and protect it from mechanical and proteolytic damage. The cross-linking of γ chains is known to involve the reciprocal linkages between Gln(398) and Lys(406). In α chains, however, the respective lysine and glutamine partners remain largely unknown. Traditional biochemical approaches have only identified the possible lysine donor and glutamine acceptor sites but have failed to define the respective relationships between them. Here, a differential mass spectrometry method was implemented to characterize cross-linked α chain peptides originating from native fibrin. Tryptic digests of fibrin that underwent differential cross-linking conditions were analyzed by high resolution Fourier transform mass spectrometry. Differential intensities associated with monoisotopic masses of cross-linked peptides were selected for further characterization. A fit-for-purpose algorithm was developed to assign cross-linked peptide pairs of fibrin α chains to the monoisotopic masses relying on accurate mass measurement as the primary criterion for identification. Equipped with hypothesized sequences, tandem mass spectrometry was then used to confirm the identities of the cross-linked peptides. In addition to the reciprocal cross-links between Gln(398) and Lys(406) on the γ chains of fibrin (the positive control of the study), nine specific cross-links (Gln(223)-Lys(508), Gln(223)-Lys(539), Gln(237)-Lys(418), Gln(237)-Lys(508), Gln(237)-Lys(539), Gln(237)-Lys(556), Gln(366)-Lys(539), Gln(563)-Lys(539), and Gln(563)-Lys(601)) on the α chains of fibrin were newly identified. These findings provide novel structural details with respect to the α chain cross-linking compared with earlier efforts.  相似文献   

7.
Fibronectin binds specifically to fibrin and is covalently cross-linked to the fibrin α chain by activated factor XIII (XIIIa). This reaction is important for wound healing. Here we investigate XIIIa-catalyzed cross-linking of fibronectin and some of its fragments to a recombinant fragment representing the COOH-terminal 30kDa of the fibrin α chain (αC30K:His 368–Val 610). Only fibronectin and those fragments containing an intact NH2-terminus were able to form cross-linked complexes. As many as 10 of the 17 lysines in αC30K can serve as amine donors in this reaction. Analysis of the rate of XIIIa-catalyzed cross-linking of fibronectin NH2-terminal peptides and fragments with αC30K revealed that the presence of the first type I “finger” module accelerates the cross-linking reaction; addition of fingers 2–5 had no further effect.  相似文献   

8.
The action of human plasma factor XIIIa (thrombin-activated blood coagulation factor XIII) and guinea pig liver transglutaminase on purified caseins, fibrin, the derivatized gamma chain of fibrin, and a number of synthetic glutamine peptides, and peptide derivatives is reported. There are wide variations in the properties of the individual proteins and peptides as substrates for amine incorporation by the two transglutaminases. beta-Casein and several of its derivatives are excellent substrates for factor XIIIa. However, beta-casein is a relatively poor substrate for the liver enzyme. The primary site of amine incorporation by factor XIIIa in beta-casein was identified as glutamine 167. This was accomplished by labeling with fluorescent amine followed by proteolytic digestion and identification of labeled peptides. An 11-residue peptide and a 15-residue peptide, each containing 1 glutamine residue and each modeled after the primary site of amine incorporation in beta-casein, were prepared. A 13-residue peptide modeled after the primary crosslinking site in fibrin gamma chain was also prepared. Each of these polypeptides proved to be an efficient substrate for factor XIIIa and displayed significantly better substrate properties than a number of small glutamine peptide derivatives that are good substrates for liver transglutaminase.  相似文献   

9.
During blood clotting Factor XIIIa, a transglutaminase, catalyzes the formation of covalent bonds between the epsilon-amino group of lysine and the gamma-carboxamide group of peptide-bound glutamine residues between fibrin molecules. We report that glycyl-L-prolyl-L-arginyl-L-proline (GPRP), a tetrapeptide that binds to the fibrin polymerization sites (D-domain) in fibrin(ogen), inhibits transglutaminase cross-linking by modifying the glutamine residues in the alpha- and gamma-chains of fibrinogen. Purified platelet Factor XIIIa, and tissue transglutaminase from adult bovine aortic endothelial cells were used for the cross-linking studies. Gly-Pro (GP) and Gly-Pro-Gly-Gly (GPGG), peptides which do not bind to fibrinogen, had no effect on transglutaminase cross-linking. GPRP inhibited platelet Factor XIIIa-catalyzed cross-linking between the gamma-chains of the following fibrin(ogen) derivatives: fibrin monomers, fibrinogen and polymerized fibrin fibers. GPRP functioned as a reversible, noncompetitive inhibitor of Factor XIIIa-catalyzed incorporation of [3H]putrescine and [14C]methylamine into fibrinogen and Fragment D1. GPRP did not inhibit 125I-Factor XIIIa binding to polymerized fibrin, demonstrating that the Factor XIIIa binding sites on fibrin were not modified. GPRP also had no effect on Factor XIIIa cross-linking of [3H]putrescine to casein. This demonstrates that GPRP specifically modified the glutamine cross-linking sites in fibrinogen, and had no effect on either Factor XIIIa or the lysine residues in fibrinogen. GPRP also inhibited [14C]putrescine incorporation into the alpha- and gamma-chains of fibrinogen without inhibiting beta-chain incorporation, suggesting that the intermolecular cross-linking sites were selectively affected. Furthermore, GPRP inhibited tissue transglutaminase-catalyzed incorporation of [3H]putrescine into both fibrinogen and Fragment D1, without modifying [3H]putrescine incorporation into casein. GPRP also inhibited intermolecular alpha-alpha-chain cross-linking catalyzed by tissue transglutaminase. This demonstrates that the glutamine residues in the alpha-chains involved in intermolecular cross-linking are modified by GPRP. This is the first demonstration that a molecule binding to the fibrin polymerization sites on the D-domain of fibrinogen modifies the glutamine cross-linking sites on the alpha- and gamma-chains of fibrinogen.  相似文献   

10.
In this study, we show that inter-α-inhibitor is a substrate for both factor XIIIa and tissue transglutaminase. These enzymes catalyze the incorporation of dansylcadaverine and biotin-pentylamine, revealing that inter-α-inhibitor contains reactive Gln residues within all three subunits. These findings suggest that transglutaminases catalyze the covalent conjugation of inter-α-inhibitor to other proteins. This was demonstrated by the cross-linking between inter-α-inhibitor and fibrinogen by either factor XIIIa or tissue transglutaminase. Finally, using quantitative mass spectrometry, we show that inter-α-inhibitor is cross-linked to the fibrin clot in a 1:20 ratio relative to the known factor XIIIa substrate α2-antiplasmin. This interaction may protect fibrin or other Lys-donating proteins from adventitious proteolysis by increasing the local concentration of bikunin. In addition, the reaction may influence the TSG-6/heavy Chain 2-mediated transfer of heavy chains observed during inflammation.  相似文献   

11.
BBK32 is a fibronectin-binding protein from the Lyme disease-causing spirochete Borrelia burgdorferi. In this study, we show that BBK32 shares sequence similarity with fibronectin module-binding motifs previously identified in proteins from Streptococcus pyogenes and Staphylococcus aureus. Nuclear magnetic resonance spectroscopy and isothermal titration calorimetry are used to confirm the binding sites of BBK32 peptides within the N-terminal domain of fibronectin and to measure the affinities of the interactions. Comparison of chemical shift perturbations in fibronectin F1 modules on binding of peptides from BBK32, FnBPA from S. aureus, and SfbI from S. pyogenes provides further evidence for a shared mechanism of binding. Despite the different locations of the bacterial attachment sites in BBK32 compared with SfbI from S. pyogenes and FnBPA from S. aureus, an antiparallel orientation is observed for binding of the N-terminal domain of fibronectin to each of the pathogens. Thus, these phylogenetically and morphologically distinct bacterial pathogens have similar mechanisms for binding to human fibronectin.  相似文献   

12.
Makogonenko E  Ingham KC  Medved L 《Biochemistry》2007,46(18):5418-5426
Incorporation of fibronectin into fibrin clots is important for the formation of a provisional matrix that promotes cell adhesion and migration during wound healing. Previous studies revealed that this incorporation occurs through noncovalent interaction between two NH2-terminal Fib-1 regions of fibronectin (one on each chain) and the alphaC-regions of fibrin, and is further reinforced by factor XIIIa-mediated covalent cross-linking of fibronectin to the fibrin matrix. To clarify the role of another pair of fibrin-binding regions, Fib-2, located at the disulfide-linked COOH-terminal ends of fibronectin, we prepared by limited proteolysis a dimeric 140 kDa (Fib-2)2 fragment containing both Fib-2 regions and tested its interaction with recombinant fragments corresponding to the alphaC regions of fibrin(ogen). In both ELISA and surface plasmon resonance (SPR) experiments 140 kDa (Fib-2)2 bound to the immobilized Aalpha221-610 alphaC-fragment. However, the affinity of binding was substantially lower than that for Fib-1. Ligand blotting and ELISA established that the Fib-2 binding site is located in the connector part of the alphaC region including residues Aalpha221-391. Analysis of the SPR-detected binding of fibronectin to the immobilized Aalpha221-610 alphaC-fragment revealed two types of fibronectin-binding sites, one with high affinity and another one with much lower affinity. Competition experiments revealed about 30% inhibition of the Fib-2 mediated binding by increasing concentrations of Fib-1 fragment suggesting partial overlap of the two sets of binding sites. Based on these results and our previous studies we propose a mechanism of interaction of fibronectin with fibrin in which both Fib-1 and Fib-2 play a role.  相似文献   

13.
We have investigated the structural and functional differences between chicken and human cellular fibronectin by comparing the tryptic peptide patterns using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by analyzing the binding properties of isolated trypsin-resistant polypeptide fragments. Although the overall functional organization of chicken and human cellular fibronectins was similar, the tryptic patterns obtained from these two molecules were strikingly different. For example, the tryptic digest of chicken cellular fibronectin contained two unique peptide fragments having molecular sizes of 45 and 70 kilodaltons. The previously unidentified carboxyl-terminal 45-kDa fragment is an intermediate that appears between 15 to 120 s of digestion. The 70-kDa fragment binds to gelatin, to fibrin (with unusually high apparent affinity), to heparin (at low ionic strength), and to fixed Staphylococcus aureus cells; it also contains an acceptor site for factor XIIIa (plasma transglutaminase). These results suggest that the functional domains of chicken and human fibronectins remain constant and that structural variations occur in the protease-susceptible regions of the molecule. The present findings are discussed in terms of the previously existing discrepancies in the literature on fibronectin.  相似文献   

14.
We attempted to locate the glutamine residue in human vitronectin, susceptible to cross-linking by transglutaminases. Vitronectin was incubated with 14C-labelled putrescine and plasma factor XIIIa and, after reduction and alkylation, the vitronectin was digested with trypsin. HPLC of the digest followed by scintillation counting revealed one major and two minor radioactivity labelled peaks. Sub-digestion with Staphylococcus aureus protease, sequence analysis and mass-spectrometry of the resulting peptides demonstrated that Gln-93 of vitronectin had incorporated putrescine. Additionally, Gln-73, Gln-84 and Gln-86 were found to be minor sites for incorporation.  相似文献   

15.
J Molnar  M Z Lai  G E Siefring  L Lorand 《Biochemistry》1983,22(25):5704-5709
Plasma fibronectin is one of the largest plasma proteins (Mr approximately 440 000), comprising two approximately equal polypeptide chains which are held together by a disulfide linkage near the C-terminal end of the molecule. The binding of gelatinized latex beads to liver slices as well as the internalization of these particles by macrophages, in the presence of heparin, is greatly enhanced by fibronectin. The question as to whether the entire covalent structure of fibronectin was necessary for opsonizing activity was approached by limited proteolytic degradations of the molecule. Patterns of controlled digestion with trypsin, cathepsin D, Staphylococcus aureus protease, and plasmin all indicate that the minimal unit necessary for retention of opsonic activity is some large (Mr 200 000 and 190 000) single-chain entity. Treatment with plasmin proved to be the most reliable procedure for generating the active split product which could be readily separated from the inactive, disulfide-containing C-terminal fragment. Incorporation of dansylcadaverine into plasma fibronectin (3.5 mol/mol of protein) by fibronoligase (coagulation factor XIIIa) did not affect the opsonic activity of the protein.  相似文献   

16.
R Procyk  R G King 《Biopolymers》1990,29(3):559-565
The elastic modulus (G') of factor XIIIa induced fibrinogen gels was found to be substantially lower than the G' of fibrin gels that were formed by clotting fibrinogen with thrombin. The addition of fibronectin and/or the reducing reagent dithiothreitol (DTT) to the factor XIIIa coagulation mixture led to the formation of a weaker gel structure, while the rigidity of thrombin induced clots was not appreciably affected by the inclusion of the DTT but increased somewhat in the presence of fibronectin. The reasons for the differing clot rigidities are discussed in terms of biochemical mechanisms.  相似文献   

17.
Heat denatured type I and type III calf skin collagen were found to be substrates for guinea pig liver transglutaminase (R-glutaminyl-peptide:amine gamma-glutamyl-yltransferase, EC 2.3.2.13) but not for active plasma factor XIII (factor XIIIa). Liver transglutaminase was shown to catalyse incorporation of 14C-putrescine into subunits of denatured collagen of both types, cross-linking of the latter into high molecular weight polymers and their co-cross-linking to fibrin and fibrinogen. Factor XIIIa is inactive in these respects. None of these reactions was catalysed by liver transglutaminase and plasma factor XIIIa when nondenatured collagens both soluble or in the forms of reconstituted fibrils served as substrates. Some cross-linking of cleavage products of collagen type I (obtained by treatment with collagenase from human neutrophiles) was induced by liver transglutaminase and factor XIIIa. The results indicate that although appropriate glutamine and lysine residues for a epsilon-(gamma-glutamine) lysine cross-linked formation are present in collagen, the native conformation of collagen prevents the action of liver transglutaminase and factor XIIIa.  相似文献   

18.
Tissue transglutaminase belongs to the multigene transglutaminase family of Ca2+-dependent protein cross-linking enzymes. Unlike other transglutaminases, it is involved in cell-matrix interactions and serves as an adhesion co-receptor for fibronectin. Previous work established that the fibronectin-binding motif(s) is located within the NH2-terminal proteolytic fragment of the protein consisting of residues 1-272. Here we identify a novel fibronectin recognition site within this sequence of tissue transglutaminase. Substitution of individual domains of tissue transglutaminase with those from homologous factor XIIIA showed that the major fibronectin-binding site is present within the first beta-sandwich domain of the protein. Experiments with deletion mutants of the first domain revealed that amino acids 81-140 of tissue transglutaminase are involved in fibronectin binding. Using synthetic peptides encompassing this region, we found that the peptide 88WTATVVDQQDCTLSLQLTT106 inhibited the interaction of tissue transglutaminase with fibronectin and decreased transglutaminase-dependent cell adhesion and spreading. In the three-dimensional structure of the first domain, amino acids 88-106 comprise an extended hairpin formed by antiparallel beta strands 5 and 6. Mutations of Asp94 and Asp97 within the beta5/beta6 hairpin to Ala significantly reduced the affinity of tissue transglutaminase for fibronectin, indicating that these residues are critical for fibronectin binding. Identification of the fibronectin-binding site on tissue transglutaminase will help to dissect the role of this protein in cell-matrix interactions.  相似文献   

19.
Cross-linking site in fibrinogen for alpha 2-plasmin inhibitor   总被引:4,自引:0,他引:4  
A plasma proteinase inhibitor, alpha 2-plasmin inhibitor (alpha 2PI), is cross-linked with alpha chain of fibrin(ogen) by activated coagulation Factor XIII (plasma transglutaminase). alpha 2PI serves only as a glutamine substrate (amine acceptor) for activated Factor XIII in the cross-linking reaction, and the cross-linking occurs between Gln-2 of the alpha 2PI molecule and a lysine residue (amine donor) of fibrin(ogen) alpha chain, whose position was investigated. alpha 2PI and fibrinogen were reacted by activated Factor XIII. The resulting alpha 2PI fibrinogen A alpha chain complex was separated and subjected to two cycles of Edman degradation using phenyl isothiocyanate for the first cycle and dimethylaminoazobenzene-isothiocyanate for the second cycle. The aqueous phase after the cleavage stage of the second cycle, containing dimethylaminoazobenzene-thiohydantoin-Gln cross-linked with A alpha chain, was subjected to CNBr fragmentation and tryptic digestion. Only one of the peptides was found to have the peak of absorbance at 420 nm, indicating the presence of dimethylaminoazobenzene-thiohydantoin-Gln in that peptide. The peptide was identified as corresponding to residues Asn-290-Arg-348 of A alpha chain by analyses of the NH2-terminal amino acid sequence and amino acid composition. The peptide contains a single lysine at position 303, indicating that Lys-303 of fibrinogen A alpha chain is the lysine residue that forms a cross-link with Gln-2 of alpha 2PI.  相似文献   

20.
Regulation of formation of factor XIIIa by its fibrin substrates   总被引:6,自引:0,他引:6  
S D Lewis  T J Janus  L Lorand  J A Shafer 《Biochemistry》1985,24(24):6772-6777
Thrombin-catalyzed release of activation peptide (AP) from plasma factor XIII was studied to characterize the regulation of this initial step in the activation of factor XIII zymogen (fibrin-stabilizing factor). High-performance liquid chromatography was used to monitor the kinetics of release of AP. Non-cross-linked polymeric fibrins I and II (polymerized des-A- and des-A,B-fibrinogens), physiological substrates of factor XIIIa, were shown to be potent promoters of thrombin-catalyzed release of activation peptide from factor XIII. These promoters are proposed to act by complexing factor XIII and reducing the apparent Km for thrombin-catalyzed release of AP. Since thrombin-catalyzed release of AP is inefficient in the absence of polymerized fibrin, this mode of regulation should minimize formation of factor XIIIa prior to the formation of its fibrin substrates. The promoting activity of polymeric fibrin was rapidly lost when catalytically competent factor XIIIa was allowed to form. This observation suggested the possibility that factor XIIIa catalyzed cross-linking of fibrin inactivates fibrin as a promoter for the thrombin-catalyzed release of AP from factor XIII. Consistent with this view, the thiol reagent S-methyl methanethiosulfonate inactivated factor XIIIa, blocked cross-linking of fibrin, and protected against loss of its promoter activity. This mode of feedback regulation of the activation process by catalytically active factor XIIIa may serve to ensure against continued generation of factor XIIIa after its fibrin substrates have been cross-linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号