首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Abstract The shape of species accumulation curves is influenced by the relative abundance and diversity of the fauna being sampled, and the order in which individuals are caught. We use resampling to show the variation in species accumulation curves caused by the order of trapping periods. Averaged species accumulation curves calculated by randomly assigning the order of trapping periods are smooth curves that are a better estimate of species richness and a more useful tool for determining the trapping effort required to adequately survey a site. We extend this concept of randomly resampling the trapping period to show that randomizing the number of individuals caught for each species over the number of collection periods (e.g. days) can provide an accurate estimate of the averaged species accumulation curve. This is particularly useful as it enables an accurate estimation of the proportion of the total number of species caught in an area during a survey from information on the number of individuals caught for each species and the number of trapping periods, and is not dependent on having knowledge of the trapping period in which each individual was caught. This calculation also enables an assessment to be made of the adequacy of fauna surveys to report a species inventory in environmental impact assessments when only a species list and relative abundance data are provided.  相似文献   

2.
Abstract We examined 11 non‐linear regression models to determine which of them best fitted curvilinear species accumulation curves based on pit‐trapping data for reptiles in a range of heterogeneous and homogenous sites in mesic, semi‐arid and arid regions of Western Australia. A well‐defined plateau in a species accumulation curve is required for any of the models accurately to estimate species richness. Two different measures of effort (pit‐trapping days and number of individuals caught) were used to determine if the measure of effort influenced the choice of the best model(s). We used species accumulation curves to predict species richness, determined the trapping effort required to catch a nominated percentage (e.g. 95%) of the predicted number of species in an area, and examined the relationship between species accumulation curves with diversity and rarity. Species richness, diversity and the proportion of rare species in a community influenced the shape of species accumulation curves. The Beta‐P model provided the best overall fit (highest r2) for heterogeneous and homogeneous sites. For heterogeneous sites, Hill, Rational, Clench, Exponential and Weibull models were the next best. For homogeneous habitats, Hill, Weibull and Chapman–Richards were the next best models. There was very little difference between Beta‐P and Hill models in fitting the data to accumulation curves, although the Hill model generally over‐estimated species richness. Most models worked equally well for both measures of trapping effort. Because the number of individuals caught was influenced by both pit‐trapping effort and the abundance of individuals, both measures of effort must be considered if species accumulation curves are to be used as a planning tool. Trapping effort to catch a nominated percentage of the total predicted species in homogeneous and heterogeneous habitats varied among sites, but even for only 75% of the predicted number of species it was generally much higher than the typical effort currently being used for terrestrial vertebrate fauna surveys in Australia. It was not possible to provide a general indication of the effort required to predict species richness for a site, or to capture a nominated proportion of species at a site, because species accumulation curves are heavily influenced by the characteristics of particular sites.  相似文献   

3.
Abstract Ants play an important role in Australian biodiversity and environmental impact assessments, with pitfall-trapping being the principal sampling method. However, the relationship between trap diameter and ant species catch has not been investigated in the context of survey design. Using four different trap diameters, each at a density of one trap per 100 m2, the present study asks three questions: (i) given an equal number of traps, do traps with larger diameters catch more species than smaller-diameter traps?; (ii) do traps with small diameters bias against large or rare species?; (iii) for equal area of the trap mouth, do small but more numerous traps catch more species than fewer but large traps? A total of 84 species were sampled within the 1600 m2 study site, with numbers of species for trap diameters of: 18mm (46 species), 42mm (56 species), 86mm (62 species) and 135mm (64 species). At equal trap density, 18 mm traps caught significantly fewer species than larger traps. Traps of 86 mm and 135mm were no more efficient than 42mm traps. Only 86mm and 135mm traps caught all species > 10mm in length (6 species). For equal area of the trap mouth, small traps were more efficient than large traps. Differences in the catch of the different-sized traps were due primarily to different capture rates of the rare species (40 species): 18mm traps caught 25% of rare species, 42 mm caught 41%, 86 mm caught 44% and 135 mm caught 52%. The role of rare ant species in environmental impact studies is discussed.  相似文献   

4.
Estimation of species richness of local communities has become an important topic in community ecology and monitoring. Investigators can seldom enumerate all the species present in the area of interest during sampling sessions. If the location of interest is sampled repeatedly within a short time period, the number of new species recorded is typically largest in the initial sample and decreases as sampling proceeds, but new species may be detected if sampling sessions are added. The question is how to estimate the total number of species. The data collected by sampling the area of interest repeatedly can be used to build species accumulation curves: the cumulative number of species recorded as a function of the number of sampling sessions (which we refer to as “species accumulation data”). A classic approach used to compute total species richness is to fit curves to the data on species accumulation with sampling effort. This approach does not rest on direct estimation of the probability of detecting species during sampling sessions and has no underlying basis regarding the sampling process that gave rise to the data. Here we recommend a probabilistic, nonparametric estimator for species richness for use with species accumulation data. We use estimators of population size that were developed for capture‐recapture data, but that can be used to estimate the size of species assemblages using species accumulation data. Models of detection probability account for the underlying sampling process. They permit variation in detection probability among species. We illustrate this approach using data from the North American Breeding Bird Survey (BBS). We describe other situations where species accumulation data are collected under different designs (e.g., over longer periods of time, or over spatial replicates) and that lend themselves to of use capture‐recapture models for estimating the size of the community of interest. We discuss the assumptions and interpretations corresponding to each situation.  相似文献   

5.
The San-José Scale Quadraspidiotus perniciosus (SJS) is a quarantine pest in Switzerland. Its occurrence is monitored by trapping males on glue traps treated with artificial female sex pheromone that is supposed to be species-specific. However, large numbers of males were caught in locations where, for ecological reasons, this species was not expected to occur, suggesting that the pheromone is attractive for one or several otrter scale species. Because no morphological species determination key is described for males of this genus, it was not possible to test this hypothesis until now. We used randomly amplified polymorphic DNA (RAPD-PCR) to establish a molecular identification key for six European Quadraspidiotus species. Because the glue used on the traps proved to be an excellent preservative, this key enabled us to identify males caught on pheromone traps in the field and to assess the species-specificity of the SJS-pheromone.  相似文献   

6.
A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species–area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316–318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness–log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.  相似文献   

7.
Presence or absence of threatened species in samples is information that is widely used in designing and implementing conservation actions. We explored the effectiveness of beetle (Coleoptera) inventories and contribution of different sampling methods in revealing occurrences of threatened and near threatened species in boreal forests. The number of species caught using traps in a particular area proved to be a useful indicator of the representativeness of data, the relationship between total number of species and the number of threatened and near threatened species being almost exponential. Samples containing less than 200 trapped species (or 2000 individuals) are almost useless in surveying threatened and near threatened species. The probability of finding such species increases considerably when the number of trapped species exceeds 400. Window traps attached directly on the trunks of dead trees proved to be the most efficient sampling method in trapping threatened beetles, whereas many other standard methods gave relatively poor results. We suggest that the best alternative in surveying threatened species in boreal forests is a combination of intensive direct searching and trunk window traps. Finding threatened beetles with rigorous probability requires very large sample sizes, even if the most effective sampling methods are used. For example, ranking 10 boreal forest areas to be protected according to the occurrence of threatened species with some reliability may require trapping of over 100000 beetle individuals. Collecting and identifying these large samples routinely in conservation actions is not feasible, which means that shortcuts (indicators etc.) are necessary. However, a lot of good-quality inventories with appropriate sampling efforts are needed before these shortcuts can be identified and elaborated. Such inventories are also crucial for the improvement of the classification of threatened species and full assessment on how past forest management has eventually affected the biota.  相似文献   

8.
To evaluate the perimeter trapping strategy as a control method, field tests were conducted in three different host species of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), in Israel. Dry traps baited with a three component food-based synthetic attractant that were hung in the peripheral rows of a plum, a pear, and a persimmon orchard, caught female C. capitata (up to 20.1, 1.4, and 4.1 female C. capitata per trap per day, respectively). Fruit damage, estimated at harvest, indicated a negligible percentage for the plum orchard (< 1%), 3% for the persimmon orchard (compared with 9% at an untreated neighboring plot), and no damaged fruit in the pear orchard. Finally, dissections of female C. capitata caught in dry traps on different host plant species indicate that a high percentage (range, 84-100%) contained mature eggs. The attraction of mature females to the dry traps might explain the successful results. Future research, to determine precisely how many traps should be placed and how frequently they should be serviced, is necessary before applying this strategy on a commercial basis.  相似文献   

9.
Aim The aim of this study was to analyse whether, and how, the inclusion of habitat specialists and edge‐preferring species modifies the species–area relationship predictions of the island biogeography theory for an insect group (ground beetles, Coloptera: Carabidae) living in natural fragments. Species–habitat island area relationships applied to terrestrial habitat islands can be distorted by the indiscriminate inclusion of all species occurring in the fragments. Matrices surrounding terrestrial habitat fragments can provide colonists that do not necessarily distinguish the fragment from the matrix and can survive and reproduce there. Edge‐preferring species can further distort the expected relationship, as smaller fragments have larger edge:core ratios. Location Nineteen forest fragments were studied in the Bereg Plain, Hungary, and SW Ukraine. This area contains natural forest patches, mainly of oak and hornbeam, and supports a mountain entomofauna. Methods Ground beetles (Carabidae) present in the 19 forest patches were categorized into generalists, forest specialists and edge‐preferring species. We analysed the relationship between species richness and fragment area using species richness in the different categories. Results The assemblages contained a high share of generalist species (species that occur also in the surrounding matrix). Forest patch size and the number of generalist species showed a marginally significant negative relationship, indicating that generalist species were more important in smaller patches. Forest specialist species richness was correlated positively with patch area. Edge‐preferring species were shown to influence the species–area relationship: the number of edge‐preferring species increased with the edge:area ratio. Main conclusions Both generalist and edge‐preferring species can considerably distort the species–area relationship. Island biogeography theory can be applied to habitat islands only if the habitat islands are defined correctly from the viewpoint of the target species.  相似文献   

10.
We examined how butterfly species richness is affected by human impact and elevation, and how species ranges are distributed along the elevational gradient (200–2700 m) in the Isère Department (French Alps). A total of 35,724 butterfly observations gathered in summer (May–September) between 1995 and 2015 were analyzed. The number of estimated species per 100‐m elevational band was fitted to the elevational gradient using a generalized additive model. Estimations were also performed on a 500 m × 500 m grid at low altitude (200–500 m) to test for the human impact on species richness using generalized least squares regression models. Each species elevational range was plotted against the elevational gradient. Butterfly richness along the elevational gradient first increased (200–500 m) to reach a maximum of 150 species at 700 m and then remained nearly constant till a sharp decrease after 1900 m, suggesting that after some temperature threshold, only few specialized species can survive. At low elevation, urbanization and arable lands had a strongly negative impact on butterfly diversity, which was buffered by a positive effect of permanent crops. Butterfly diversity is exceptionally high (185 species) in this alpine department that represents less than 5% of the French territory and yet holds more than 70% of all the Rhopalocera species recorded in France. Both climate and habitat shape the distribution of species, with a negative effect of anthropization at low altitude and strong climatic constraints at high altitude.  相似文献   

11.
Non‐invasive methods of monitoring wild populations (such as genotyping faeces or hair) are now widely used and advocated. The potential advantages of such methods over traditional direct monitoring (such as live capture) are that accuracy improves because sampling of non‐trappable individuals may be possible, species in difficult and remote terrain can be surveyed more efficiently, and disturbance to animals is minimal. Few studies have assessed the effects of interactions between species on remote sampling success. We test the use of non‐invasive monitoring for the cryptic, forest‐dwelling, solitary and endangered bridled nailtail wallaby (Onychogalea fraenata) that is sympatric with the ecologically similar and more common black‐striped wallaby (Macropus dorsalis). Six types of hair traps were tested for 3668 trap days, and hairs were caught with about a 10% success rate. Camera traps showed that baited hair traps targeted both wallaby species. We microscopically identified hair as bridled nailtail wallaby or black‐striped wallaby. We compared these hairs and their genotypes (using seven microsatellite loci) with known bridled nailtail wallaby hairs and genotypes derived from animal trapping. Trapped bridled nailtail wallaby hairs had characteristics that could be mistaken for black‐stripe wallaby hairs; characteristics were not diagnostic. Genetic assignment tests consistently differentiated the known bridled nailtail wallaby samples from identified black‐striped wallaby samples, however genetic overlap between most of the microsatellite markers means that they are not suitable for species identification of single samples, with the possible exception of the microsatellite locus B151. With similar trapping effort and within the same area, live‐capture mark‐recapture techniques estimated 40–60 individuals and non‐invasive methods only detected 14 genotypes. A species‐specific genetic marker would allow more efficient targeting of bridled nailtail wallaby samples and increase capture rates.  相似文献   

12.
The species accumulation curve, or collector’s curve, of a population gives the expected number of observed species or distinct classes as a function of sampling effort. Species accumulation curves allow researchers to assess and compare diversity across populations or to evaluate the benefits of additional sampling. Traditional applications have focused on ecological populations but emerging large-scale applications, for example in DNA sequencing, are orders of magnitude larger and present new challenges. We developed a method to estimate accumulation curves for predicting the complexity of DNA sequencing libraries. This method uses rational function approximations to a classical non-parametric empirical Bayes estimator due to Good and Toulmin [Biometrika, 1956, 43, 45–63]. Here we demonstrate how the same approach can be highly effective in other large-scale applications involving biological data sets. These include estimating microbial species richness, immune repertoire size, and k-mer diversity for genome assembly applications. We show how the method can be modified to address populations containing an effectively infinite number of species where saturation cannot practically be attained. We also introduce a flexible suite of tools implemented as an R package that make these methods broadly accessible.  相似文献   

13.
Abstract We explain how species accumulation curves are influenced by species richness (total number of species), relative abundance and diversity using computer‐generated simulations. Species richness defines the boundary of the horizontal asymptote value for a species accumulation curve, and the shape of the curve is influenced by both relative abundance and diversity. Simulations with a high proportion of rare species and a few abundant species have a species accumulation curve with a low ‘shoulder’ (inflection point on the ordinate axis) and a long upward slope to the asymptote. Simulations with a high proportion of relatively abundant species have a steeply rising initial slope to the species accumulation curve and plateau early. Diversity (as measured by Simpson's and Shannon–Weaver indices) for simulations is positively correlated with the initial slope of the species accumulation curve. Species accumulation curves cross when one simulation has a high proportion of both rare and abundant species compared with another that has a more even distribution of abundance among species.  相似文献   

14.
近年来, 红外相机技术已被广泛应用于国内外自然保护地内地栖鸟兽的物种编目和动态评估。本文以广东车八岭国家级自然保护区为例, 探讨基于红外相机技术如何进行保护区全境大中型兽类和雉鸡类的物种编目清查与评估。通过对车八岭保护区全境为期1年的调查, 共记录兽类和雉鸡类18种, 其中兽类15种, 鸡形目鸟类3种。基于物种累计曲线, 采用全年数据所需的最小调查网格数、最少调查相机日均要少于雨季或旱季, 而旱季调查需要的最小调查网格数和最少调查相机日比雨季更少。通过红外相机图像数据获得了车八岭保护区的大中型兽类和地栖雉鸡类物种名录、物种丰富度、每个物种的相对多度、分布图和凭证标本等重要内容。  相似文献   

15.
Land use affects rodent communities in Kalahari savannah rangelands   总被引:1,自引:1,他引:1  
Shrub encroachment caused by overgrazing has led to dramatic changes of savannah landscapes and is considered one of the most threatening forms of rangeland degradation leading to habitat fragmentation. Although changes to plant assemblages are becoming better known, however, our understanding of how shrub encroachment affects rodent communities is low. In this study, we investigated relative abundance of five rodent species in sixteen southern Kalahari rangelands where shrub cover ranged from low (<5%) to high (>25%). Rodent abundance was determined on three trapping grids (40 × 100 m) for each site. Our results show that increasing shrub cover affected rodent species differently. The relative abundance of hairy‐footed gerbil, short‐tailed gerbil and bushveld gerbil declined with increasing shrub cover, whereas highveld gerbil and striped mouse exhibited hump‐shaped relationships with shrub cover. Overall, species richness decreased with increasing shrub cover and a negative impact of high shrub cover above 15% on rodent abundance was congruent for all species. We conclude that our results support the hypothesis that long‐term heavy grazing that results in area wide shrub encroachment, threatens the diversity of arid environments.  相似文献   

16.
Alien species are often a major threat to native species. We consider optimal conservation strategies for a population whose viability is affected both by an alien species (such as a competitor, a predator, or a pathogen) and by random fluctuations of the environment (e.g. precipitation, temperature). We assume that the survivorship of the native population can be improved by providing resources such as food and shelter, and also by an extermination effort that decreases the abundance of the alien species. These efforts decrease the extinction probability of the native population, but they are accompanied by economic costs. We search for the optimal strategy that minimizes the weighted sum of the extinction probability and the economic costs over a single year. We derive conditions under which investment should be made in both resource-enhancement and extermination, and examine how the optimal effort levels change with parameters. When the optimal strategy includes both types of efforts, the optimal extermination effort level turns out to be independent of the density and economic value of the native species, or the variance of the environmental fluctuation. Furthermore, the optimal resource-enhancement effort is then independent of the density of the alien species. However, the parameter dependencies greatly change if one of the efforts becomes zero. We also examine the situation in which the impact of the alien species is uncertain. The optimal extermination effort increases with the uncertainty of this impact except when the cost of extermination is very high.  相似文献   

17.
Lack of biodiversity data is a major impediment to prioritizing sites for species representation. Because comprehensive species data are not available in any planning area, planners often use surrogates (such as vegetation communities, or mapped occurrences of a well‐inventoried taxon) to prioritize sites. We propose and demonstrate the effectiveness of predicted rarity‐weighted richness (PRWR) as a surrogate in situations where species inventories may be available for a portion of the planning area. Use of PRWR as a surrogate involves several steps. First, rarity‐weighted richness (RWR) is calculated from species inventories for a q% subset of sites. Then random forest models are used to model RWR as a function of freely available environmental variables for that q% subset. This function is then used to calculate PRWR for all sites (including those for which no species inventories are available), and PRWR is used to prioritize all sites. We tested PRWR on plant and bird datasets, using the species accumulation index to measure efficiency of PRWR. Sites with the highest PRWR represented species with median efficiency of 56% (range 32%–77% across six datasets) when q = 20%, and with median efficiency of 39% (range 20%–63%) when q = 10%. An efficiency of 56% means that selecting sites in order of PRWR rank was 56% as effective as having full knowledge of species distributions in PRWR's ability to improve on the number of species represented in the same number of randomly selected sites. Our results suggest that PRWR may be able to help prioritize sites to represent species if a planner has species inventories for 10%–20% of the sites in the planning area.  相似文献   

18.
A comparison of pitfall traps with bait traps for sampling leaf litter ants was studied in oak-dominated mixed forests during 1995-1997. A total of 31,732 ants were collected from pitfall traps and 54,694 ants were collected from bait traps. They belonged to four subfamilies, 17 genera, and 32 species. Bait traps caught 29 species, whereas pitfall traps caught 31 species. Bait traps attracted one species not found in pitfall traps, but missed three of the species collected with pitfall traps. Collections from the two sampling methods showed differences in species richness, relative abundance, diversity, and species accumulation curves. Pitfall traps caught significantly more ant species per plot than did bait traps. The ant species diversity obtained from pitfall traps was higher than that from bait traps. Bait traps took a much longer time to complete an estimate of species richness than did pitfall traps. Little information was added to pitfall trapping results by the bait trapping method. The results suggested that the pitfall trapping method is superior to the bait trapping method for leaf litter ant studies. Species accumulation curves showed that sampling of 2,192+/-532 ants from six plots by pitfall traps provided a good estimation of ant species richness under the conditions of this study.  相似文献   

19.
In a rapidly changing world, it is important to understand how urban environments impact wildlife. For example, supplementary feeding of birds, though well‐intended, might have unexpected negative effects on the health of individual animals. Sunflower seeds are commonly provided in garden bird feeders, but they contain high levels of linoleic acid (LA), an omega‐6 polyunsaturated fatty acid (PUFA). Omega‐6 PUFAs are associated with increased oxidative stress, which can damage cell membranes, and in particular sperm cells. We assessed the level of LA in the blood of two seed‐eating finch species, greenfinches Chloris chloris and hawfinches Coccothraustes coccothraustes, caught in and in environments with direct access to sunflower seed feeders (Norway), and compared these with the level of LA in a smaller number of individuals sampled in in a rural area with low incidence of sunflower seed feeders (Czech Republic). Furthermore, we investigated the relationship between the proportion of LA in the blood (as well as the proportion of 10 other fatty acids) and sperm quality (the frequency of sperm head abnormalities and sperm swimming speed). We found that both finch species, but particularly greenfinches caught near feeders, exhibited levels of LA that were considerably higher than those previously reported for other wild birds. We also found that the proportion of LA was positively correlated with the frequency of abnormal sperm heads (sperm missing the acrosome), while there was no significant effect of fatty acid composition on sperm swimming speed. Our results indicate that the sperm quality of finches may be negatively affected by a high intake of sunflower seeds, adding to a growing body of research showing that supplementary feeding may have detrimental side effects for urban animals. This is particularly relevant for the greenfinch, which is currently affected by disease and population declines.  相似文献   

20.
Aim Exotic species pose one of the most significant threats to biodiversity, especially on islands. The impacts of exotic species vary in severity among islands, yet little is known about what makes some islands more susceptible than others. Here we determine which characteristics of an island influence how severely exotic species affect its native biota. Location We studied 65 islands and archipelagos from around the world, ranging from latitude 65° N to 54° S. Methods We compiled a global database of 10 island characteristics for 65 islands and determined the relative importance of each characteristic in predicting the impact of exotic species using multivariate modelling and hierarchical partitioning. We defined the impact of exotic species as the number of bird, amphibian and mammal (BAM) species listed by the International Union for Conservation of Nature (IUCN) as threatened by exotics, relative to the total number of BAM species on that island. Results We found that the impact of exotic species is more severe on islands with more exotic species and a greater proportion of native species that are endemic. Unexpectedly, the level of anthropogenic disturbance did not influence an island's susceptibility to the impacts of exotic species. Main conclusions By coupling our results with studies on the introduction and establishment of exotic species, we conclude that colonization pressure, or invasion opportunities, influences all stages of the invasion process. However, species endemism, the other important factor determining the impact of exotic species, is not known to contribute to introduction and establishment success on islands. This demonstrates that different factors correlate with the initial stages of the invasion process and the subsequent impacts of those invaders, highlighting the importance of studying the impacts of exotic species directly. Our study helps identify islands that are at risk of impact by exotics and where investment should focus on preventing further invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号