首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In plant cells, the plasma membrane Na+/H+ antiporter SOS1 (salt overly sensitive 1) mediates Na+ extrusion using the proton gradient generated by plasma membrane H+-ATPases, and these two proteins are key plant halotolerance factors. In the present study, two genes from Sesuvium portulacastrum, encoding plasma membrane Na+/H+ antiporter (SpSOS1) and H+-ATPase (SpAHA1), were cloned. Localization of each protein was studied in tobacco cells, and their functions were analyzed in yeast cells. Both SpSOS1 and SpAHA1 are plasma membrane-bound proteins. Real-time polymerase chain reaction (PCR) analyses showed that SpSOS1 and SpAHA1 were induced by salinity, and their expression patterns in roots under salinity were similar. Compared with untransformed yeast cells, SpSOS1 increased the salt tolerance of transgenic yeast by decreasing the Na+ content. The Na+/H+ exchange activity at plasma membrane vesicles was higher in SpSOS1-transgenic yeast than in the untransformed strain. No change was observed in the salt tolerance of yeast cells expressing SpAHA1 alone; however, in yeast transformed with both SpSOS1 and SpAHA1, SpAHA1 generated an increased proton gradient that stimulated the Na+/H+ exchange activity of SpSOS1. In this scenario, more Na+ ions were transported out of cells, and the yeast cells co-expressing SpSOS1 and SpAHA1 grew better than the cells transformed with only SpSOS1 or SpAHA1. These findings demonstrate that the plasma membrane Na+/H+ antiporter SpSOS1 and H+-ATPase SpAHA1 can function in coordination. These results provide a reference for developing more salt-tolerant crops via co-transformation with the plasma membrane Na+/H+ antiporter and H+-ATPase.  相似文献   

3.
It is well known that nitric oxide (NO) enhances salt tolerance of glycophytes. However, the effect of NO on modulating ionic balance in halophytes is not very clear. This study focuses on the role of NO in mediating K+/Na+ balance in a mangrove species, Kandelia obovata Sheue, Liu and Yong. We first analyzed the effects of sodium nitroprusside (SNP), an NO donor, on ion content and ion flux in the roots of K. obovata under high salinity. The results showed that 100 μM SNP significantly increased K+ content and Na+ efflux, but decreased Na+ content and K+ efflux. These effects of NO were reversed by specific NO synthesis inhibitor and scavenger, which confirmed the role of NO in retaining K+ and reducing Na+ in K. obovata roots. Using western-blot analysis, we found that NO increased the protein expression of plasma membrane (PM) H+-ATPase and vacuolar Na+/H+ antiporter, which were crucial proteins for ionic balance. To further clarify the molecular mechanism of NO-modulated K+/Na+ balance, partial cDNA fragments of inward-rectifying K+ channel, PM Na+/H+ antiporter, PM H+-ATPase, vacuolar Na+/H+ antiporter and vacuolar H+-ATPase subunit c were isolated. Results of quantitative real-time PCR showed that NO increased the relative expression levels of these genes, while this increase was blocked by NO synthesis inhibitors and scavenger. Above results indicate that NO greatly contribute to K+/Na+ balance in high salinity-treated K. obovata roots, by activating AKT1-type K+ channel and Na+/H+ antiporter, which are the critical components in K+/Na+ transport system.  相似文献   

4.
Human NHA2, a newly discovered cation proton antiporter, is implicated in essential hypertension by gene linkage analysis. We show that NHA2 mediates phloretin-sensitive Na+-Li+ counter-transport (SLC) activity, an established marker for hypertension. In contrast to bacteria and fungi where H+ gradients drive uptake of metabolites, secondary transport at the plasma membrane of mammalian cells is coupled to the Na+ electrochemical gradient. Our findings challenge this paradigm by showing coupling of NHA2 and V-type H+-ATPase at the plasma membrane of kidney-derived MDCK cells, resulting in a virtual Na+ efflux pump. Thus, NHA2 functionally recapitulates an ancient shared evolutionary origin with bacterial NhaA. Although plasma membrane H+ gradients have been observed in some specialized mammalian cells, the ubiquitous tissue distribution of NHA2 suggests that H+-coupled transport is more widespread. The coexistence of Na+ and H+-driven chemiosmotic circuits has implications for salt and pH regulation in the kidney.  相似文献   

5.
6.
Na+/H+ exchange activity in whole cells of the halotolerant alga Dunaliella salina can be elicited by intracellular acidification due to addition of weak acids at appropriate external pH. The changes in both intracellular pH and Na+ were followed. Following a mild intracellular acidification, intracellular Na+ content increased dramatically and then decreased. We interpret the phase of Na+ influx as due to the activation of the plasma membrane Na+/H+ antiporter and the phase of Na+ efflux as due to an active Na+ extrusion process. The following observations are in agreement with this interpretation: (a) the Na+ influx phase was sensitive to Li+, which is an inhibitor of the Na+/H+ antiporter, did not require energy, and was insensitive to vanadate; (b) the Na+ efflux phase is energy-dependent and sensitive to the plasma membrane ATPase inhibitor, vanadate. Following intracellular acidification, a drastic decrease in the intracellular ATP content is observed that is reversed when the cells regain their neutral pH value. We suggest that the intracellular acidification-induced change in the internal Na+ concentration is due to a combination of Na+ uptake via the Na+/H+ antiporter and an active, ATPase-dependent, Na+ extrusion. The Na+/H+ antiporter seems, therefore, to play a principal role in internal pH regulation in Dunaliella.  相似文献   

7.
Salinity causes billion dollar losses in annual crop production. So far, the main avenue in breeding crops for salt tolerance has been to reduce Na+ uptake and transport from roots to shoots. Recently we have demonstrated that retention of cytosolic K+ could be considered as another key factor in conferring salt tolerance in plants. A subsequent study has shown that Na+-induced K+ efflux in barley root epidermis occurs primarily via outward rectifying K+ channels (KORC). Surprisingly, expression of KORC was similar in salt- tolerant and sensitive genotypes. However, the former were able to better oppose Na+-induced depolarization via enhanced activity of plasma membrane H+-ATPase (thus minimizing K+ leak from the cytosol). In addition to highly K+-selective KORC channels, activities of several types of non-selective cation channels were detected at depolarizing potentials. Here we show that the expression of one of them, NORC, was significantly lower in salt-tolerant genotypes. As NORC is capable of mediating K+ efflux coupled to Na+ influx, we suggest that the restriction of its activity could be beneficial for plants under salt stress.Key words: salinity tolerance, barley, ion flux, K+ homeostasis, KOR, non-selective channels, patch-clamp  相似文献   

8.
Katz A  Pick U  Avron M 《Plant physiology》1992,100(3):1224-1229
The effect of different growth conditions on the activity of the Na+/H+ antiporter in Dunaliella salina has been investigated. Adaptation of D. salina cells to ammonia at alkaline pH or to high NaCl concentrations is associated with a pronounced increase in the plasma membrane Na+/H+ exchange activity. The enhanced activity is manifested both in vivo, by stimulation of Na+ influx into intact cells in response to internal acidification, and in vitro, by a larger 22Na accumulation in plasma membrane vesicles in response to an induced pH gradient. Kinetic analysis shows that the stimulation does not result from a change of the Km for Na+ but from an increase in the Vmax. In contrast, adaptation of cells to a high LiCl concentration (0.8 m) depresses the activity of the Na+/H+ antiporter. Adaptation to ammonia is also associated with a large increase of three polypeptide bands in purified plasma membrane preparations, indicating that they may compose the antiporter polypeptides. These results suggest that adaptation to ammonia or to high salinity induces overproduction of the plasma membrane Na+/H+ antiporter in Dunaliella.  相似文献   

9.
This report summarizes recent work in our laboratory aimed at understanding protein-mediated mitochondrial cation transport. We are studying three distinct cation cycles that contain porters catalyzing influx and efflux of cations between cytosol and mitochondrial matrix. Each of these cation cycles plays a major physiological role in the overall energy economy. The K+ cycle maintains the integrity of the vesicular structure and includes the K+/H+ antiporter, the KATP channel, and K+ leak driven by the high membrane potential. The Ca2+ cycle relays the signals calling for modulation of ATP production and includes the Ca2+ channel, the Na+/Ca2+ antiporter, and the Na+/H+ antiporter. The H+ cycle of brown adipose tissue mitochondria provides heat to hibernating and newborn mammals and consists of the uncoupling protein, which catalyzes regulated H+ influx.  相似文献   

10.
11.
The functional analysis of the sodium exchanger SOS1 from wheat, TaSOS1, was undertaken using Saccharomyces cerevisiae as a heterologous expression system. The TaSOS1 protein, with significant sequence homology to SOS1 sodium exchangers from Arabidopsis and rice, is abundant in roots and leaves, and is induced by salt treatment. TaSOS1 suppressed the salt sensitivity of a yeast strain lacking the major Na+ efflux systems by decreasing the cellular Na+ content while increasing K+ content. Na+/H+ exchange activity of purified plasma membrane from yeast cells expressing TaSOS1 was higher than controls transformed with empty vector. These results demonstrate that TaSOS1 contributes to plasma membrane Na+/H+ exchange.  相似文献   

12.
Based on sequence analysis, the salt overly sensitive (SOS1) gene has been suggested to function as a Na+/H+ antiporter located at the plasma membrane of plant cells, being expressed mostly in the meristem zone of the root and in the parenchyma cells surrounding the vascular tissue of the stem. In this study, we compared net H+ and Ca2+ fluxes and intracellular pH and [Ca2+]cyt in the root meristem zone of Arabidopsis wild‐type (WT) and sos mutants before and after salt stress. In addition, we studied the effect of pretreatment with amiloride (an inhibitor of Na+/H+ antiporters) on net ion fluxes, intracellular pH and intracellular Ca2+ activity ([Ca2+]cyt) in WT plants and sos1 mutants before and after salt stress. Net ion fluxes were measured using microelectrode ion flux estimation (MIFE) and intracellular pH and [Ca2+]cyt using fluorescence lifetime imaging microscopy (FLIM) techniques. During the first 15 min after NaCl application, sos1 mutants showed net H+ efflux and intracellular alkalinization in the meristem zone, whereas sos2 and sos3 mutants and WT showed net H+ influx and slight intracellular acidification in the meristem zone. Treatment with amiloride led to intracellular acidification and lower net H+ flux in WT plants and to a decrease in intracellular Ca2+ in WT and sos1 plants. WT plants pretreated with amiloride did not show positive net H+ flux and intracellular acidification. After NaCl application, internal pH shifted to higher values in WT and sos1 plants. However, absolute values of H+ fluxes were higher and internal pH values were lower in WT plants pretreated with amiloride compared with sos1 mutants. Therefore, the SOS1 transporter is involved in H+ influx into the meristem zone of Arabidopsis roots, or it may function as a Na+/H+ antiporter. Amiloride affects SOS1 and other Na+/H+ antiporters in plant cells because of its ability to decrease the H+ gradient across the plasma membrane.  相似文献   

13.
Plants have evolved complex mechanisms that allow them to withstand multiple environmental stresses, including biotic and abiotic stresses. Here, we investigated the interaction between herbivore exposure and salt stress of Ammopiptanthus nanus, a desert shrub. We found that jasmonic acid (JA) was involved in plant responses to both herbivore attack and salt stress, leading to an increased NaCl stress tolerance for herbivore-pretreated plants and increase in K+/Na+ ratio in roots. Further evidence revealed the mechanism by which herbivore improved plant NaCl tolerance. Herbivore pretreatment reduced K+ efflux and increased Na+ efflux in plants subjected to long-term, short-term, or transient NaCl stress. Moreover, herbivore pretreatment promoted H+ efflux by increasing plasma membrane H+-adenosine triphosphate (ATP)ase activity. This H+ efflux creates a transmembrane proton motive force that drives the Na+/H+ antiporter to expel excess Na+ into the external medium. In addition, high cytosolic Ca2+ was observed in the roots of herbivore-treated plants exposed to NaCl, and this effect may be regulated by H+-ATPase. Taken together, herbivore exposure enhance s A. nanus tolerance to salt stress by activating the JA-signalling pathway, increasing plasma membrane H + - ATPase activity, promoting cytosolic Ca2+ accumulation, and then restricting K+ leakage and reducing Na+ accumulation in the cytosol.  相似文献   

14.
Vesicular preparations of plasma membranes (PM) from the microalga Tetraselmis (Platymonas) viridisRouch were used to investigate the ion specificity of the Na+/H+antiporter and Na+-translocating ATPase, two Na+-transporting systems previously identified functionally by our studies of T. viridisPM. The Na+/H+antiporter and Na+-ATPase were shown to translocate, with similar efficiencies, Na+and Li+across the membrane, whereas other cations, such as K+, Rb+, and Cs+, were not transported by these systems. Transport of the latter cations across PM of T. viridisoccurred through the ion channels of PM, which were apparently selective for K+.  相似文献   

15.
Neurotransmitter transporters are essential components in the recycling of neurotransmitters released during neuronal activity. These transporters are the targets for important drugs affecting mood and behavior. They fall into at least four gene families, two encoding proteins in the plasma membrane and two in the synaptic vesicle membrane, although the known vesicular transporters have not all been cloned. Each of these transporters works by coupling the downhill movement of small ions such as Na+, Cl, K+, and H+ to the uphill transport of neurotransmitter. Plasma membrane transporters move the transmitter into the cytoplasm by cotransport with Na+. Many transporters also couple Cl cotransport to transmitter influx and these all belong to the NaCl-coupled family, although within the family the coupling stoichiometry can vary. Transporters for glutamate couple influx of this excitatory amino acid to Na+ and H+ influx and K+ efflux. Transporters in synaptic vesicles couple H+ efflux to neurotransmitter transport from the cytoplasm to the vesicle lumen.  相似文献   

16.
Recently, a “Na+/NH4 + exchange complex” model has been proposed for ammonia excretion in freshwater fish. The model suggests that ammonia transport occurs via Rhesus (Rh) glycoproteins and is facilitated by gill boundary layer acidification attributable to the hydration of CO2 and H+ efflux by Na+/H+ exchanger (NHE-2) and H+-ATPase. The latter two mechanisms of boundary layer acidification would occur in conjunction with Na+ influx (through a Na+ channel energized by H+-ATPase and directly via NHE-2). Here, we show that natural ammonia loading via feeding increases branchial mRNA expression of Rh genes, NHE-2, and H+-ATPase, as well as H+-ATPase activity in juvenile trout, similar to previous findings with ammonium salt infusions and high environmental ammonia (HEA) exposure. The associated increase in ammonia excretion occurs in conjunction with a fourfold increase in Na+ influx after a meal. When exposed to HEA (1.5 mmol/l NH4HCO3 at pH 8.0), both unfed and fed trout showed differential increases in mRNA expression of Rhcg2, NHE-2, and H+-ATPase, but H+-ATPase activity remained at control levels. Unfed fish exposed to HEA displayed a characteristic reversal of ammonia excretion, initially uptaking ammonia, whereas fed fish (4 h after the meal) did not show this reversal, being able to immediately excrete ammonia against the gradient imposed by HEA. Exposure to HEA also led to a depression of Na+ influx, demonstrating that ammonia excretion can be uncoupled from Na+ influx. We suggest that the efflux of H+, rather than Na+ influx itself, is critical to the facilitation of ammonia excretion.  相似文献   

17.
A membrane fraction enriched in plasma membrane (PM) vesicles was isolated from the root cells of a salt-accumulating halophyte Suaeda altissima (L.) Pall. by means of centrifugation in discontinuous sucrose density gradient. The PM vesicles were capable of generating ΔpH at their membrane and the transmembrane electric potential difference (Δψ). These quantities were measured with optical probes, acridine orange and oxonol VI, sensitive to ΔpH and Δψ, respectively. The ATP-dependent generation of ΔpH was sensitive to vanadate, an inhibitor of P-type ATPases. The results contain evidence for the functioning of H+-ATPase in the PM of the root cells of S. altissima. The addition of Na+ and Li+ ions to the outer medium resulted in dissipation of ΔpH preformed by the H+-ATPase, which indicates the presence in PM of the functionally active Na+/H+ antiporter. The results are discussed with regard to involvement of the Na+/H+ antiporter and the PM H+-ATPase in loading Na+ ions into the xylem of S. altissima roots.  相似文献   

18.
H+-ATPase activity of a plasma membrane-enriched fraction decreased after the treatment of barley (Hordeum vulgare) seedlings with Al for 5 days. A remarkably high level of Al was found in the membrane fraction of Al-treated roots. A long-term effect of Al was identified as the repression of the H+-ATPase of plasma membranes isolated from the roots of barley and wheat (Triticum aestivum) cultivars, Atlas 66 (Al-tolerant) and Scout 66 (Al-sensitive). To monitor short-term effects of Al, the electrical membrane potentials across plasma membranes of both wheat cultivars were compared indirectly by measuring the efflux of K+ for 40 min under various conditions. The rate of efflux of K+ in Scout was twice that in Atlas at low pH values such as 4.2. Vanadate, an inhibitor of the H+-ATPase of the plasma membrane, increased the efflux of K+. Al repressed this efflux at low pH, probably through an effect on K+ channels, and repression was more pronounced in Scout. Al strongly repressed the efflux of K+ irrespective of the presence of vanadate. Ca2+ also had a repressive effect on the efflux of K+ at low pH. The effect of Ca2+, greater in Scout, might be related to the regulation of the net influx of H+, since the effect was negated by vanadate. The results suggest that extracellular low pH may cause an increase in the influx of H+, which in turn is counteracted by the efflux of K+ and H+. These results suggest that the ability to maintain the integrity of the plasma membrane and the ability to recover the electrical balance at the plasma membrane through a net influx of H+ and the efflux of K+ seem to participate in the mechanism of tolerance to Al stress under acidic conditions.  相似文献   

19.
Leishmania donovani has an active K+/H+ exchange system on the surface membrane. Modulation of external K+ concentration resulted in a corresponding change in internal pH (pHi) suggesting a link between proton and potassium transport. Although a Na+/H+ antiporter is present on the plasma membrane, its sensitivity to amiloride suggests that it operates independent of K+/H+ exchange. Reduction of cellular ATP with NaN3 and KCN inhibits K+/H+ exchange showing thereby that the process is energy dependent. The K+/H+ exchange is sensitive to inhibitors of the gastric K+/H+-ATPase. It is concluded that the H+-ATPase previously reported on the plasma membrane of L. donovani is in fact a K+/H+-ATPase. © 1994 wiley-Liss, Inc.  相似文献   

20.
To prevent sodium toxicity in plants, Na+ is excluded from the cytosol to the apoplast or the vacuole by Na+/H+ antiporters. The secondary active transport of Na+ to apoplast against its electrochemical gradient is driven by plasma membrane H+-ATPases that hydrolyze ATP and pump H+ across the plasma membrane. Current methods to determine Na+ flux rely either on the use of Na-isotopes (22Na) which require special working permission or sophisticated equipment or on indirect methods estimating changes in the H+ gradient due to H+-ATPase in the presence or absence of Na+ by pH-sensitive probes. To date, there are no methods that can directly quantify H+-ATPase-dependent Na+ transport in plasma membrane vesicles. We developed a method to measure bidirectional H+-ATPase-dependent Na+ transport in isolated membrane vesicle systems using atomic absorption spectrometry (AAS). The experiments were performed using plasma membrane-enriched vesicles isolated by aqueous two-phase partitioning from leaves of Populus tomentosa. Since most of the plasma membrane vesicles have a sealed right-side-out orientation after repeated aqueous two-phase partitioning, the ATP-binding sites of H+-ATPases are exposed towards inner side. Leaky vesicles were preloaded with Na+ sealed for the study of H+-ATPase-dependent Na+ transport. Our data implicate that Na+ movement across vesicle membranes is highly dependent on H+-ATPase activity requiring ATP and Mg2+ and displays optimum rates of 2.50 μM Na+ mg− 1 membrane protein min− 1 at pH 6.5 and 25 °C. In this study, for the first time, we establish new protocols for the preparation of sealed preloaded right-side-out vesicles for the study of H+-ATPase-dependent Na+ transport. The results demonstrate that the Na+ content of various types of plasma membrane vesicle can be directly quantified by AAS, and the results measured using AAS method were consistent with those determined by the previous established fluorescence probe method. The method is a convenient system for the study of bidirectional H+-ATPase-dependent Na+ transport with membrane vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号