共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Shruti Kaushik Poonam Sharma Gurvarinder Kaur Anil Kumar Singh Fahad A. Al-Misned Hesham M. Shafik Geetika Sirhindi 《Saudi Journal of Biological Sciences》2022,29(2):721-729
Contamination of agricultural soils with heavy metals (HMs) has posed major threat to the environment as well as human health. The aim of this study was to appraise the efficiency of key-antioxidant enzymes in enhancing plants’ tolerance to HMs (heavy metals) like copper (Cu) and Cadmium (Cd), under the action of methyl jasmonate (Me-JA) in Cajanus cajan L. Seeds of C. cajan treated with Me-JA (0, 1 nM) were discretely subjected to noxious concentrations of Cu and Cd (0, 1, 5 mM) and raised for 12 days under controlled conditions in plant growth chamber for biochemical analysis. In contrast to Cd, Cu triggered oxidative stress more significantly (44.54% in 5 mM Cu increase in MDA as compared to control) and prominently thereby affecting plants’ physiological and biochemical attributes. By activating the antioxidant machinery, Me-JA pre-treatment reduced HMs-induced oxidative stress, increased proline production, glutathione (41.95% under 5 mM Cu when treated with 1 nM Me-JA treatment) and ascorbic acid content by 160.4 % under aforemtioned treatments thus improving the redox status. Thus, in light of this our results put forward a firm basis of the positive role that Me-JA might play in the mitigation of oxidative stress caused due to HMs stress by stimulating antioxidant defense system leading to overall improvement of growth of C. cajan seedlings. 相似文献
4.
Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate 总被引:23,自引:0,他引:23
Summary Two classes of lipoxygenase (LOX) cDNAs, designated loxA and loxB, were isolated from soybean. A third lipoxygenase cDNA, loxP1, was isolated from pea. The deduced amino acid sequences of loxA and loxB show 61–74% identity with those of soybean seed LOXs. loxA and loxB mRNAs are abundant in roots and non-growing regions of seedling hypocotyls. Lower levels of these mRNAs are found in hypocotyl growing regions. Exposure of soybean seedlings to water deficit causes a rapid increase in loxA and loxB mRNAs in the elongating hypocotyl region. Similarly, loxP1 mRNA levels increase rapidly when pea plants are wilted. loxA and loxB mRNA levels also increase in wounded soybean leaves, and these mRNAs accumulate in soybean suspension cultures treated with 20 M methyl jasmonate. These results demonstrate that LOX gene expression is modulated in response to water deficit and wounding and suggest a role for lipoxygenase in plant responses to these stresses. 相似文献
5.
S. P. Khatiwada D. Senadhira A. L. Carpena R. S. Zeigler P. G. Fernandez 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,93(5-6):738-744
A study was undertaken to investigate the variability among lowland rice cultivars and the mode of gene action of aluminum (Al) toxicity tolerance in rice. Pregerminated seeds were grown in a nutrient solution containing 30 ppm Al and in normal nutrient solution, and relative root length (RRL) was determined at the 14-day-old stage to characterize genotypes for tolerance. Sixty-two traditional rice cultivars grown on lowland acid sulfate soil areas of Asia and West Africa were tested. Tolerant varieties Azucena, IRAT104, and Moroberekan, moderately sensitive IR29 and IR43, and sensitive IR45 and IR1552 were used to investigate the genetics of tolerance by diallel analysis. Of the 62 cultivars tested, only 3 were found to be sensitive to A l toxicity. Among the tolerant cultivars identified, 11 (Siyam Kuning, Gudabang Putih, Siyam, Lemo, Khao Daeng, Siyamhalus, Bjm-12, Ketan, Seribu Gantang, Bayer Raden Rati, and Padi Kanji) were found to possess higher levels of tolerance than the improved tolerant upland cultivar IRAT104. Diallel analysis revealed that high RRL is governed by both additive and dominance effects with a preponderance of additive effects. The trait exhibited partial dominance, and one group of genes was detected. Heritability was high, and environmenal effects were low. Findings suggest that when breeding for A1 toxicity tolerance, selection can be made in early generations. The pedigree method of breeding would be suitable. Combining ability analysis revealed the importance of both general combining ability (GCA) and specific combining ability (SCA) in the genetics of A1 toxicity tolerance in rice. GCA was more prevalent than SCA. Tolerant parens Azucena, IRAT104, and Moroberekan were the best general combiners. The presence of reciprocal effects among crosses suggested the proper choice of parents in hybridization programs. Results indicated that Azucena, IRAT 104, and Moroberekan should be used as the female in crosses for A1 toxicity tolerance. 相似文献
6.
Bhaskar Choudhury Souvik Mitra Asok K. Biswas 《Physiology and Molecular Biology of Plants》2010,16(1):59-68
The effect of arsenate with or without phosphate on the growth and sugar metabolism in rice seedlings cv. MTU 1010 was studied. Arsenate was found to be more toxic for root growth than shoot growth and water content of the seedlings gradually decreased with increasing concentrations. Arsenate exposure at 20 μM and 100 μM resulted in an increase in reducing sugar content and decrease in non-reducing sugar content. There was a small increase in starch content, the activity of starch phosphorylase was increased but α-amylase activity was found to be decreased. Arsenate toxicity also affected the activities of different carbohydrate metabolizing enzymes. The activities of sucrose degrading enzymes viz., acid invertase and sucrose synthase were increased whereas, the activity of sucrose synthesizing enzyme, viz. sucrose phosphate synthase declined. The combined application of arsenate with phosphate exhibited significant alterations of all the parameters tested under the purview of arsenate treatment alone which was congenial to better growth and efficient sugar metabolism in rice seedlings. Thus, the use of phosphorus enriched fertilizers may serve to ensure the production of healthy rice plants in arsenic contaminated soils. 相似文献
7.
8.
Capitani F Biondi S Falasca G Ziosi V Balestrazzi A Carbonera D Torrigiani P Altamura MM 《Planta》2005,220(4):507-519
The aim of the present study was to determine early cyto-histological events associated with the reduced number of shoots formed at the end of culture in tobacco (Nicotiana tabacum L.) thin cell layers treated with methyl jasmonate (MJ) [S. Biondi et al. (2001) J Exp Bot 52:1–12]. The results show that 0.1–10 M MJ strongly stimulated mitotic activity early in culture relative to untreated controls. Treatment with MJ also induced anomalous mitoses. Enhanced proliferative growth was confirmed by northern analysis and in situ hybridisation using cDNA probes of the G1/S phase-specific genes ubiquitin carboxyl-extension protein (ubi-CEP), topoisomerase 1 (top1) and ribonucleotide reductase (RNR). The formation of meristematic cell clusters on day 5 was also enhanced by 1 M MJ, but subsequent development of these cell clusters into meristemoids and shoot primordia was reduced by all MJ concentrations in a dose-dependent manner. Cell expansion was stimulated by MJ concentrations ranging from 0.001 to 10 M; expanded cells frequently occurred around and within meristemoids and shoot primordia, and displayed thickened and suberised cell walls; cell wall thickness increased with increasing MJ concentration. These cytological events caused alterations in the tunica and stem differentiation of the shoot dome. The apparently paradoxical role of MJ, which deregulates shoot formation through a stimulation of growth events, i.e., mitotic activity and cell expansion, is discussed. 相似文献
9.
Parisa Hasanein Masumeh Ghafari-Vahed Iraj Khodadadi 《Redox report : communications in free radical research》2017,22(1):42-50
Objectives: Liver is considered a target organ affected by lead toxicity. Oxidative stress is among the mechanisms involved in liver damage. Here we investigated the effects of the natural alkaloid berberine on oxidative stress and hepatotoxicity induced by lead in rats.Methods: Animals received an aqueous solution of lead acetate (500?mg Pb/l in the drinking water) and/or daily oral gavage of berberine (50?mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical, molecular, and histological evaluations.Results: Lead-induced oxidative stress, shown by increasing lipid peroxidation along with a concomitant decrease in hepatic levels of thiol groups, total antioxidant capacity, the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and reduced versus oxidized glutathione ratio. Berberine corrected all the disturbances in oxidative stress markers induced by lead administration. Berberine also prevented the elevated levels of enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) and the decrease in body weight and albumin. The protective effects of berberine were comparable with silymarin. Furthermore, berberine attenuated liver damage, shown by decreased necrosis and inflammatory cell infiltration.Discussion: Berberine represents a potential therapeutic option against lead-induced hepatotoxicity through inhibiting lipid peroxidation and enhancing antioxidant defenses.Conclusion: Berberine exerted protective effects on lead-induced oxidative stress and hepatotoxicity in rats. 相似文献
10.
BackgroundExposure to arsenic, a widespread environmental toxin, produces multiple organ toxicity, including gastrointestinal toxicity. Nigella sativa (NS) has long been revered for its numerous health benefits under normal and pathological states. In view of this, the present study attempts to evaluate the protective efficacy of orally administered Nigella sativa oil (NSO) against arsenic-induced cytotoxic and genotoxic alterations in rat intestine and elucidate the underlying mechanism of its action.MethodsRats were categorized into the control, NaAs, NSO, and NaAs+NSO groups. After pre-treatment of rats in the NaAs+NSO and NSO groups daily with NSO (2 ml/kg bwt, orally) for 14 days, NSO treatment was further continued for 30 days, with and without NaAs treatment (5 mg/kg bwt, orally), respectively. Various biochemical parameters, such as enzymatic and non-enzymatic antioxidants, carbohydrate metabolic and brush border membrane marker enzyme activities were evaluated in the mucosal homogenates of all the groups. Intestinal brush border membrane vesicles (BBMV) were isolated, and the activities of membrane marker enzyme viz. ALP, GGTase, LAP, and sucrase were determined. Further, the effect on kinetic parameters viz KM (Michaelis-Menten constant) and Vmax of these enzymes was assessed. Integrity of enterocyte DNA was examined using the comet assay. Histopathology of the intestines was performed to evaluate the histoarchitectural alterations induced by chronic arsenic exposure and/or NSO supplementation. Arsenic accumulation in the intestine was studied by inductively coupled plasma-mass spectroscopy (ICP-MS).ResultsNaAs treatment caused substantial changes in the activities of brush border membrane (BBM), carbohydrate metabolism, and antioxidant defense enzymes in the intestinal mucosal homogenates. The isolated BBM vesicles (BBMV) also showed marked suppression in the marker enzyme activities. Severe DNA damage and mucosal arsenic accumulation were observed in rats treated with NaAs alone. In contrast, oral NSO supplementation significantly alleviated all the adverse alterations induced by NaAs treatment. Histopathological examination supported the biochemical findings.ConclusionNSO, by improving the antioxidant status and energy metabolism, could significantly alter the ability of the intestine to protect against free radical-mediated arsenic toxicity in intestine. Thus, NSO may have an excellent scope in managing gastrointestinal distress in arsenic intoxication. 相似文献
11.
Montás Ramírez L. Claassen N. Amílcar Ubiera A. Werner H. Moawad A.M. 《Plant and Soil》2002,239(2):197-206
During the period January–August 1996, an investigation was carried out in La Mata, Cotuí, Dominican Republic with the objective to study the effect of P, K and Zn fertilizers on Fe toxicity in the rice varieties JUMA-57 (sensitive to Fe toxicity), ISA-40 and PSQ-4 (both tolerant to Fe toxicity). The rate of fertilizer application was 22 and 62 kg P ha–1; 58 and 116 kg K ha–1; 3 and 7 kg Zn ha–1 and a constant dose of 140 kg N ha–1 and 40 kg S ha–1 on all fertilized plots. The control received no fertilizer. JUMA-57 was the only variety that showed symptoms of Fe toxicity. The observed symptoms showed a yellow to orange colour. Symptoms of Fe toxicity appeared first one week after transplanting (WAT), decreased at the fourth WAT, but returned six WAT and continued until the end of the experiment. Fertilizer application reduced symptom intensity and increased grain yield in all varieties, but only JUMA-57 did not reach the maximum yield typical for that variety. Fertilizer application did not completely overcome the toxicity effect, i.e. in symptom intensity and grain yield. The positive effect of fertilizer application could not be attributed to a specific nutrient. Intensity of symptoms was not related to Fe concentration in the leaves. The average Fe concentration of 108 mg kg–1 was not high enough to be considered toxic. Symptoms could not be explained through Mn toxicity (average Mn concentration in the leaves was 733 mg kg–1) nor Zn deficiency (average Zn concentration in the leaves was 20 mg kg–1). There was a clear relationship, though, between soil DTPA extractable Fe and symptom intensity or grain yield. The toxic effect was observed when the DTPA extractable Fe in the flooded soil was above 200 mg kg–1. From these results, we concluded that the Fe toxicity resulted from high Fe in the root zone and not from high Fe concentrations in the leaves. 相似文献
12.
The effects of 24-epibrassinolide (24-epiBL) on seedling growth, antioxidative system, lipid peroxidation, proline and soluble
protein content were investigated in seedlings of the salt-sensitive rice cultivar IR-28. Seedling growth of rice plants was
improved by 24-epiBL treatment under salt stress conditions. When seedlings treated with 24-epiBL were subjected to 120 mM
NaCl stress, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.6.4.2)
did not show significant difference, whereas the activity of ascorbate peroxidase (EC 1.11.1.11) significantly increased.
Increased activity of peroxidase (EC 1.11.1.7) under NaCl stress showed remarkable decrease in the 24-epiBL+NaCl-applied group.
Lipid peroxidation level significantly increased under salt stress but decreased with 24-epiBL application revealing that
less oxidative damage occurred in this group (24-epiBL+NaCl). In addition, increased proline content in the NaCl-applied group
was decreased by 24-epiBL application in the 24-epiBL+NaCl-applied group. Soluble protein content was increased by 24-epiBL
application even under NaCl stress, being also higher than control conditions (no 24-epiBL or NaCl treatment). 24-epiBL treatment
considerably alleviated oxidative damage that occurred under NaCl-stressed conditions and improved seedling growth in part
under salt stress in sensitive IR-28 seedlings. 相似文献
13.
Knowledge of rice genome brings new dimensions to the management of abiotic stresses; however, gene sequences in the rice genome are yet to be assigned structure and function. Hydrogen peroxide, salicylates and jasmonates act as signal molecules in plants employing common machinery to manage abiotic stress. The present work is primarily focused to assign a structurefunction relationship by modeling of the hypothetical proteins of SA-JA signaling pathway known in Arabidopsis thaliana and compare them with corresponding proteins in rice in silico. Thirteen known gene sequences with their encoded proteins for SA/JA pathway in model plant A. thaliana were obtained and similar gene sequences from rice were retrieved at NCBI. Five rice gene sequences Os09g0392100, Os03g0233200, OsJ_33269, OsJ_23610 and Os01g0194300 resulted in hypothetical protein products with unknown structure and function. Modeling and comparison of 5 proteins from rice and Arabidopsis showed 73 - 98% identity with acceptable RMSD values of 0.6 - 1.7 upon superimposition. Results suggest conserved nature of these proteins during evolution. The hypothetical protein from rice contains similar functional protein domain as that in A. thaliana and therefore are likely to perform similar functions in rice. There is a cross talk between the genes in SA/JA pathway wherein Os09g0392100 or EDS1, Os03g0233200 or PR5, OsJ_33269 or PAD4 and OsJ_23610 or SFD-1 activates the pathway and Os01g0194300 or NPR1 inhibit the pathway. Further investigation through wet-lab experiments are in progress to look into suppression/activation of the genes of SAJA signaling in rice plants exposed to abiotic stress. 相似文献
14.
Beneficial effect of combined administration of some naturally occurring antioxidants (vitamins) and thiol chelators in the treatment of chronic lead intoxication 总被引:11,自引:0,他引:11
Ameliorative effects of few naturally occurring antioxidants like ascorbic acid (vitamin C), alpha-tocopherol (vitamin E) either alone or in combination with meso-2,3-dimercaptosuccinic acid (DMSA) or monoisoamyl DMSA (MiADMSA), on parameters indicative of oxidative stress in the liver, kidney, brain and blood of lead-exposed rats were studied. Male Wistar rats were exposed to 0.1% lead acetate in drinking water for 3 months and treated thereafter with DMSA or its analogue MiADMSA (50 mg/kg, intraperitoneally), either individually or in combination with vitamin E (5 mg/kg, intramuscularly) or vitamin C (25 mg/kg, orally) once daily for 5 days. The effects of these treatments in influencing the lead-induced alterations in haem synthesis pathway, hepatic, renal and brain oxidative stress and lead concentration from the soft tissues were investigated. Exposure to lead produced a significant inhibition of delta-aminolevulinic acid dehydratase (ALAD) activity from 8.44+/-0.26 in control animals to 1.76+/-0.32 in lead control, reduction in glutathione (GSH) from 3.56+/-0.14 to 2.57+/-0.25 and an increase in zinc protoporphyrin level from 62.0+/-3.9 to 170+/-10.7 in blood, suggesting altered haem synthesis pathway. Both the thiol chelators and the two vitamins were able to increase blood ALAD activity towards normal, however, GSH level responded favorably only to the two thiol chelators. The most prominent effect on blood ALAD activity was, however, observed when MiADMSA was co-administered with vitamin C (7.51+/-0.17). Lead exposure produced a significant depletion of hepatic GSH from 4.59+/-0.78 in control animals to 2.27+/-0.47 in lead controls and catalase activity from 100+/-3.4 to 22.1+/-0.25, while oxidized glutathione (GSSG; 0.34+/-0.05 to 2.05+/-0.25), thiobarbituric acid reactive substance (TBARS; 1.70+/-0.45 to 5.22+/-0.50) and glutathione peroxidase (GPx) levels (3.41+/-0.09 to 6.17+/-0.65) increased significantly, pointing to hepatic oxidative stress. Altered, reduced and oxidized GSH levels showed significant recovery after MiADMSA and DMSA administration while, vitamins E and C were effective in reducing GSSG and TBARS levels and increasing catalase activity. Administration of MiADMSA alone and the combined administration of vitamin C along with DMSA and MiADMSA were most effective in increasing hepatic GSH levels to 4.88+/-0.14, 4.09+/-0.12 and 4.30+/-0.06, respectively. Hepatic catalase also reached near normal level in animals co-administered vitamin C with DMSA or MiADMSA (82.5+/-4.5 and 84.2+/-3.5, respectively). Combined treatments with vitamins and the thiol chelators were also able to effectively reduce lead-induced decrease in renal catalase activity and increase in TBARS and GPx level. Combination therapy, however, was unable to provide an effective reversal in the altered parameters indicative of oxidative stress in different brain regions, except in catalase activity. The result also suggests a beneficial role of vitamin E when administered along with the thiol chelators (particularly with MiADMSA) in reducing body lead burden. Blood lead concentration was reduced from 13.3+/-0.11 in lead control to 0.3+/-0.01 in MiADMSA plus vitamin E-treated rats. Liver and kidney lead concentration also showed a most prominent decrease in MiADMSA plus vitamin E co-administered rats (5.29+/-0.16 to 0.63+/-0.02 and 14.1+/-0.21 to 1.51+/-0.13 in liver and kidney, respectively). These results thus suggest that vitamin C administration during chelation with DMSA/MiADMSA was significantly beneficial in reducing oxidative stress however, it had little or no additive effect on the depletion of lead compared with the effect of chelators alone. Thus, the co-administration of vitamin E during chelation treatment with DMSA or MiADMSA could be recommended for achieving optimum effects of chelation therapy. 相似文献
15.
Agoes Soegianto Akas Yekti Pulih Asih Bambang Irawan 《Marine and Freshwater Behaviour and Physiology》2016,49(3):187-200
This study evaluated the acute toxicity of lead in different life stages of the freshwater prawn Macrobrachium rosenbergii, determined the effect of sublethal Pb concentrations on osmoregulatory capacity (OC), measured the Pb level in gills, and investigated the effect of Pb on the structure of the gills of adult prawns. The 24-, 48-, and 96-h LC50 values for Pb to M. rosenbergii increased progressively with increasing life stage, from post-larvae (PL), juvenile to adult. The 24- and 48-h LC50 values for post-larvae ranged from 0.01- to 0.09-mg Pb/L. The 24-, 48-, and 96-h LC50 values for Pb were lower at 12 ppt than those at 0 ppt for either the juveniles or the adults. At 12 ppt, the 96-h LC50 values in PL11, juvenile and adult were 0.47-, 0.58-, and 2.03-mg Pb/L, respectively. Meanwhile, at 12 ppt, the 96-h LC50 values in PL11, juvenile and adult were 0.63-, 4.44-, and 7.98-mg Pb/L, respectively. In adults, the OC values of controls and prawns exposed to 2- and 4-mg Pb/L at 0 ppt were not significantly different. The OC of prawns exposed to and 2-mg Pb/L at 12 ppt increased by 72 and 109% from the OC of the control prawns. At media 12 ppt, the OC value of prawns exposed to 1-mg Pb/L was significantly different from that of prawns exposed to 2-mg Pb/L. The concentrations of Pb in gill tissues increased significantly in Pb exposed prawns both at 0 and 12 ppt. The level of Pb in gills of prawns exposed to 2-mg Pb/L at 12 ppt was not significantly different from those exposed at 0 ppt. The severe toxic actions of Pb were noted in gills of prawns exposed in media 12 ppt. Hyperplasia and necrosis were observed in gill lamellae, resulting in abnormal gill tips after Pb exposure at media 12 ppt. Since the effect of Pb is more pronounced in higher salinity (12 ppt) than in freshwater (0 ppt) it is clear that aquaculture of M. rosenbergii should be conducted in freshwater ponds. 相似文献
16.
《Saudi Journal of Biological Sciences》2021,28(12):6963-6971
Streptozotocin (STZ) 60 mg/kg, i.p.-induced diabetes in rat’s results into hyperglycemia, impaired oxidative stress, lipid profile, insulin levels and changes in body weight. Treatment with antihyperglycemics and antioxidants are accounted to produce favorable effect in this paradigm. Fustin, a flavonoid derived from Rhus verniciflua, extract of Rhus verniciflua reported to exhibit anti-hyperglycemic, antioxidant, anti-microbial, anti-arthritic effects, anti-obesity effects, antiplatelet effects and anti-cancer effects. However, no evidence is existing on effect of fustin on STZ-induction diabetes. Thus, we evaluated its effects against diabetes in STZ-induced rodents. Blood glucose, Insulin, lipid peroxidation (MDA), superoxide dismutase (SOD), catalase activity (CAT), glutathione (GSH) and lipid profile levels was assessed. After 30 days diabetes induction rodents showed a severe increased blood sugar level, MDA, high density lipid and decreased cholestrol, triglyceride, GSH, SOD, CAT, respectively.Oppositely, treatment with fustin (50–100 mg/kg/p.o., two times daily, 30 days) enhanced blood glucose, lipid profile levels Insulin. Meanwhile, reduced MDA and enhanced GSH, SOD, and CAT in diabetic rats. Glibenclamide 5 mg/kg/p.o. also enhanced diabetes-induced complications and decreased oxidative stress. Further histopathology of pancreas confirms the protective effect fustin in STZ-induction diabetes in animals. In conclusion, the study revealed treatments with fustin avoid the changes in body weight, blood glucose, lipid profile and oxidative stress. As a results of these finding may lead to the growth of a choice of medicine for hyperglycemic in the future. 相似文献
17.
Liu S Cheng Y Zhang X Guan Q Nishiuchi S Hase K Takano T 《Plant molecular biology》2007,64(1-2):49-58
18.
Rakwal R Tamogami S Agrawal GK Iwahashi H 《Biochemical and biophysical research communications》2002,295(5):1041-1045
Octadecanoid pathway components, 12-oxo-phytodieonic acid (OPDA) and jasmonic acid (JA), are key biologically active regulators of plant self-defense response(s). However, to date these compounds have been studied mostly in dicots, and used large (1-10 g fresh weight, FW) samples for quantification, even when examined in mature rice plants, which is a drawback considering their rapid responsiveness to stress. Focusing on rice--a monocot cereal crop research model--this work describes an efficient and simultaneous quantification of both OPDA and JA using a minimum amount of 200mg FW seedling leaf tissue upon wounding (by cut) and treatment with fungal elicitor, chitosan (CT) by high-pressure liquid chromatography-turboionspray tandem mass spectrometry. Transient OPDA/JA "burst" was consistently and reproducibly detected within 3 min in wounded and CT treated leaves. OPDA peaked dramatically around 5 min and returned to its basal level within 15 min, whereas JA induction upon wounding and CT treatment were in parallel to OPDA production, peaking at 30 and 60 min, respectively. Present results mark a major advance in our understanding of key inducible octadecanoid pathway components in rice, and strongly suggest a role for the octadecanoid pathway downstream of perception of at least these two fundamentally different extracellular stimuli. 相似文献
19.
20.
Summary To explain the mechanism of iron toxicity, greenhouse and growth chamber (14CO2 atmosphere) experiments were carried out. In pot experiments (with a typical iron-toxic soil and a fertile clay) we studied the effect of N, P, K and Ca+Mg fertilization (alone or in combination) on dehydrogenase activity, Fe++ formation, and the populations of iron-reducing bacteria in the rhizosphere of rice IR22 and IR42. Fe uptake by the plants was measured at regular intervals. Dehydrogenase activity, the number of N2-fixing iron-reducing bacteria, and the formation and uptake of Fe++ decreased with increased supply of K, Ca, and Mg. This effect was clearer with IR22 (susceptible to iron toxicity) than with IR42 (releatively tolerant). Increased exudation and Fe uptake by IR36 at low nutrient and high Fe supply were recorded in a growth chamber experiment. Nutritional conditions, exudation rate (a measure of metabolic root leakage), the iron-reducing activity of the rhizosphere, and Fe++ uptake by wetland rice appear to be clearly related. Iron toxicity is considered a physiological disorder caused by multiple nutritional soil stress rather than by a low pH and high Fe supply per sé. 相似文献