首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently,many SARS-CoV-2 variants including 501Y.V1,501Y.V2 and 501Y.V3 were detected in different regions(Table S1)and drew great attention from all over the world.The 501Y.V1 was firstly isolated in the United Kingdom(UK)(Davies et al.,2020)and featured with 7 substitutions including N501Y as well as 3 deletions in S protein.This variant was identified to increase the viral transmissibility by 56%in comparison with the preexisting strains.Days after this report,another SARS-CoV-2 variant(501Y.V2)featured with N501Y,K417N and E484K substitutions in S protein was supposed to rapidly outcompete the preexisting strains(Tegally et al.,2020)in South Africa.Besides,the 501Y.V3 variant was initially detected in Brazil and has caused rapidly increased infections with SNPs N501Y,K417T and E484K.Of them,N501Y,K417N/T and E484K are of particular interest because the N501Y was shared in all three variants and the K417N/T and E484K were detected simultaneous appeared with N501Y in 501Y.V2 and 501Y.V3.  相似文献   

2.
This paper aimed to analyze antibody responses to SARS-CoV-2 in various populations. Two hundred and six COVID-19 patients, 46 convalescent patients, and 270 healthy population were enrolled. Antibodies against nucleocapsid protein (N) and spike protein''s receptor-binding domain (RBD), and neutralizing antibody were detected. The results demonstrated both anti-N and anti-RBD antibodies could be detected in about 80% of COVID-19 patients and 90% of convalescent patients, while no antibodies could be detected in some convalescents and patients even after 14 days post-onset of symptoms. The level of anti-RBD antibody strongly correlated with the neutralizing activity of sera from these two cohorts. The titer of neutralizing antibody was lower in convalescents than that in active COVID-19 patients. In addition, the titer of neutralizing antibody was less than 1:80 in none of the severe COVID-19 patients, 18.8% in non-severe COVID-19 patients, and 32.6% in convalescents. The study suggests that the level of anti-RBD antibody is closely related to neutralization activity in COVID-19 patients and convalescents. Some SARS-CoV-2-infected cases trigger a weak antiviral immune response, and the level of neutralizing antibody may have a faster decay rate.  相似文献   

3.
Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it is unknown if antibodies elicited by infection with these variants target the same or different regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the specificities of polyclonal antibodies produced by humans infected with early 2020 isolates versus the B.1.351 variant of concern (also known as Beta or 20H/501Y.V2), which contains mutations in multiple key spike epitopes. The serum neutralizing activity of antibodies elicited by infection with both early 2020 viruses and B.1.351 is heavily focused on the spike receptor-binding domain (RBD). However, within the RBD, B.1.351-elicited antibodies are more focused on the “class 3” epitope spanning sites 443 to 452, and neutralization by these antibodies is notably less affected by mutations at residue 484. Our results show that SARS-CoV-2 variants can elicit polyclonal antibodies with different immunodominance hierarchies.  相似文献   

4.
Understanding SARS-CoV-2 evolution and host immunity is critical to control COVID-19 pandemics. At the core is an arms-race between SARS-CoV-2 antibody and angiotensin-converting enzyme 2 (ACE2) recognition, a function of the viral protein spike. Mutations in spike impacting antibody and/or ACE2 binding are appearing worldwide, imposing the need to monitor SARS-CoV2 evolution and dynamics in the population. Determining signatures in SARS-CoV-2 that render the virus resistant to neutralizing antibodies is critical. We engineered 25 spike-pseudotyped lentiviruses containing individual and combined mutations in the spike protein, including all defining mutations in the variants of concern, to identify the effect of single and synergic amino acid substitutions in promoting immune escape. We confirmed that E484K evades antibody neutralization elicited by infection or vaccination, a capacity augmented when complemented by K417N and N501Y mutations. In silico analysis provided an explanation for E484K immune evasion. E484 frequently engages in interactions with antibodies but not with ACE2. Importantly, we identified a novel amino acid of concern, S494, which shares a similar pattern. Using the already circulating mutation S494P, we found that it reduces antibody neutralization of convalescent and post-immunization sera, particularly when combined with E484K and with mutations able to increase binding to ACE2, such as N501Y. Our analysis of synergic mutations provides a signature for hotspots for immune evasion and for targets of therapies, vaccines and diagnostics.  相似文献   

5.
This paper aimed to analyze antibody responses to SARS-CoV-2 in various populations. Two hundred and six COVID-19 patients, 46 convalescent patients, and 270 healthy population were enrolled. Antibodies against nucleocapsid protein (N) and spike protein's receptor-binding domain (RBD), and neutralizing antibody were detected. The results demonstrated both anti-N and anti-RBD antibodies could be detected in about 80% of COVID-19 patients and 90% of convalescent patients, while no antibodies could be detected in some convalescents and patients even after 14 days post-onset of symptoms. The level of anti-RBD antibody strongly correlated with the neutralizing activity of sera from these two cohorts. The titer of neutralizing antibody was lower in convalescents than that in active COVID-19 patients. In addition, the titer of neutralizing antibody was less than 1:80 in none of the severe COVID-19 patients, 18.8% in non-severe COVID-19 patients, and 32.6% in convalescents. The study suggests that the level of anti-RBD antibody is closely related to neutralization activity in COVID-19 patients and convalescents. Some SARS-CoV-2-infected cases trigger a weak antiviral immune response, and the level of neutralizing antibody may have a faster decay rate.  相似文献   

6.
Emergence of new severe acute respiratory syndrome coronavirus 2 variants has raised concerns related to the effectiveness of vaccines and antibody therapeutics developed against the unmutated wildtype virus. Here, we examined the effect of the 12 most commonly occurring mutations in the receptor-binding domain of the spike protein on its expression, stability, activity, and antibody escape potential. Stability was measured using thermal denaturation, and the activity and antibody escape potential were measured using isothermal titration calorimetry in terms of binding to the human angiotensin-converting enzyme 2 and to neutralizing human antibody CC12.1, respectively. Our results show that mutants differ in their expression levels. Of the eight best-expressed mutants, two (N501Y and K417T/E484K/N501Y) showed stronger affinity to angiotensin-converting enzyme 2 compared with the wildtype, whereas four (Y453F, S477N, T478I, and S494P) had similar affinity and two (K417N and E484K) had weaker affinity than the wildtype. Compared with the wildtype, four mutants (K417N, Y453F, N501Y, and K417T/E484K/N501Y) had weaker affinity for the CC12.1 antibody, whereas two (S477N and S494P) had similar affinity, and two (T478I and E484K) had stronger affinity than the wildtype. Mutants also differ in their thermal stability, with the two least stable mutants showing reduced expression. Taken together, these results indicate that multiple factors contribute toward the natural selection of variants, and all these factors need to be considered to understand the evolution of the virus. In addition, since not all variants can escape a given neutralizing antibody, antibodies to treat new variants can be chosen based on the specific mutations in that variant.  相似文献   

7.
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the subsequent COVID-19 pandemic have visited a terrible cost on the world in the forms of disease, death, and economic turmoil. The rapid development and deployment of extremely effective vaccines against SARS-CoV-2 have seemingly brought within reach the end of the pandemic. However, the virus has acquired mutations. and emerging variants of concern are more infectious and reduce the efficacy of existing vaccines. Although promising efforts to combat these variants are underway, the evolutionary pressures leading to these variants are poorly understood. To that end, here we have studied the effects on the structure and function of the SARS-CoV-2 spike glycoprotein receptor-binding domain of three amino-acid substitutions found in several variants of concern, including alpha (B.1.1.7), beta (B.1.351), and gamma (P.1). We found that these substitutions alter the receptor-binding domain structure, stability, and ability to bind to angiotensin converting enzyme 2, in such a way as to possibly have opposing and compensatory effects. These findings provide new insights into how these variants of concern may have been selected for infectivity while maintaining the structure and stability of the receptor binding domain.

The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in late 2019 and its subsequent spread around the world have caused the deadliest airborne pandemic in the United States, recently surpassing the 1918 influenza pandemic nearly a century ago (1). The international scientific community has risen to the challenge of combating SARS-CoV-2 and COVID-19. The year 2020 ended with the fastest development of vaccine candidates, starting with the genetic sequence of the virus being reported (2) to human trials of novel mRNA-based vaccines within 3 months. Now, there are three SARS-CoV-2 vaccines approved for use within the United States and many more next-generation and pan-coronavirus vaccines currently in development. These advances have made substantial contributions to the control of the COVID-19 pandemic within the United States. Despite multiple manufacturers receiving emergency use authorization and an unprecedented vaccination campaign, significant challenges remain including uncertainty regarding durability, vaccination hesitancy, limited access to healthcare among disadvantaged persons, as well as the continued emergence of variants of concern (VOC). Our ultimate success in quelling this pandemic may lie in our ability, not only to characterize new variants, but also to be able to predict the emergence of new variants. Such advances will require an increased understanding of evolutionary pressures and constraints on viral variation.Three SARS-CoV-2 lineages, the alpha variant lineage B.1.1.7 (or 501Y.V1) first identified within the United Kingdom, the beta variant lineage B.1.351 (or 501Y.V2) identified in South Africa, and the gamma variant lineage P.1 (or 501Y.V3) identified in Brazil, have been demonstrated to possess increased infectivity (3) and in the case, beta and gamma exhibit reduced neutralization by antibodies reacting with the cognate regions of the spike protein within the original Wuhan strain of SARS-CoV-2 (4, 5, 6). The alpha variant possesses the N501Y substitution within the spike glycoprotein receptor-binding domain (RBD) which has been shown to enhance binding to angiotensin converting enzyme 2 (ACE2), the entry receptor for SARS-CoV-2 (7, 8, 9). The beta and gamma variants possess N501Y as well as substitutions at two other sites within the RBD, E484K, and K417N in beta and K417T in gamma (10). These RBD substitutions present in the spike protein of the B.1.351 and P.1 variants have been shown to reduce the binding and neutralization of mRNA vaccine-induced antibodies as well as potent human monoclonal antibodies (11).The consequences of the K417N, E484K, and N501Y substitutions on RBD-ACE2 interactions have also been examined, with the increased infectivity of the alpha variant resulting from the enhanced binding to ACE2 when the RBD N501Y substitution is present (9). The E484K substitution has been shown to enhance ACE2 binding (12) and reduce the efficacy of neutralizing antibodies (13). A recent study examined the effects of the K417N substitution on ACE2 binding and antibody interactions using molecular dynamics and found that K417N disrupts RBD-ACE2 interactions, as well as interactions with a monoclonal antibody (14). However, the effects of these substitutions on the structure of the RBD itself have not been examined. Based on the nature of these substitutions, including residue changes in charge or polar to nonpolar substitutions, we hypothesized that the K417N, E484K, and N501Y substitutions alter the RBD structure and stability as well as ACE2 binding interactions. We studied those changes in single-substitution RBD variants as well as in the RBD containing all three substitutions using molecular dynamics and biophysical approaches. Our data suggest that these VOC substitutions significantly alter RBD structure and stability, with consequences for ACE2 binding and proteolytic susceptibility, having potentially opposing consequences for the fitness of new variants. These findings have implications for viral evolution and the design of subunit vaccine candidates.  相似文献   

8.
为建立一种快速鉴别严重急性呼吸综合征冠状病毒2 (severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)的5种主要变异株的Taq Man探针实时荧光定量PCR(real-time quantitative PCR, RT-qPCR)体系,基于SARS-CoV-2野生型及变异株alpha (N501Y、HV69-70del)、beta (E484K、K417N)、gamma (K417T、V1176F)、delta (L452R、T478K)和omicron (H655Y、N679K、P681H)序列设计特异性引物、探针,建立和优化一种鉴别新型冠状病毒(SARS-CoV-2) 5种主要变异株的Taq Man探针RT-qPCR方法,并进行该方法的特异性、敏感性、鉴别能力评价。该方法可准确区分出SARS-CoV-2野生型和突变型,与其他呼吸道病原体(n=21)无交叉,显示高特异性。该方法最低检测限为2×10;拷贝/mL,操作简单、快速、成本廉价,可用于监测SARS-CoV-2毒株的变异,精准指导疫情识别与防控。  相似文献   

9.
Rapidly spreading new variants of SARS-CoV-2 carry multiple mutations in the viral spike protein which attaches to the angiotensin converting enzyme 2 (ACE2) receptor on host cells. Among these mutations are amino acid changes N501Y (lineage B.1.1.7, first identified in the UK), and the combination N501Y, E484K, K417N (B.1.351, first identified in South Africa), all located at the interface on the receptor binding domain (RBD). We experimentally establish that RBD containing the N501Y mutation results in 7-fold stronger binding to the hACE2 receptor than wild type RBD. The E484K mutation only slightly enhances the affinity for the receptor, while K417N attenuates affinity. As a result, RBD from B.1.351 containing all three mutations binds 3-fold stronger to hACE2 than wild type RBD but 2-fold weaker than N501Y. However, the recently emerging double mutant E484K/N501Y binds even stronger than N501Y. The independent evolution of lineages containing mutations with different effects on receptor binding affinity, viral transmission and immune evasion underscores the importance of global viral genome surveillance and functional characterization.  相似文献   

10.
The COVID-19 pandemic has triggered concerns about the emergence of more infectious and pathogenic viral strains. As a public health measure, efficient screening methods are needed to determine the functional effects of new sequence variants. Here we show that structural modeling of SARS-CoV-2 Spike protein binding to the human ACE2 receptor, the first step in host-cell entry, predicts many novel variant combinations with enhanced binding affinities. By focusing on natural variants at the Spike-hACE2 interface and assessing over 700 mutant complexes, our analysis reveals that high-affinity Spike mutations (including N440K, S443A, G476S, E484R, G502P) tend to cluster near known human ACE2 recognition sites (K31 and K353). These Spike regions are structurally flexible, allowing certain mutations to optimize interface interaction energies. Although most human ACE2 variants tend to weaken binding affinity, they can interact with Spike mutations to generate high-affinity double mutant complexes, suggesting variation in individual susceptibility to infection. Applying structural analysis to highly transmissible variants, we find that circulating point mutations S477N, E484K and N501Y form high-affinity complexes (~40% more than wild-type). By combining predicted affinities and available antibody escape data, we show that fast-spreading viral variants exploit combinatorial mutations possessing both enhanced affinity and antibody resistance, including S477N/E484K, E484K/N501Y and K417T/E484K/N501Y. Thus, three-dimensional modeling of the Spike/hACE2 complex predicts changes in structure and binding affinity that correlate with transmissibility and therefore can help inform future intervention strategies.  相似文献   

11.
《PLoS biology》2021,19(5)
With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69–70, would cause a “spike gene target failure” (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69–70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675–3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675–3677 as the primary target and spike Δ69–70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1.

Surveillance for SARS-CoV-2 variants is very important, but sequencing is not always practical or affordable. This study presents a multiplex qPCR that is able to distinguish among different SARS-CoV-2 variants of concern that are currently circulating.  相似文献   

12.
The recently reported “UK variant” (B.1.1.7) of SARS-CoV-2 is thought to be more infectious than previously circulating strains as a result of several changes, including the N501Y mutation. We present a 2.9-Å resolution cryo-electron microscopy (cryo-EM) structure of the complex between the ACE2 receptor and N501Y spike protein ectodomains that shows Y501 inserted into a cavity at the binding interface near Y41 of ACE2. This additional interaction provides a structural explanation for the increased ACE2 affinity of the N501Y mutant, and likely contributes to its increased infectivity. However, this mutation does not result in large structural changes, enabling important neutralization epitopes to be retained in the spike receptor binding domain. We confirmed this through biophysical assays and by determining cryo-EM structures of spike protein ectodomains bound to 2 representative potent neutralizing antibody fragments.  相似文献   

13.
Sulfation pattern and molecular weight (MW) play a key role in the biological actions of sulfated glycans. Besides anticoagulant effects, certain sulfated glycans can also exhibit anti-SARS-CoV-2 properties. To develop a more selective antiviral carbohydrate, an efficient strategy to separate these two actions is required. In this work, low MW fractions derived from the red alga Botryocladia occidentalis sulfated galactan (BoSG) were generated, structurally characterized, and tested for activity against SARS-CoV-2 and blood coagulation. The lowest MW fraction was found to be primarily composed of octasaccharides of monosulfated monosaccharides. Unlike heparin or native BoSG, we found that hydrolyzed BoSG products had weak anticoagulant activities as seen by aPTT and inhibitory assays using purified cofactors. In contrast, lower MW BoSG-derivatives retained anti-SARS-CoV-2 activity using SARS-CoV-2 spike (S)-protein pseudotyped lentivirus vector in HEK-293T-hACE2 cells monitored by GFP. Surface plasmon resonance confirmed that longer chains are necessary for BoSG to interact with coagulation cofactors but is not required for interactions with certain S-protein variants. We observed distinct affinities of BoSG derivatives for the S-proteins of different SARS-CoV-2 strains, including WT, N501Y (Alpha), K417T/E484K/N501Y (Gamma), and L542R (Delta) mutants, and stronger affinity for the N501Y-containing variants. Docking of the four possible monosulfated BoSG disaccharides in interactions with the N501Y mutant S-protein predicted potential binding poses of the BoSG constructs and favorable binding in close proximity to the 501Y residue. Our results demonstrate that depolymerization and fractionation of BoSG are an effective strategy to segregate its anticoagulant property from its anti-SARS-CoV-2 action.  相似文献   

14.
《Genomics》2021,113(4):2158-2170
Recently, the SARS-CoV-2 variants from the United Kingdom (UK), South Africa, and Brazil have received much attention for their increased infectivity, potentially high virulence, and possible threats to existing vaccines and antibody therapies. The question remains if there are other more infectious variants transmitted around the world. We carry out a large-scale study of 506,768 SARS-CoV-2 genome isolates from patients to identify many other rapidly growing mutations on the spike (S) protein receptor-binding domain (RBD). We reveal that essentially all 100 most observed mutations strengthen the binding between the RBD and the host angiotensin-converting enzyme 2 (ACE2), indicating the virus evolves toward more infectious variants. In particular, we discover new fast-growing RBD mutations N439K, S477N, S477R, and N501T that also enhance the RBD and ACE2 binding. We further unveil that mutation N501Y involved in United Kingdom (UK), South Africa, and Brazil variants may moderately weaken the binding between the RBD and many known antibodies, while mutations E484K and K417N found in South Africa and Brazilian variants, L452R and E484Q found in India variants, can potentially disrupt the binding between the RBD and many known antibodies. Among these RBD mutations, L452R is also now known as part of the California variant B.1.427. Finally, we hypothesize that RBD mutations that can simultaneously make SARS-CoV-2 more infectious and disrupt the existing antibodies, called vaccine escape mutations, will pose an imminent threat to the current crop of vaccines. A list of most likely vaccine escape mutations is given, including S494P, Q493L, K417N, F490S, F486L, R403K, E484K, L452R, K417T, F490L, E484Q, and A475S. Mutation T478K appears to make the Mexico variant B.1.1.222 the most infectious one. Our comprehensive genetic analysis and protein-protein binding study show that the genetic evolution of SARS-CoV-2 on the RBD, which may be regulated by host gene editing, viral proofreading, random genetic drift, and natural selection, gives rise to more infectious variants that will potentially compromise existing vaccines and antibody therapies.  相似文献   

15.
目的:评价新型冠状病毒(SARS-CoV-2)重组S1蛋白和S蛋白疫苗对SARS-CoV-2的免疫保护效果。方法:将SARS-CoV-2重组S1蛋白和S蛋白分别联合氢氧化铝佐剂以0.1 μg/只、1 μg/只、5 μg/只、10 μg/只不同剂量接种6~8周BALB/c纯系健康雌性小鼠。第二次免疫后采血通过酶联免疫吸附试验(ELISA)检测血清中IgG抗体效价,通过假病毒中和试验比较免疫小鼠血清对SARS-CoV-2野生型株(WT)、英国株(B.1.1.7)、巴西株(P.1)、印度株(B.1.617.2)、Mu毒株(B.1.621)和南非株(501Y.V2-1)六种假病毒毒株中和活性效价,取脾细胞通过酶联免疫斑点技术(ELISpot)检测免疫小鼠的细胞免疫水平。结果:SARS-CoV-2重组S和S1蛋白都能诱导小鼠产生较强的IgG抗体水平。免疫S1蛋白的小鼠血清对SARS-CoV-2野生型株、英国株、巴西株有明显的中和活性,免疫S蛋白的小鼠血清除了对SARS-CoV-2野生型株、英国株、巴西株有明显中和活性之外,对印度株也有明显的中和活性,两种蛋白质免疫的小鼠血清均对野生型株中和效果最强。S蛋白免疫的小鼠脾细胞能够显著诱导出γ干扰素(IFN-γ)和白介素-4(IL-4)的产生。S蛋白诱导产生的IgG抗体、中和抗体、细胞免疫水平均高于S1。结论:SARS-CoV-2重组S蛋白疫苗能够诱导产生较强的保护性免疫应答。  相似文献   

16.
The aim of this study is to investigate the circulating variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Athens and from rural areas in Greece during July and August 2021. We also present a rapid review of literature regarding significant SARS-CoV-2 mutations and their impact on public health. A total of 2500 nasopharyngeal swab specimens were collected from suspected COVID-19 cases (definition by WHO 2021b). Viral nucleic acid extraction was implemented using an automatic extractor and the RNA recovered underwent qRT-PCR in order to characterize the specimens as positive or negative for SARS-CoV-2. The positive specimens were then used to identify specific Spike gene mutations and characterize the emerging SARS-CoV-2 variants. For this step, various kits were utilized. From the 2500 clinical specimens, 220 were tested positive for SARS-CoV-2 indicating a prevalence of 8.8% among suspected cases. The RT-PCR Ct (Cycle threshold) Value ranged from 19 to 25 which corresponds to medium to high copy numbers of the virus in the positive samples. From the 220 positive specimens 148 (67.3%) were from Athens and 72 (32.7%) from Greek rural areas. As far as the Spike mutations investigated: N501Y appeared in all the samples, D614G mutation appeared in 212 (96.4%) samples with a prevalence of 87.2% in Athens and 98.6% in the countryside, E484K had a prevalence of 10.8% and 12.5% in Athens and the rural areas, respectively. K417N was found in 18 (12.2%) samples from Athens and four (5.6%) from the countryside, P681H was present in 51 (34.5%) Athenian specimens and 14 (19.4%) specimens from rural areas, HV69-70 was carried in 32.4% and 19.4% of the samples from Athens and the countryside, respectively. P681R had a prevalence of 87.2% in Athens and 98.6% in rural areas, and none of the specimens carried the L452R mutation. 62 (28.2%) samples carried the N501Y, P681H, D614G and HV69-70 mutations simultaneously and the corresponding variant was characterized as the Alpha (UK) variant (B 1.1.7). Only six (2.7%) samples from the center of Athens had the N501Y, E484K, K417N and D614G mutations simultaneously and the virus responsible was characterized as the Beta (South African) variant (B 1.351). Our study explored the SARS-CoV-2 variants using RT-PCR in a representative cohort of samples collected from Greece in July and August 2021. The prevalent mutations identified were N501Y (100%), D614G (96.4%), P681R (90.1%) and the variants identified were the Delta (90.1%), Alpha (28.2%) and Beta (2.7%).  相似文献   

17.
HIV-1 variants transmitted to infants are often resistant to maternal neutralizing antibodies (NAbs), suggesting that they have escaped maternal NAb pressure. To define the molecular basis of NAb escape that contributes to selection of transmitted variants, we analyzed 5 viruses from 2 mother-to-child transmission pairs, in which the infant virus, but not the maternal virus, was resistant to neutralization by maternal plasma near transmission. We generated chimeric viruses between maternal and infant envelope clones obtained near transmission and examined neutralization by maternal plasma. The molecular determinants of NAb escape were distinct, even when comparing two maternal variants to the transmitted infant virus within one pair, in which insertions in V4 of gp120 and substitutions in HR2 of gp41 conferred neutralization resistance. In another pair, deletions and substitutions in V1 to V3 conferred resistance, but neither V1/V2 nor V3 alone was sufficient. Although the sequence determinants of escape were distinct, all of them involved modifications of potential N-linked glycosylation sites. None of the regions that mediated escape were major linear targets of maternal NAbs because corresponding peptides failed to compete for neutralization. Instead, these regions disrupted multiple distal epitopes targeted by HIV-1-specific monoclonal antibodies, suggesting that escape from maternal NAbs occurred through conformational masking of distal epitopes. This strategy likely allows HIV-1 to utilize relatively limited changes in the envelope to preserve the ability to infect a new host while simultaneously evading multiple NAb specificities present in maternal plasma.  相似文献   

18.
The pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is far from being controlled despite the great effort that have been taken throughout the world. Herd immunity through vaccination is our major expectation to rein the virus. However, the emergence of widespread genetic variants could potentially undermine the vaccines. The evidence that some variants could evade immune responses elicited by vaccines and previous infection is growing. In this review, we summarized the current understanding on five notable genetic variants, i.e., D614G, Cluster 5, VOC 202012/01, 501Y.V2 and P.1, and discussed the potential impact of these variants on the virus transmission, pathogenesis and vaccine efficacy. We also highlight that mutations in the N-terminal domain of spike protein should be considered when evaluating the antibody neutralization abilities. Among these genetic variants, a concern of genetic variant 501Y.V2 to escape the protection by vaccines was raised. We therefore call for new vaccines targeting this variant to be developed.  相似文献   

19.
Exposure histories to SARS-CoV-2 variants and vaccinations will shape the specificity of antibody responses. To understand the specificity of Delta-elicited antibody immunity, we characterize the polyclonal antibody response elicited by primary or mRNA vaccine-breakthrough Delta infections. Both types of infection elicit a neutralizing antibody response focused heavily on the receptor-binding domain (RBD). We use deep mutational scanning to show that mutations to the RBD’s class 1 and class 2 epitopes, including sites 417, 478, and 484–486 often reduce binding of these Delta-elicited antibodies. The anti-Delta antibody response is more similar to that elicited by early 2020 viruses than the Beta variant, with mutations to the class 1 and 2, but not class 3 epitopes, having the largest effects on polyclonal antibody binding. In addition, mutations to the class 1 epitope (e.g., K417N) tend to have larger effects on antibody binding and neutralization in the Delta spike than in the D614G spike, both for vaccine- and Delta-infection-elicited antibodies. These results help elucidate how the antigenic impacts of SARS-CoV-2 mutations depend on exposure history.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号