首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The responses of soil-atmosphere carbon (C) exchange fluxes to growing atmospheric nitrogen (N) deposition are controversial, leading to large uncertainty in the estimated C sink of global forest ecosystems experiencing substantial N inputs. However, it is challenging to quantify critical load of N input for the alteration of the soil C fluxes, and what factors controlled the changes in soil CO2 and CH4 fluxes under N enrichment. Nine levels of urea addition experiment (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha−1 yr−1) were conducted in the needle-broadleaved mixed forest in Changbai Mountain, Northeast China. Soil CO2 and CH4 fluxes were monitored weekly using the static chamber and gas chromatograph technique. Environmental variables (soil temperature and moisture in the 0–10 cm depth) and dissolved N (NH4+-N, NO3-N, total dissolved N (TDN), and dissolved organic N (DON)) in the organic layer and the 0–10 cm mineral soil layer were simultaneously measured. High rates of N addition (≥60 kg N ha−1 yr−1) significantly increased soil NO3-N contents in the organic layer and the mineral layer by 120%-180% and 56.4%-84.6%, respectively. However, N application did not lead to a significant accumulation of soil NH4+-N contents in the two soil layers except for a few treatments. N addition at a low rate of 10 kg N ha−1 yr−1 significantly stimulated, whereas high rate of N addition (140 kg N ha−1 yr−1) significantly inhibited soil CO2 emission and CH4 uptake. Significant negative relationships were observed between changes in soil CO2 emission and CH4 uptake and changes in soil NO3-N and moisture contents under N enrichment. These results suggest that soil nitrification and NO3-N accumulation could be important regulators of soil CO2 emission and CH4 uptake in the temperate needle-broadleaved mixed forest. The nonlinear responses to exogenous N inputs and the critical level of N in terms of soil C fluxes should be considered in the ecological process models and ecosystem management.  相似文献   

2.
Anthropogenic impact on CO2 levels was studied in the Bear Chamber of the Výpustek Cave, a show cave in the Moravian Karst (Czech Republic), during a period of active ventilation and enhanced attendance. The study showed that the natural CO2 levels were controlled by (i) the natural CO2 influxes from soils/epikarst (up to ∼5.64 × 10−2 mol s−1); and, (ii) the advective CO2 fluxes out of cave atmosphere (up to 4.66 × 10−2 mol s−1). During visitor presence, the anthropogenic CO2 flux into the chamber reached up to ∼0.13 mol s−1 and exceeded all other CO2 fluxes. The reachable anthropogenic steady states at sufficient duration of stay (up to 2.65 × 10−1 mol m−3) could exceed the natural CO2 levels by factor of more than nine based on the number of visitors. Recession analysis of anthropogenic pulses showed that intervals between individual visitor groups would have to be up to ∼6 h long if the cave environment has to return to natural conditions. As such pauses between individual tours are hardly realizable, a risk analysis was conducted to find the consequences of breaking natural conditions. It showed that the condition under which dripwater becomes aggressive to calcite (i.e., the point when PCO2 in cave atmosphere exceeds the hypothetical CO2 concentrations in epikarst that has participated on the water formation, PCO2(H) = 10−1.56) is potentially reachable under extreme conditions only (enormous visitor stay period and visitor number). In case of condensed water, however, any increase in CO2 concentration will cause an increase of water aggressiveness to calcite. Therefore, in the periods and sites of enhanced condensation, it is important to strive for preservation of natural conditions.  相似文献   

3.
《Aquatic Botany》2007,87(1):43-48
CH4 and CO2 fluxes across the water–atmosphere interface were measured over a 24 h day–night cycle in a shallow oxbow lake colonized by the water chestnut (Trapa natans L.) (Lanca di Po, Northern Italy). Only exchanges mediated by macrophytes were measured, whilst gas ebullition was not considered in this study. Measurements were performed from 29 to 30 July 2005 with short incubations, when T. natans stands covered the whole basin surface with a mean dry biomass of 504 ± 91 g m−2. Overall, the oxbow lake resulted net heterotrophic with plant and microbial respiration largely exceeding carbon fixation by photosynthesis. The water chestnut stand was a net sink of CO2 during the day-light period (−60.5 ± 8.5 mmol m−2 d−1) but it was a net source at night (207.6 ± 6.1 mmol m−2 d−1), when the greatest CO2 efflux rate was measured across the water surface (28.2 ± 2.4 mmol m−2 h−1). The highest CH4 effluxes (6.6 ± 1.8 mmol m−2 h−1) were determined in the T. natans stand during day-time, whilst CH4 emissions across the plant-free water surface were greatest at night (6.8 ± 2.1 mmol m−2 h−1). Therefore, we assumed that the water chestnut enhanced methane delivery to the atmosphere. On a daily basis, the oxbow lake was a net source to the atmosphere of both CO2 (147.1 ± 10.8 mmol m−2 d−1) and CH4 (116.3 ± 8.0 mmol m−2 d−1).  相似文献   

4.
《Aquatic Botany》2007,86(2):107-116
The partitioning of latent heat flux (QE) to vascular plant and moss surface components was assessed for a Sphagnum-dominated bog with a hummock–hollow surface having a sparse canopy of low shrubs. Results from porometry and eddy covariance measurements of QE showed evaporation from the moss surface ranged from greater than 50% of total QE early in the growing season to less than 20% after a dry period toward the end of the growing season. Both soil moisture and vapour pressure deficit (Da) affected this partitioning with drier moss and peat, lower water table, and smaller Da all reducing moss QE. Daily maximum moss QE ranged from greater than 200 W m−2 early in the growing season to less than 100 W m−2 during a dry period. In contrast, vascular contribution to total QE increased over the season from a daily maximum of about 150 W m−2 to 250 W m−2 due to increase in leaf area by leaf replacement and emergence and to drying of the moss surface. Porometry results showed average daily maximum conductance from bog shrubs was near 8 mm s−1. These conductance values were smaller than those reported for vascular plants from more nutrient-rich wetlands. The effect of increases in Da on vascular QE were moderated by decreases in stomatal conductance. At constant available energy, vascular leaf conductance was reduced by as much as 2 mm s−1 and moss surface conductance was enhanced by up to 3 mm s−1 by large Da. Considering vascular and non-vascular water transport characteristics and frequency of water table position and given the observed variations of QE partitioning with water table location and moss and peat water content, it is suggested that modelling efforts focus on how dry hummocks and wet hollows each contribute to QE, especially as related to Da and soil moisture dynamics.  相似文献   

5.
The main goal of this study was to test the effect of [CO2] on C and N management in different plant organs (shoots, roots and nodules) and its implication in the responsiveness of exclusively N2-fixing and NO3-fed plants. For this purpose, exclusively N2-fixing and NO3-fed (10 mM) pea (Pisum sativum L.) plants were exposed to elevated [CO2] (1000 μmol mol−1 versus 360 μmol mol−1 CO2). Gas exchange analyses, together with carbohydrate, nitrogen, total soluble proteins and amino acids were determined in leaves, roots and nodules. The data obtained revealed that although exposure to elevated [CO2] increased total dry mass (DM) in both N treatments, photosynthetic activity was down-regulated in NO3-fed plants, whereas N2-fixing plants were capable of maintaining enhanced photosynthetic rates under elevated [CO2]. In the case of N2-fixing plants, the enhanced C sink strength of nodules enabled the avoidance of harmful leaf carbohydrate build up. On the other hand, in NO3-fed plants, elevated [CO2] caused a large increase in sucrose and starch. The increase in root DM did not contribute to stimulation of C sinks in these plants. Although N2 fixation matched plant N requirements with the consequent increase in photosynthetic rates, in NO3-fed plants, exposure to elevated [CO2] negatively affected N assimilation with the consequent photosynthetic down-regulation.  相似文献   

6.
Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat (Triticum aestivum L.) to the N content, and possible factors affecting N gain and distribution within the plant were investigated in a wheat crop growing in field chambers set at ambient (360 μmol mol−1) and elevated (700 μmol mol−1) CO2, and with two amounts of N fertilizer (none and 70 kg ha−1 applied on 30 April). Photosynthesis, stomatal conductance and transpiration at a common measurement CO2, chlorophyll and Rubisco levels of upper-sunlit (flag) and lower-shaded canopy leaves were significantly lower in elevated relative to ambient CO2-grown plants. Both whole shoot N and leaf N per unit area decreased at elevated CO2, and leaf N declined with canopy position. Acclimatory responses to elevated CO2 were enhanced in N-deficient plants. With N supply, the acclimatory responses were less pronounced in lower canopy leaves relative to the flag leaf. Additional N did not increase the fraction of shoot N allocated to the flag and penultimate leaves. The decrease in photosynthetic capacity in both upper-sunlit and lower-shaded leaves in elevated CO2 was associated with a decrease in N contents in above-ground organs and with lower N partitioning to leaves. A single relationship of N per unit leaf area to the transpiration rate accounted for a significant fraction of the variation among sun-lit and shaded leaves, growth CO2 level and N supply. We conclude that reduced stomatal conductance and transpiration can decrease plant N, leading to acclimation to CO2 enrichment.  相似文献   

7.
The biogeochemical cycles of nitrogen (N) and base cations (BCs), (i.e., K+, Na+, Ca2+, and Mg2+), play critical roles in plant nutrition and ecosystem function. Empirical correlations between large experimental N fertilizer additions to forest ecosystems and increased BCs loss in stream water are well demonstrated, but the mechanisms driving this coupling remain poorly understood. We hypothesized that protons generated through N transformation (PPRN)—quantified as the balance of NH4+ (H+ source) and NO3 (H+ sink) in precipitation versus the stream output will impact BCs loss in acid-sensitive ecosystems. To test this hypothesis, we monitored precipitation input and stream export of inorganic N and BCs for three years in an acid-sensitive forested watershed in a granite area of subtropical China. We found the precipitation input of inorganic N (17.71 kg N ha−1 year−1 with 54% as NH4+–N) was considerably higher than stream exported inorganic N (5.99 kg N ha−1 year−1 with 83% as NO3–N), making the watershed a net N sink. The stream export of BCs (151, 1518, 851, and 252 mol ha−1 year−1 for K+, Na+, Ca2+, and Mg2+, respectively) was positively correlated (r = 0.80, 0.90, 0.84, and 0.84 for K+, Na+, Ca2+, and Mg2+ on a monthly scale, respectively, P < 0.001, n = 36) with PPRN (389 mol ha−1 year−1) over the three years, suggesting that PPRN drives loss of BCs in the acid-sensitive ecosystem. A global meta-analysis of 15 watershed studies from non-calcareous ecosystems further supports this hypothesis by showing a similarly strong correlation between ∑BCs output and PPRN (r = 0.89, P < 0.001, n = 15), in spite of the pronounced differences in environmental settings. Collectively, our results suggest that N transformations rather than anions (NO3 and/or SO42−) leaching specifically, are an important mediator of BCs loss in acid-senstive ecosystems. Our study provides the first definitive evidence that the chronic N deposition and subsequent transformation within the watershed drive stream export of BCs through proton production in acid-sensitive ecosystems, irrespective of their current relatively high N retention. Our findings suggest the N-transformation-based proton production can be used as an indicator of watershed outflow quality in the acid-sensitive ecosystems.  相似文献   

8.
《Ecological Engineering》2006,26(3):241-251
Constructed wetlands (CW), widely used to remove nutrients from runoff waters, transform some of the carbon and nitrogen they receive into greenhouse gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), and may therefore have adverse atmospheric impacts. We studied seasonal and temporal changes in C degradation and emissions of CH4 and N2O of a boreal CW used to purify peat mining runoff waters 5 (in 1992) and 15 (in 2001–2002) years after construction. There was a remarkable change in the cycling of carbon in the wetland as the number of years in operation increased: the mean CH4 emission tripled from 140 to 400 mg CH4 m−2 d−1 and the mean CO2 release (respiration) doubled from 7270 to 13 600 mg CO2 m−2 d−1 in the 10-year period. The reasons for the increased C gas production were the increased plant biomass, which doubled in 10 years, and a 3 °C higher average temperature in 2002 than in 1992. The N2O fluxes did not change during the study period: the mean emissions were 340 and 450 μg N2O m−2 d−1 in 1992 and 2002.  相似文献   

9.
This study investigated the effects of a gradual versus step increases in carbon dioxide (CO2) on plant photosynthesis and growth at two nitrogen (N) levels. Plantago lanceolata were grown for 80 days and then treated with the ambient CO2 (as the control), gradual CO2 increase and step CO2 increase as well as low and high N additions for 70 days. While [CO2] were kept at constant 350 and 700 μmol mol−1 for the ambient and step CO2 treatments, respectively, [CO2] in the gradual CO2 treatment was raised by 5 μmol mol−1 day−1, beginning at 350 μmol mol−1 and reaching 700 μmol mol−1 by the end of experiment. The step CO2 treatment immediately resulted in an approximate 50% increase in leaf photosynthetic carbon fixation at both the low and high N additions, leading to a 20–24% decrease in leaf N concentration. The CO2-induced nitrogen stress, in return, resulted in partial photosynthetic downregulation since the third week at the low N level and the fourth week at the high N level after treatments. In comparison, the gradual CO2 treatment induced a gradual increase in photosynthetic carbon fixation, leading to less reduction in leaf N concentration. In comparison to the ambient CO2, both the gradual and step CO2 increases resulted in decreases in specific leaf area, leaf N concentration but an increase in plant biomass. Responses of plant shoot:root ratio to CO2 treatments varied with N supply. It decreased with low N supply and increased with high N supply under the gradual and step CO2 treatments relative to that under the ambient CO2. Degrees of those changes in physiological and growth parameters were usually larger under the step than the gradual CO2 treatments, largely due to different photosynthetic C influxes under the two CO2 treatments.  相似文献   

10.
Functional indicators are being increasingly used to assess waterway health but their responses to pressure in non-wadeable rivers have not been widely documented or applied in modern survey designs that provide unbiased estimates of extent. This study tests the response of river metabolism and loss in cotton strip tensile strength across a land use pressure gradient in non-wadeable rivers of northern New Zealand, and reports extent estimates for river metabolism and decomposition rates. Following adjustment for probability of selection, ecosystem respiration (ER) and gross primary production (GPP) for the target population of order 5–7 non-wadeable rivers averaged −7.3 and 4.8 g O2 m−2 d−1, respectively, with average P/R < 1 indicating dominance by heterotrophic processes. Ecosystem respiration was <−3.3 g O2 m−2 d−1 for 75% of non-wadeable river length with around 20% of length between −10 and −20 g O2 m−2 d−1. Cumulative distribution functions of cotton strength loss estimates indicated a more-or-less linear relationship with river km reflecting an even spread of decay rates (range in k 0.0007–0.2875 d−1) across non-wadeable rivers regionally. A non-linear relationship with land cover was detected for GPP which was typically <5 g O2 m−2 d−1 where natural vegetation cover was below 20% and greater than 80% of upstream catchment area. For cotton strength loss, the relationship with land cover was wedge-shaped such that sites with >60% natural cover had low decay rates (<0.02 d−1) with variability below this increasing as natural cover declined. Using published criteria for assessing waterway health based on ER and GPP, 232–298 km (20–29%) of non-wadeable river length was considered to have severely impaired ecosystem functioning, and 436–530 km (42–50%) had no evidence of impact on river metabolism.  相似文献   

11.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

12.
Anthropogenic deposition of reactive nitrogen (N) has increased during the 20th century, and is considered an important driver of shifts in ecosystem functions and biodiversity loss. The objective of the present study was to identify those ecosystem functions that best evidence a target ecosystem’s sensitivity to N deposition, taking coastal heathlands as an example. We conducted a three-year field experiment in heathlands of the island Fehmarn (Baltic Sea, North Germany), which currently are subject to a background deposition of 9 kg N ha−1 yr−1. We experimentally applied six levels of N fertilisation (application of 0, 2.5, 5, 10, 20, and 50 kg N ha−1 yr−1), and quantified the growth responses of different plant species of different life forms (dwarf shrubs, graminoids, bryophytes, lichens) as well as shifts in the C:N ratios of plant tissue and humus horizons. For an applicability of the experimental findings (in terms of heathland management and critical load assessment) fertilisation effects on response variables were visualised by calculating the treatment ‘effect sizes’. The current year’s shoot increment of the dominant dwarf shrub Calluna vulgaris proved to be the most sensitive indicator to N fertilisation. Shoot increment significantly responded to additions of ≥ 5 kg N ha−1 yr−1 already in the first year, whereas flower formation of Calluna vulgaris increased only in the high-N treatments. Similarly, tissue C:N ratios of vascular plants (Calluna vulgaris and the graminoids Carex arenaria and Festuca ovina agg.) only decreased in the highest N treatments (50 and 20 kg N ha−1 yr−1, respectively). In contrast, tissue C:N ratios of cryptogams responded more quickly and sensitively than vascular plants. For example, Cladonia spp. tissue C:N ratios responded to N additions ≥ 5 kg N ha−1 yr−1 in the second study year. After three years we observed an increase in cover of graminoids and a corresponding decrease of cryptogams at N fertilisation rates of ≥ 10 kg N ha−1 yr−1. Soil C:N ratios proved to be an inappropriate indicator for N fertilisation at least within our three-year study period. Although current critical N loads for heathlands (10−20 kg N ha−1 yr−1) were confirmed in our experiment, the immediate and highly sensitive response of the current year’s shoots of Calluna vulgaris suggests that at least some ecosystem functions (e.g. dwarf shrub growth) also might respond to low (i.e. < 10 kg N ha−1 yr−1) but chronic inputs of N.  相似文献   

13.
Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44 °C to 62 °C at 0.25 °C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments (‘headedness’). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2 °C: Living 50.1±1.8 °C). Throughout the temperature ramping process, ‘headedness’ had a significant effect on metabolic rate in total (Decapitated CO2 140±30 µl CO2 mg−1 min−1: Living CO2 250±50 CO2 mg−1 min−1), as well as at temperatures below and above CTmax. At high temperatures (>44 °C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25–35 °C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels.  相似文献   

14.
Inappropriate farm practices can increase greenhouse gases (GHGs) emissions and reduce soil organic carbon (SOC) sequestration, thereby increasing carbon footprints (CFs), jeopardizing ecosystem services, and affecting climate change. Therefore, the objectives of this study were to assess the effects of different tillage systems on CFs, GHGs emissions, and ecosystem service (ES) values of climate regulation and to identify climate-resilient tillage practices for a winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) cropping system in the North China Plain (NCP). The experiment was established in 2008 involving no-till with residue retention (NT), rotary tillage with residue incorporation (RT), sub-soiling with residue incorporation (ST), and plow tillage with residue incorporation (PT). The results showed that GHGs emissions from agricultural inputs were 6432.3–6527.3 kg CO2-eq ha−1 yr−1 during the entire growing season, respectively. The GHGs emission from chemical fertilizers and irrigation accounted for >80% of that from agricultural inputs during the entire growing season. The GHGs emission from agricultural inputs were >2.3 times larger in winter wheat than that in the summer maize season. The CFs at yield-scale during the entire growing season were 0.431, 0.425, 0.427, and 0.427 without and 0.286, 0.364, 0.360, and 0.334 kg CO2-eq kg−1 yr−1 with SOC sequestration under NT, RT, ST, and PT, respectively. Regardless of SOC sequestration, the CFs of winter wheat was larger than that of summer maize. Agricultural inputs and SOC change contributed mainly to the component of CFs of winter wheat and summer maize. The ES value of climate regulation under NT was ¥159.2, 515.6, and 478.1 ha−1 yr−1 higher than that under RT, ST, and PT during the entire growing season. Therefore, NT could be a preferred “Climate-resilient” technology for lowering CFs and enhancing ecosystem services of climate regulation for the winter wheat–summer maize system in the NCP.  相似文献   

15.
The introduced shrub Tamarix ramosissima invades riparian zones, but loses competitiveness under flooding. Metabolic effects of flooding could be important for T. ramosissima, but have not been previously investigated. Photosynthesis rates, stomatal conductance, internal (intercellular) CO2, transpiration, and root alcohol dehydrogenase (ADH) activity were compared in T. ramosissima across soil types and under drained and flooded conditions in a greenhouse. Photosynthesis at 1500 μmol quanta m−2 s−1 (A1500) in flooded plants ranged from 2.3 to 6.2 μmol CO2 m−2 s−1 during the first week, but A1500 increased to 6.4–12.7 μmol CO2 m−2 s−1 by the third week of flooding. Stomatal conductance (gs) at 1500 μmol quanta m−2 s−1 also decreased initially during flooding, where gs was 0.018 to 0.099 mol H2O m−2 s−1 during the first week, but gs increased to 0.113–0.248 mol H2O m−2 s−1 by the third week of flooding. However, photosynthesis in flooded plants was reduced by non-stomatal limitations, and subsequent increases indicate metabolic acclimation to flooding. Root ADH activities were higher in flooded plants compared to drained plants, indicating oxygen stress. Lower photosynthesis and greater oxygen stress could account for the susceptibility of T. ramosissima at the onset of flooding. Soil type had no effect on photosynthesis or on root ADH activity. In the field, stomatal conductance, leaf water potential, transpiration, and leaf δ13C were compared between T. ramosissima and other flooded species. T. ramosissima had lower stomatal conductance and water potential compared to Populus deltoides and Phragmites australis. Differences in physiological responses for T. ramosissima could become important for ecological concerns.  相似文献   

16.
《Aquatic Botany》2005,83(1):71-81
The aquatic plant Elodea nuttallii (Planch.) St. John has been shown to express plasticity in the source of inorganic carbon it uses for photosynthesis. An investigation was undertaken to determine what effect the switch from CO2 to HCO3 use had on the growth of E. nuttallii. Plants were grown under reduced CO2 availability that favoured the switch, together with control plants (CO2 at equilibrium with air) that continued to use CO2 only. The extent to which both sets of plants could utilise HCO3 was determined (as the ratio of oxygen evolution at pH 9 and 6.5), and several measures of growth were made. Although reduced CO2 availability produced an increase in HCO3 utilisation, no differences were found in the measured growth of the plants. Therefore, it was possible to estimate, from the difference between the estimated rate of photosynthesis of the plants utilising HCO3 and those using CO2 only, the approximate cost of constructing, maintaining and running the bicarbonate utilisation mechanism in this species as 69 μmol photons m−2 s−1. This value can be used to estimate an irradiance of circa 80 μmol m−2 s−1 below which HCO3 use would not be expected in this species, an irradiance commonly experienced by submerged macrophytes in the field.  相似文献   

17.
《Process Biochemistry》2014,49(10):1606-1611
The filamentous fungus Paecilomyces lilacinus was grown on n-hexadecane in submerged (SmC) and solid-state (SSC) cultures. The maximum CO2 production rate in SmC (Vmax = 11.7 mg CO2 Lg−1 day−1) was three times lower than in SSC (Vmax = 40.4 mg CO2 Lg−1 day−1). The P. lilacinus hydrophobin (PLHYD) yield from the SSC was 1.3 mg PLHYD g protein−1, but in SmC, this protein was not detected. The PLHYD showed a critical micelle concentration of 0.45 mg mL−1. In addition, the PLHYD modified the hydrophobicity of Teflon from 130.1 ± 2° to 47 ± 2°, forming porous structures with some filaments <1 μm and globular aggregates <0.25 μm diameter. The interfacial studies of this PLHYD could be the basis for the use of the protein to modify surfaces and to stabilize compounds in emulsions.  相似文献   

18.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

19.
《Aquatic Botany》2002,72(3-4):219-233
We studied the potential role of dissolved inorganic carbon (DIC) in determining vegetation dominance of Potamogeton pectinatus L. and Chara aspera Deth. ex Willd. by monitoring the seasonal dynamics of DIC in a shallow lake and comparing the use of DIC of the two species. The HCO3-concentration in summer dropped from 2.5 to <0.5 mM with seasonally increasing Chara biomass, whereas outside the vegetation concentrations remained at 2.5 mM. Inside Potamogeton spp. vegetation DIC decreased from 2.5 to ca. 0.75 mM HCO3. A growth experiment showed ash-free biomass for P. pectinatus was nearly two times as high as for C. aspera at 3 mM HCO3, but almost two times lower at 0.5 mM than at 3.0. In a separate experiment, P. pectinatus precultured at a relatively low HCO3-level had a lower net photosynthetic rate (Pmax, 0.1 mmol O2 g−1 DW h−1) than C. aspera (Pmax, 0.1 mmol O2 g−1 DW h−1) over the range of HCO3-concentrations tested (Pmax, 0.14 mmol O2 g−1 DW h−1). In response to CO2 no significant differences between the compensation points (P. pectinatus, 28 mM; C. aspera 66 mM), were observed, but the photosynthetic rate increased faster than for C. aspera than for P. pectinatus. Under field conditions, the use of CO2 is not important since inside vegetation CO2-concentrations were below 10 μM, and thus, not available for photosynthesis of either species during the main part of the growth season. It is suggested that C. aspera may be a better competitor for HCO3 than P. pectinatus in conditions with a low HCO3 supply. As HCO3 is a strong limiting factor for growth inside the vegetation and probably the only carbon source available, the superior ability of C. aspera to use HCO3 may be an important factor explaining its present dominance in Veluwemeer.  相似文献   

20.
We measured the biomass production and ecosystem carbon CO2 exchange in a high yield grassland dominated by Miscanthus sinensis. The experimental grassland is managed by mowing once a year in winter every year and the harvested biomass on the ground is left to become the humus. The maximum aboveground and belowground biomasses were 1117 and 2803 g d.w. m?2 in our grassland. Although the high potential of our grassland for biomass production led to higher carbon uptake than with other types of grassland, the large biomass contributed to a higher respired carbon loss. Biomass increase led to a linear increase in ecosystem respiration. Over the 3 years, RE10 increased with increasing aboveground biomass. The potential gross primary production at a photosynthetic photon flux density of 2000 μmol m2 s?1 logarithmic increased with LAI. These responses of CO2 exchange to biomass production suggest this grassland behaved as weak CO2 sink or near carbon neutral (?78 and 17 g C m?2 year?1) in current management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号