首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to analyze the validity of the velocity corresponding to the onset of blood lactate accumulation (OBLA) and critical velocity (CV) to determine the maximal lactate steady state (MLSS) in soccer players. Twelve male soccer players (21.5 +/- 1.0 years) performed an incremental treadmill test for the determination of OBLA. The velocity corresponding to OBLA (3.5 mM of blood lactate) was determined through linear interpolation. The subjects returned to the laboratory on 7 occasions for the determination of MLSS and CV. The MLSS was determined from 5 treadmill runs of up to 30-minute duration and defined as the highest velocity at which blood lactate did not increase by more than 1 mM between minutes 10 and 30 of the constant velocity runs. The CV was determined by 2 maximal running efforts of 1,500 and 3,000 m performed on a 400-m running track. The CV was calculated as the slope of the linear regression of distance run versus time. Analysis of variance revealed no significant differences between OBLA (13.6 +/- 1.4 km.h(-1)) and MLSS (13.1 +/- 1.2 km.h(-1)) and between OBLA and CV (14.4 +/- 1.1 km.h(-1)). The CV was significantly higher than the MLSS. There was a significant correlation between MLSS and OBLA (r = 0.80), MLSS and CV (r = 0.90), and OBLA and CV (r = 0.80). We can conclude that the OBLA can be utilized in soccer players to estimate the MLSS. In this group of athletes, however, CV does not represent a sustainable steady-state exercise intensity.  相似文献   

2.
The aim of the study was to assess changes in the anaerobic threshold of young soccer players in an annual training cycle. A group of highly trained 15-18 year old players of KKS Lech Poznań were tested. The tests included an annual training macrocycle, and its individual stages resulted from the time structure of the sports training. In order to assess the level of exercise capacities of the players, a field exercise test of increasing intensity was carried out on a soccer pitch. The test made it possible to determine the 4 millimolar lactate threshold (T LA 4 mmol · l-1) on the basis of the lactate concentration in blood [LA], to establish the threshold running speed and the threshold heart rate [HR]. The threshold running speed at the level of the 4 millimolar lactate threshold was established using the two-point form of the equation of a straight line. The obtained indicators of the threshold running speed allowed for precise establishment of effort intensity used in individual training in developing aerobic endurance. In order to test the significance of differences in mean values between four dates of tests, a non-parametric Friedman ANOVA test was used. The significance of differences between consecutive dates of tests was determined using a post-hoc Friedman ANOVA test. The tests showed significant differences in values of selected indicators determined at the anaerobic threshold in various stages of an annual training cycle of young soccer players. The most beneficial changes in terms of the threshold running speed were noted on the fourth date of tests, when the participants had the highest values of 4.01 m · s-1 for older juniors, and 3.80 m · s-1 for younger juniors. This may be indicative of effective application of an individualized programme of training loads and of good preparation of teams for competition in terms of players’ aerobic endurance.  相似文献   

3.
Monitoring workload is critical for elite training and competition, as well as preventing potential sports injuries. The assessment of external load in team sports has been provided with new technologies that help coaches to individualize training and optimize their team’s playing system. In this study we characterized the physical demands of an elite handball team during an entire sports season. Novel data are reported for each playing position of this highly strenuous body-contact team sport. Sixteen world top players (5 wings, 2 centre backs, 6 backs, 3 line players) were equipped with a local positioning system (WIMU PRO) during fourteen official Spanish first league matches. Playing time, total distance covered at different running speeds, and acceleration variables were monitored. During a handball match, wings cover the greater distance by high-speed running (> 5.0 m·s-1): 410.3 ± 193.2 m, and by sprint (> 6.7 m·s-1): 98.0 ± 75.4 m. Centre backs perform the following playing position that supports the highest speed intensities during the matches: high-speed running: 243.2 ± 130.2 m; sprint: 62.0 ± 54.2 m. Centre backs also register the largest number of high-intensity decelerations (n = 142.7 ± 59.5) compared to wings (n = 112.9 ± 56.0), backs (n = 105.2 ± 49.2) and line players: 99.6 ± 28.9). This study provides helpful information for professional coaches and their technical staff to optimize training load and individualize the physical demands of their elite male handball players depending on each playing position.  相似文献   

4.
Eight highly trained male kayakers were studied to determine the relationship between critical power (CP) and the onset of blood lactate accumulation (OBLA). Four exercise sessions of 90 s, 240 s, 600 s, and 1200 s were used to identify the CP of each kayaker. Each individual CP was obtained from the line of best fit (LBFCP) obtained from the progressive work output/time relationships. The OBLA was identified by the 4 mmol·l–1 blood lactate concentration and the work output at this level was determined using a lactate curve test. This consisted of paddling at 50 W for 5 min after which a 1-min rest was taken during which a 25-l blood sample was taken to analyse for lactate. Exercise was increased by 50 W every 5 min until exhaustion, with the blood sample being taken in the 1-min rest period. The exercise intensity at the OBLA for each subject was then calculated and this was compared to the exercise intensity at the LBFCP. The intensity at LBFCP was found to be significantly higher (t=2.115, P<0.05) than that at the OBLA of 4 mmol·1–1. These results were further confirmed by significant differences being obtained in blood lactate concentration (t=8.063, P<0.05) and heart rate values (t=2.90, P<0.05) obtained from the exercise intensity at LBFCP over a 20-min period and that of the anaerobic threshold (Than) parameters obtained from the lactate/heart rate curve. These differences suggest that CP and Than are different physiological events and that athletes have utilised either one or the other methods for monitoring training and its effects.  相似文献   

5.
Despite its growing popularity, few studies have investigated specific physiological demands for elite female futsal. The aim of this study was to determine aerobic fitness in elite female futsal players using laboratory and field testing. Fourteen female futsal players from the Venezuelan National team (age =21.2±4.0 years; body mass =58.6±5.6 kg; height =161±5.0 cm) performed a progressive maximal treadmill test under laboratory conditions. Players also performed a progressive intermittent futsal-specific field test for endurance, the Futsal Intermittent Endurance Test (FIET), until volitional fatigue. Outcome variables were exercise heart rate (HR), VO2, post-exercise blood lactate concentrations ([La]b) and running speeds (km · h-1). During the treadmill test, VO2max, maximal aerobic speed (MAS), HR and peak [La]b were 45.3±5.6 ml · kg-1 · min-1, 12.5±1.77 km · h-1, 197±8 beats · min-1 and 11.3±1.4 mmol · l-1, respectively. The FIET total distance, peak running velocity, peak HR and [La]b were 1125.0±121.0 m, 15.2±0.5 km · h-1, 199±8 beats · min-1 and 12.5±2.2 mmol · l-1, respectively. The FIET distance and peak speed were strongly associated (r= 0.85-87, p < 0.0001) with VO2max and MAS, respectively. Peak HR and [La]b were not significantly different between tests. Elite female futsal players possess moderate aerobic fitness. Furthermore, the FIET can be considered as a valid field test to determine aerobic fitness in elite level female futsal players.  相似文献   

6.
7.
This study compared the perceptual responses, physiological indicators and technical parameters between different training protocols focused on upper body exercises. A randomized crossover design was performed, and 12 trained individuals (age: 27.1 ± 5.7 years; height: 173.7 ± 10.7 cm; BMI: 23.9 ± 2.3) completed three resistance training sessions under different protocols separated by at least 72 h: traditional training (TT) (4 x 6 repetitions at 85% of 1RM with 120 s of rest between sets), cluster 1 (CL1) (4 x 2+2+2 repetitions at 85% of 1RM with 15 s of intra-rep rest and 80 s between sets), and cluster 2 (CL2) (24 repetitions at 85% of 1RM with 15 s of inter-set recovery). Before training, arterial blood pressure (BP) and repetitions to failure of pull-up and push-up (FT) were collected. Muscle oxygen saturation (SmO2) in the chest and movement velocity were evaluated in barbell bench press during the training session. After finishing, lactate, BP, rate of perceived exertion and FT were assessed. The percentage of velocity loss (TT: 19.24%; CL1: 5.02% and CL2: 7.30%) in the bench press and lactate concentration (TT: 8.90 mmol·l-1; CL1: 6.13 mmol·l-1 and CL2: 5.48 mmol·l-1) were significantly higher (p < 0.05) for TT compared to both CLs. RPE values were higher (p < 0.05) in TT compared to CL1 (7.95 a.u. vs. 6.91 a.u., respectively). No differences (p > 0.05) were found between protocols for SmO2, BP, FT, pain or heart rate between set configurations. Cluster configurations allow one to maintain higher movement velocity and lower lactate and RPE values compared to a traditional configuration, but with similar concentrations of SmO2.  相似文献   

8.
The aims of the present study were to investigate the relationship of aerobic and anaerobic parameters with 400 m performance, and establish which variable better explains long distance performance in swimming. Twenty-two swimmers (19.1±1.5 years, height 173.9±10.0 cm, body mass 71.2±10.2 kg; 76.6±5.3% of 400 m world record) underwent a lactate minimum test to determine lactate minimum speed (LMS) (i.e., aerobic capacity index). Moreover, the swimmers performed a 400 m maximal effort to determine mean speed (S400m), peak oxygen uptake (V.O2PEAK) and total anaerobic contribution (CANA). The CANA was assumed as the sum of alactic and lactic contributions. Physiological parameters of 400 m were determined using the backward extrapolation technique (V.O2PEAK and alactic contributions of CANA) and blood lactate concentration analysis (lactic anaerobic contributions of CANA). The Pearson correlation test and backward multiple regression analysis were used to verify the possible correlations between the physiological indices (predictor factors) and S400m (independent variable) (p < 0.05). Values are presented as mean ± standard deviation. Significant correlations were observed between S400m (1.4±0.1 m·s-1) and LMS (1.3±0.1 m·s-1; r = 0.80), V.O2PEAK (4.5±3.9 L·min-1; r = 0.72) and CANA (4.7±1.5 L·O2; r= 0.44). The best model constructed using multiple regression analysis demonstrated that LMS and V.O2PEAK explained 85% of the 400 m performance variance. When backward multiple regression analysis was performed, CANA lost significance. Thus, the results demonstrated that both aerobic parameters (capacity and power) can be used to predict 400 m swimming performance.  相似文献   

9.
The study investigates the effects of the 11+ and HarmoKnee injury prevention programmes on knee strength in male soccer players. Under-21-year-old players (n=36) were divided equally into: the 11+, HarmoKnee and control groups. The programmes were performed for 24 sessions (20-25 min each). The hamstrings and quadriceps strength were measured bilaterally at 60°·s-1, 180°·s-1 and 300°·s-1. The concentric quadriceps peak torque (PT) of the 11+ increased by 27.7% at 300°·s-1 in the dominant leg (p<0.05). The concentric quadriceps PT of HarmoKnee increased by 36.6%, 36.2% and 28% in the dominant leg, and by 31.3%, 31.7% and 20.05% at 60°·s-1, 180°·s-1 and 300°·s-1 in the non-dominant leg respectively. In the 11+ group the concentric hamstring PT increased by 22%, 21.4% and 22.1% at 60°·s-1, 180°·s-1 and 300°·s-1, respectively in the dominant leg, and by 22.3%, and 15.7% at 60°·s-1 and 180°·s-1, in the non-dominant leg. In the HarmoKnee group the hamstrings in the dominant leg showed an increase in PT by 32.5%, 31.3% and 14.3% at 60°·s-1, 180°·s-1 and 300°·s-1, and in the non-dominant leg hamstrings PT increased by 21.1% and 19.3% at 60°·s-1 and 180°·s-1 respectively. The concentric hamstrings strength was significantly different between the 11+ and control groups in the dominant (p=0.01) and non-dominant legs (p=0.02). The HarmoKnee programme enhanced the concentric strength of quadriceps. The 11+ and HarmoKnee programmes are useful warm-up protocols for improving concentric hamstring strength in young professional male soccer players. The 11+ programme is more advantageous for its greater concentric hamstring strength improvement compared to the HarmoKnee programme.  相似文献   

10.
The oxygen cost of transport per unit distance (CoT; mL·kg-1·km-1) shows a U-shaped curve as a function of walking speed (v), which includes a particular walking speed minimizing the CoT, so called economical speed (ES). The CoT-v relationship in running is approximately linear. These distinctive walking and running CoT-v relationships give an intersection between U-shaped and linear CoT relationships, termed the energetically optimal transition speed (EOTS). This study investigated the effects of subtracting the standing oxygen cost for calculating the CoT and its relevant effects on the ES and EOTS at the level and gradient slopes (±5%) in eleven male trained athletes. The percent effects of subtracting the standing oxygen cost (4.8 ± 0.4 mL·kg-1·min-1) on the CoT were significantly greater as the walking speed was slower, but it was not significant at faster running speeds over 9.4 km·h-1. The percent effect was significantly dependent on the gradient (downhill > level > uphill, P < 0.001). The net ES (level 4.09 ± 0.31, uphill 4.22 ± 0.37, and downhill 4.16 ± 0.44 km·h-1) was approximately 20% slower than the gross ES (level 5.15 ± 0.18, uphill 5.27 ± 0.20, and downhill 5.37 ± 0.22 km·h-1, P < 0.001). Both net and gross ES were not significantly dependent on the gradient. In contrast, the gross EOTS was slower than the net EOTS at the level (7.49 ± 0.32 vs. 7.63 ± 0.36 km·h-1, P = 0.003) and downhill gradients (7.78 ± 0.33 vs. 8.01 ± 0.41 km·h-1, P < 0.001), but not at the uphill gradient (7.55 ± 0.37 vs. 7.63 ± 0.51 km·h-1, P = 0.080). Note that those percent differences were less than 2.9%. Given these results, a subtraction of the standing oxygen cost should be carefully considered depending on the purpose of each study.  相似文献   

11.
The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg−1·min−1) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr−1), light running (7.2 km·hr−1), and moderate running (9.6 km·hr−1). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, ηp2=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr−1 (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr−1. At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar.  相似文献   

12.
During incremental exercise, the left ventricular ejection fraction increases up to the intensity of the anaerobic threshold and tends to level off at higher exercise intensities. Since there is a correlation between the response of peak filling rate and ejection fraction to exercise, this study was conducted to determine whether the response of left ventricular diastolic function is similar to the response of systolic function relative to lactate threshold. Twelve healthy men performed two exercise tests on a cycle ergometer. In the first test, lactate threshold and maximal power output were determined. In the second exercise test, gated radionuclide ventriculography was performed at rest, at the lactate threshold intensity, and at peak exercise to measure ejection fraction and peak filling rate. Ejection fraction increased significantly from rest [mean (SD): 62 (5)%] to lactate threshold [76 (7) %] and did not change significantly from lactate threshold to peak exercise [77 (7)%]. Likewise, peak filling rate (normalized for stroke counts) increased from resting [6.1 (0.9)V s · s–1] to lactate threshold [9.4 (1.8)V s · s–1] and did not change significantly from lactate threshold to peak exercise [9.6 (2.9)V s · s–1]. There was no correlation between the change in peak filling rate and the change in ejection fraction from rest to lactate threshold. Thus, during incremental exercise, left ventricular diastolic function responds qualitatively similar to systolic function.  相似文献   

13.
The focus of the present study was to investigate the effects of a fast-start pacing strategy on running performance and pulmonary oxygen uptake () kinetics at the upper boundary of the severe-intensity domain. Eleven active male participants (28±10 years, 70±5 kg, 176±6 cm, 57±4 mL/kg/min) visited the laboratory for a series of tests that were performed until exhaustion: 1) an incremental test; 2) three laboratory test sessions performed at 95, 100 and 110% of the maximal aerobic speed; 3) two to four constant speed tests for the determination of the highest constant speed (HS) that still allowed achieving maximal oxygen uptake; and 4) an exercise based on the HS using a higher initial speed followed by a subsequent decrease. To predict equalized performance values for the constant pace, the relationship between time and distance/speed through log-log modelling was used. When a fast-start was utilized, subjects were able to cover a greater distance in a performance of similar duration in comparison with a constant-pace performance (constant pace: 670 m±22%; fast-start: 683 m±22%; P = 0.029); subjects also demonstrated a higher exercise tolerance at a similar average speed when compared with constant-pace performance (constant pace: 114 s±30%; fast-start: 125 s±26%; P = 0.037). Moreover, the mean response time was reduced after a fast start (constant pace: 22.2 s±28%; fast-start: 19.3 s±29%; P = 0.025). In conclusion, middle-distance running performances with a duration of 2–3 min are improved and response time is faster when a fast-start is adopted.  相似文献   

14.
The aim of the present study was to analyse the usefulness of the 6-20 rating of perceived exertion (RPE) scale for prescribing and self-regulating high-intensity interval training (HIT) in young individuals. Eight healthy young subjects (age = 27.5±6.7 years) performed maximal graded exercise testing to determine their maximal and reserve heart rate (HR). Subjects then performed two HIT sessions (20 min on a treadmill) prescribed and regulated by their HR (HR: 1 min at 50% alternated with 1 min at 85% of reserve HR) or RPE (RPE: 1 minute at the 9-11 level [very light-fairly light] alternated with 1 minute at the 15-17 level [hard-very hard]) in random order. HR response and walking/running speed during the 20 min of exercise were compared between sessions. No significant difference between sessions was observed in HR during low- (HR: 135±15 bpm; RPE: 138±20 bpm) and high-intensity intervals (HR: 168±15 bpm; RPE: 170±18 bpm). Walking/running speed during low- (HR: 5.7±1.2 km · h−1; RPE: 5.7±1.3 km · h−1) and high-intensity intervals (HR: 7.8±1.9 km · h−1; RPE: 8.2±1.7 km · h−1) was also not different between sessions. No significant differences were observed in HR response and walking/running speed between HIT sessions prescribed and regulated by HR or RPE. This finding suggests that the 6-20 RPE scale may be a useful tool for prescribing and self-regulating HIT in young subjects.  相似文献   

15.
The aim of this study was to simulate the activity pattern of rink hockey by designing a specific skate test (ST) to study the energy expenditure and metabolic responses to this intermittent high-intensity exercise and extrapolate the results from the test to competition. Six rink hockey players performed, in three phases, the 20-metre multi-stage shuttle roller skate test, a tournament match and the ST. Heart rate was monitored in all three phases. Blood lactate, oxygen consumption, ventilation and respiratory exchange ratio were also recorded during the ST. Peak HR was 190.7±7.2 beats · min−1. There were no differences in peak HR between the three tests. Mean HR was similar between the ST and the match (86% and 87% of HRmax, respectively). Peak and mean ventilation averaged 111.0±8.8 L · min−1 and 70.3±14.0 L · min−1 (60% of VEmax), respectively. VO2max was 56.3±8.4 mL · kg−1 · min−1, and mean oxygen consumption was 40.9±7.9 mL · kg−1 · min−1 (70% of VO2max). Maximum blood lactate concentration was 7.2±1.3 mmol · L-1. ST yielded an energy expenditure of 899.1±232.9 kJ, and energy power was 59.9±15.5 kJ · min−1. These findings suggest that the ST is suitable for estimating the physiological demands of competitive rink hockey, which places a heavy demand on the aerobic and anaerobic systems, and requires high energy consumption.  相似文献   

16.
The aim of this study was to analyse the acid-base balance and partial pressure of blood gases of participants during a 100-km run. Fourteen experienced amateur ultramarathon runners (age: 43.36±11.83 years; height: 175.29±6.98 cm; weight: 72.12±7.36 kg) completed the 100-km run. Blood samples were taken before the run; after 25, 50, 75, and 100 km; and 12 and 24 hours after the run. There were significant differences (p<0.05) between the mean values registered for acid-alkaline balance, buffering alkalies, and current bicarbonate in each segment of the run, especially during the third, fourth, and fifth segments of the run (i.e., between 50 and 100 km), and there were only significant differences associated with buffering alkalies and current bicarbonate during the recovery. However, all the changes were within the physiological norm. A significant decrease in the compressibility of oxygen was observed after 100 km (from 92.80±15.67 to 88.36±13.71 mmHg) and continued during the recovery to 75.06±8.60 mmHg 12 h after the run. Also there was a decrease in saturation to a mean value of 93.78±3.10 at 12 h after the run. Generally the amateurs runners are able to adjust their running speed so as not to provoke a significant acid-base imbalance or lactate acid accumulation.  相似文献   

17.

Purpose

We aimed to characterize the cardiovascular, lactate and perceived exertion responses in relation to performance during competition in junior and senior elite synchronized swimmers.

Methods

34 high level senior (21.4±3.6 years) and junior (15.9±1.0) synchronized swimmers were monitored while performing a total of 96 routines during an official national championship in the technical and free solo, duet and team competitive programs. Heart rate was continuously monitored. Peak blood lactate was obtained from serial capillary samples during recovery. Post-exercise rate of perceived exertion was assessed using the Borg CR-10 scale. Total competition scores were obtained from official records.

Results

Data collection was complete in 54 cases. Pre-exercise mean heart rate (beats·min−1) was 129.1±13.1, and quickly increased during the exercise to attain mean peak values of 191.7±8.7, with interspersed bradycardic events down to 88.8±28.5. Mean peak blood lactate (mmol·L−1) was highest in the free solo (8.5±1.8) and free duet (7.6±1.8) and lowest at the free team (6.2±1.9). Mean RPE (0–10+) was higher in juniors (7.8±0.9) than in seniors (7.1±1.4). Multivariate analysis revealed that heart rate before and minimum heart rate during the routine predicted 26% of variability in final total score.

Conclusions

Cardiovascular responses during competition are characterized by intense anticipatory pre-activation and rapidly developing tachycardia up to maximal levels with interspersed periods of marked bradycardia during the exercise bouts performed in apnea. Moderate blood lactate accumulation suggests an adaptive metabolic response as a result of the specific training adaptations attributed to influence of the diving response in synchronized swimmers. Competitive routines are perceived as very to extremely intense, particularly in the free solo and duets. The magnitude of anticipatory heart rate activation and bradycardic response appear to be related to performance variability.  相似文献   

18.
The purpose of this study was to investigate the relationship between biomechanical variables and running economy in North African and European runners. Eight North African and 13 European male runners of the same athletic level ran 4-minute stages on a treadmill at varying set velocities. During the test, biomechanical variables such as ground contact time, swing time, stride length, stride frequency, stride angle and the different sub-phases of ground contact were recorded using an optical measurement system. Additionally, oxygen uptake was measured to calculate running economy. The European runners were more economical than the North African runners at 19.5 km · h−1, presented lower ground contact time at 18 km · h−1 and 19.5 km · h−1 and experienced later propulsion sub-phase at 10.5 km · h−1,12 km · h−1, 15 km · h−1, 16.5 km · h−1 and 19.5 km · h−1 than the European runners (P < 0.05). Running economy at 19.5 km · h−1 was negatively correlated with swing time (r = -0.53) and stride angle (r = -0.52), whereas it was positively correlated with ground contact time (r = 0.53). Within the constraints of extrapolating these findings, the less efficient running economy in North African runners may imply that their outstanding performance at international athletic events appears not to be linked to running efficiency. Further, the differences in metabolic demand seem to be associated with differing biomechanical characteristics during ground contact, including longer contact times.  相似文献   

19.
In vivo 13C nuclear magnetic resonance spectroscopy was used to elucidate the pathways and the regulation of pyruvate metabolism and pyruvate-lactate cometabolism noninvasively in living-cell suspensions of Propionibacterium freudenreichii subsp. shermanii. The most important result of this work concerns the modification of fluxes of pyruvate metabolism induced by the presence of lactate. Pyruvate was temporarily converted to lactate and alanine; the flux to acetate synthesis was maintained, but the flux to propionate synthesis was increased; and the reverse flux of the first part of the Wood-Werkman cycle, up to acetate synthesis, was decreased. Pyruvate was consumed at apparent initial rates of 148 and 90 μmol · min−1 · g−1 (cell dry weight) when it was the sole substrate or cometabolized with lactate, respectively. Lactate was consumed at an apparent initial rate of 157 μmol · min−1 · g−1 when it was cometabolized with pyruvate. P. shermanii used several pathways, namely, the Wood-Werkman cycle, synthesis of acetate and CO2, succinate synthesis, gluconeogenesis, the tricarboxylic acid cycle, and alanine synthesis, to manage its pyruvate pool sharply. In both types of experiments, acetate synthesis and the Wood-Werkman cycle were the metabolic pathways used most.  相似文献   

20.
The purpose of this study was threefold: i) to analyse the load-velocity relationship of the shoulder press (SP) exercise, ii) to investigate the stability (intra-individual variability) of this load-velocity relationship for athletes with different relative strength levels, and after a 10-week velocity-based resistance training (VBT), and iii) to describe the velocity-time pattern of the SP: first peak velocity [Vmax1], minimum velocity [Vmin], and second peak velocity [Vmax2]. This study involves a cross-sectional (T1, n = 48 subjects with low, medium and high strength levels) and longitudinal (T2, n = 24 subjects randomly selected from T1 sample) design. In T1, subjects completed a progressive loading test up to the 1RM in the SP exercise. The barbell mean, peak and mean propulsive velocities (MV, PV and MPV) were monitored. In T2, subjects repeated the loading test after 10 weeks of VBT. There were very close relationships between the %1RM and velocity attained in the three velocity outcomes (T1, R2: MV = 0.970; MPV = 0.969; PV = 0.954), being even stronger at the individual level (T1, R2 = 0.973–0.997). The MPV attained at the 1RM (~0.19 m·s-1) was consistent among different strength levels. Despite the fact that 1RM increased ~17.5% after the VBT programme, average MPV along the load-velocity relationship remained unaltered between T1 and T2 (0.69 ± 0.06 vs. 0.70 ± 0.06 m·s-1). Lastly, the three key parameters of the velocity-time curve were detected from loads > 74.9% 1RM at 14.3% (Vmax1), 46.1% (Vmin), and 88.7% (Vmax2) of the concentric phase. These results may serve as a practical guideline to effectively implement the velocity-based method in the SP exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号