首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hydroponic experiment was conducted to assess the possible involvement of polyamines (PAs), abscisic acid (ABA) and anti-oxidative enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in adaptation of six populations of Panicum antidotale Retz. to selection pressure (soil salinity) of a wide range of habitats. Plants of six populations were collected from six different habitats with ECe ranging from 3.39 to 19.23 dS m−1 and pH from 7.65 to 5.86. Young tillers from 6-month-old plants were transplanted in plastic containers each containing 10 l of half strength Hoagland's nutrient solution alone or with 150 mol m−3 NaCl. After 42 days growth, contents of polyamines (Put, Spd and Spm) and ABA, and the activities of anti-oxidative enzymes (SOD, POD and CAT) of all populations generally increased under salt stress. The populations collected from highly saline habitats showed a greater accumulation of polyamines and ABA and the activities of anti-oxidative enzymes as compared to those from mild or non-saline habitats. Moreover, Spm/Spd and Put/(Spd + Spm) ratios generally increased under salt stress. However, the populations from highly saline environments had significantly higher Spm/Spd and Put/(Spd + Spm) ratios as compared to those from mild or non-saline environments. Similarly, the populations adapted to high salinity accumulated less Na+ and Cl in culm and leaves, and showed less decrease in leaf K+ and Ca2+ under salinity stress. Higher activities of anti-oxidative enzymes and accumulation of polyamines and ABA, and increased Spm/Spd and Put/(Spm + Spd) ratios were found to be highly correlated with the degree of adaptability of Panicum to saline environment.  相似文献   

2.
3.
The influence of exogenous spermidine (Spd) on arginine decarboxylase (ADC), ornithine decarboxylase (ODC), polyamine oxidase (PAO) activities and polyamines (PAs), proline contents in water hyacinth leaves under Mercury (Hg) stress was investigated after 6 days treatment. The results showed that free putrescine (Put) content increased, the contents of free spermidine (Spd) and spermine (Spm) and the (Spd + Spm)/Put ratio in water hyacinth leaves decreased significantly with the increase of the Hg concentrations. Hg stress also disturbed the activities of ADC, ODC and PAO and caused changes on proline content. Compared to the Hg-treatment only, exogenous Spd (0.1 mM) significantly reduced the accumulation of free Put, increased the contents of free Spd and Spm and the ratio of (Spd + Spm)/Put in water hyacinth leaves. Furthermore, exogenous Spd enhanced the activities of ADC, ODC and PAO and significantly increased proline content. The PS-conjugated PAs and PIS-bound PAs changed in the same trend as free PAs. These results suggest that exogenous Spd can alleviate the metabolic disturbance of polyamines caused by Hg in water hyacinth leaves.  相似文献   

4.
氯化钠胁迫对嫁接黄瓜叶片多胺含量的影响   总被引:3,自引:0,他引:3  
以日本耐盐品种‘帝王新土佐’南瓜为砧木,以’新泰密刺’黄瓜为接穗,在100 mmol·L-1 NaCl胁迫下,对黄瓜嫁接和自根植株不同时期叶片中不同形态多胺含量的变化进行了研究.结果表明:NaCl胁迫下黄瓜嫁接植株游离态腐胺(Put)含量在胁迫2 d时与自根植株无显著差异,其余时间均显著高于自根植株;游离态亚精胺(Spd)和游离态精胺(Spm)含量在整个胁迫期间均显著高于自根植株;游离态多胺总量(PAs)在胁迫第4天出现峰值;嫁接植株游离态Put/PAs值在胁迫4 d时与自根植株无显著差异,其余胁迫时间均显著低于自根植株,而(Spd+Spm)/Put值在整个胁迫期间均显著高于自根植株;嫁接植株结合态和束缚态Put、Spd和Spm含量在整个胁迫期间均显著高于自根植株,结合态和束缚态PAs在胁迫第6天出现峰值;结合态多胺的Put/PAs值和(Spd+Spm)/Put值变化趋势与游离态多胺一致;嫁接植株束缚态Put/PAs值在胁迫6 d时与自根植株无显著差异,其余时间均显著低于自根植株,而(Spd+Spm)/Put值在整个胁迫期间均显著高于自根植株.表明黄瓜嫁接植株表现出较强的耐盐特征.  相似文献   

5.
一氧化氮缓解盐胁迫对玉米生长的抑制作用   总被引:50,自引:2,他引:50  
研究了一氧化氮(nitric oxide,NO)对NaCl 100mmol/L胁迫下玉米幼苗生长的影响.结果表明:0.1~200μmol/L的NO供体硝普钠(sodium nitroprusside,SNP),特别是100μmol/L SNP处理可以显著提高盐胁迫下玉米幼苗的干物质积累速率.100μmol/L的SNP处理还显著提高了叶绿素含量、植株体内K /Na 比和(Spd Spm)/Put的比值,降低膜透性.推测NO对盐胁迫下玉米生长抑制的缓解作用是由于NO促进根系对K 的选择性吸收及其向地上部的运输,而降低对Na 的吸收及其向地上部的运输,并促进Put向Spd和Spm的转化.  相似文献   

6.
200 mmol/L的NaCl胁迫8 d大麦幼苗叶片和根系中的三种形态多胺都有不同程度地下降,其中游离态多胺含量的下降幅度最大;高氯酸不溶性结合态多胺含量变化较小.根系中PAO的活性先上升后下降,而叶片中PAO的活性先下降后上升.游离态多胺中,亚精胺和精胺(Spd Spm)的含量变化与相应部位PAO的活性变化趋势相反,表明PAO在盐胁迫下可能调节了游离态多胺的含量从而影响高氯酸可溶结合态与高氯酸不溶结合态多胺的含量.  相似文献   

7.
采用1/2 Hoagland营养液培养,研究了低氧胁迫下24-表油菜素内酯(EBR)对黄瓜幼苗叶片光合特性及多胺含量的影响.结果表明:低氧胁迫下黄瓜幼苗的净光合速率(Pn)、气孔导度(gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)显著下降,而叶绿素含量显著提高,幼苗生长受抑;低氧胁迫显著提高了黄瓜幼苗叶片的腐胺(Put)、亚精胺(Spd)、精胺(Spm)、多胺(PAs)含量和Put/PAs,但降低了(Spd+Spm) /Put.低氧胁迫下,外源EBR不仅显著提高了黄瓜幼苗的Pn、gs、Tr及叶绿素含量,也显著提高了黄瓜幼苗叶片的游离态Spm、结合态Spd、Spm及束缚态Put、Spd、Spm含量,促进了PAs的进一步积累,且降低了Put/PAs,提高了(Spd+Spm)/Put.可见,外源EBR调节了黄瓜幼苗内源多胺含量及形态的变化,维持了较高的光合性能,促进了叶面积和干物质量的显著增加,缓解了低氧胁迫对黄瓜幼苗的伤害.  相似文献   

8.
NaCl胁迫对菜用大豆种子多胺代谢的影响   总被引:1,自引:0,他引:1  
Wang C  Zhu YL  Yang LF  Yang HS 《应用生态学报》2011,22(11):2883-2893
采用蛭石栽培,在100 mmol·L-1NaCl胁迫下,对耐盐性不同的两个品种菜用大豆种子的丙二醛(MDA)含量和多胺(PAs)代谢进行了研究.结果表明:NaCl胁迫显著增加了菜用大豆种子的MDA含量,但耐盐品种‘绿领特早’(LL)的增幅低于盐敏感品种‘理想高产95-1’(LX).与LX相比,LL种子在整个NaCl胁迫期间均维持了相对较高的游离态精胺(Spm)、结合态Spm、结合态亚精胺(Spd)、束缚态Spd和束缚态腐胺(Put)含量,较高的(Spd +Spm )/Put 和(cPAs+bPAs)/fPAs值及较低的Put/PAs值,在胁迫中、后期(9~15 d)维持了相对较高的游离态Spd含量;胁迫期间,LL的精胺酸脱羧酶(ADC)长时期(6~15 d)保持相对较高的活性,而多胺氧化酶(PAO)则长时期(6~15 d)维持相对较低的活性.综上,LL具有较强的多胺合成能力及较强的Put向Spd和Spm以及游离态多胺向结合态和束缚态多胺转化的能力,进而有效抑制了细胞的膜脂过氧化,这可能是其耐盐性较强的重要原因之一.  相似文献   

9.
The effects of exogenous spermidine (Spd) application to hypoxic nutrient solution on the contents of endogenous polyamines (PAs) and respiratory metabolism in the roots of cucumber (Cucumis sativus L.) seedlings were investigated. Cucumber seedlings were grown hydroponically in control and hypoxic nutrient solutions with and without addition of Spd at a concentration of 0.05 mM. The activities of key enzymes involved in the tricarboxylic acid cycle (TCAC), such as succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH), were significantly inhibited under root-zone hypoxia with dissolved oxygen (DO) at 1 mg/l. In contrast, the activities of enzymes involved in the process of fermentation, such as pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and alanine aminotransferase (AlaAT), were significantly increased. Thus, aerobic respiration was inhibited and fermentation was enhanced in the roots of cucumber seedlings as a result of decreasing ATP content to inhibit the dry weight of seedlings under hypoxic stress. Moreover, the contents of free, soluble conjugated, and insoluble bound putrescine (Put), Spd, and spermine (Spm) in the roots of cucumber seedlings were significantly increased under hypoxia stress. Interestingly, application of Spd to hypoxic roots markedly suppressed the accumulation of free Put and, in contrast, promoted an increase in free Spd and Spm, as well as soluble conjugated and insoluble bound Put, Spd, and Spm contents. From these data, we deduced that exogenous Spd promotes the conversion of free Put into free Spd and Spm, and soluble conjugated and insoluble bound PAs under hypoxia stress. Furthermore, the activities of LDH, PDC, and ADH were suppressed and, in contrast, the activities of SDH and IDH were enhanced by application of exogenous Spd to hypoxic roots. As a result, aerobic respiration was enhanced but fermentation metabolism was inhibited in the roots of cucumber seedlings, leading to an increase in ATP content to alleviate the inhibited dry weight of seedlings due to hypoxia stress. These results suggest that application of Spd to hypoxic nutrient solution promoted conversion of free Put into free Spd and Spm as well as soluble conjugated and insoluble bound PAs, further enhanced IDH and SDH activities, and inhibited ethanol fermentation and lactate fermentation, resulting in increased ATP content and eventually enhanced tolerance of cucumber plants to root-zone hypoxia.  相似文献   

10.
研究了不同浓度NaCl胁迫下,香根草(Vetiteria zizanioides)根、叶中的游离态、结合态、束缚态多胺(PAs)[包括腐胺(Put),尸胺(Cad),亚精胺(Sod)和精胺(Spm)]含量的变化。在中度盐胁迫(100,200mmol L^-1NaCl)9天时,香根草基本能够正常生长,但在重度盐胁迫(300mmol L^-1NaCl)下,其生长受到严重抑制。在上述3个不同浓度的NaCl胁迫下,香根草根、叶中游离态Put,Cad,spd,Stma和总的游离态PAs含量明显下降,在高盐浓度下下降幅更大;结合态Put,Cad,Sod,Spm和总的结合态PAs含量显著上升,但在重度盐胁迫下升幅较小或与对照相当;束缚态Put,Cad和总的束缚态PAs含量均减少,而束缚态Spd和Spm含量在叶中是下降的,在根中则增加,且在中度盐胁迫下更明显。对根和叶片而言,除游离态(Spd+Spm),Put比值在重度盐胁迫下较对照显著下降外,其它游离态、结合态、束缚态和总的(Spd+Spm)/Put比值在不同盐胁迫下均上升,在中度盐胁迫下更明显。这表明,维持多胺总量的稳态和较高的(Spd+Spm)/Put比值是香根草适应中度盐胁迫的一个重要机制。  相似文献   

11.
A hydroponic experiment was conducted to assess the possible involvement of polyamines (PAs), abscisic acid (ABA) and anti-oxidative enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in adaptation of six populations of Panicum antidotale Retz. to selection pressure (soil salinity) of a wide range of habitats. Plants of six populations were collected from six different habitats with ECe ranging from 3.39 to 19.23 dS m−1 and pH from 7.65 to 5.86. Young tillers from 6-month-old plants were transplanted in plastic containers each containing 10 l of half strength Hoagland's nutrient solution alone or with 150 mol m−3 NaCl. After 42 days growth, contents of polyamines (Put, Spd and Spm) and ABA, and the activities of anti-oxidative enzymes (SOD, POD and CAT) of all populations generally increased under salt stress. The populations collected from highly saline habitats showed a greater accumulation of polyamines and ABA and the activities of anti-oxidative enzymes as compared to those from mild or non-saline habitats. Moreover, Spm/Spd and Put/(Spd + Spm) ratios generally increased under salt stress. However, the populations from highly saline environments had significantly higher Spm/Spd and Put/(Spd + Spm) ratios as compared to those from mild or non-saline environments. Similarly, the populations adapted to high salinity accumulated less Na+ and Cl in culm and leaves, and showed less decrease in leaf K+ and Ca2+ under salinity stress. Higher activities of anti-oxidative enzymes and accumulation of polyamines and ABA, and increased Spm/Spd and Put/(Spm + Spd) ratios were found to be highly correlated with the degree of adaptability of Panicum to saline environment.  相似文献   

12.
以中国南瓜杂交种‘360.3×112.2’和黑籽南瓜为试验材料,在营养液栽培条件下研究了NaCl胁迫对两种南瓜植株生长、根系活性氧水平和游离态多胺含量的影响.结果表明,NaCl胁迫10 d后,与对照相比,两种南瓜植株生长都受到明显抑制,但中国南瓜杂交种比黑籽南瓜植株的耐盐性强.NaCl胁迫使南瓜根系O2-·产生速率和H2O2含量提高,且黑籽南瓜的O2-·产生速率和H2O2含量高于中国南瓜杂交种.两种南瓜根系中腐胺(Put)、亚精胺(Spd)、精胺(Spm)和多胺(PAs)含量及Put/PAs高于对照,并呈现先升后降的趋势;根系中(Spd+Spm)/Put低于对照,呈现先降后升的趋势.中国南瓜杂交种根系中Put含量和Put/PAs低于黑籽南瓜,而Spd、Spm含量和(Spd+Spm)/Put高于黑籽南瓜.表明两种南瓜根系中多胺含量的升高对减少或清除组织中的活性氧有积极作用,Put向Spd、Spm的转化有利于增强植株的耐盐性;中国南瓜杂交种‘360.3×112.2’的耐盐性高于黑籽南瓜与其根系中Put/PAs较低、(Spd+Spm)/Put和PAs含量较高,使其清除活性氧能力较强有关.  相似文献   

13.
采用营养液栽培,研究了外源腐胺(Put)对根际低氧胁迫下黄瓜幼苗体内多胺含量和抗氧化系统的影响.结果显示,低氧胁迫显著刺激了黄瓜幼苗体内活性氧(ROS)和内源多胺含量的增加,提高了抗氧化酶活性;外源Put进一步提高了低氧胁迫下黄瓜幼苗体内多胺的含量和抗氧化酶活性,降低了ROS含量,从而缓解了低氧胁迫的伤害作用;Put合成抑制剂D-精氨酸(D-Arg)不仅显著抑制黄瓜幼苗体内多胺的合成,而且抑制抗氧化酶活性,同时ROS大量积累,进一步抑制黄瓜幼苗的生长;而外源Put可缓解D-Arg的抑制作用;Put转化抑制剂甲基乙二醛-双(脒基腙)(MGBG)和Put降解抑制剂氨基胍(AG)的混合施用造成游离态Put的过量积累,以及亚精胺(Spd)、精胺(Spm)含量和抗氧化酶活性的显著降低,造成ROS大量积累,进一步加重了低氧胁迫对植株的伤害.结果表明,低氧胁迫下外源Put可提高黄瓜幼苗体内游离态Put含量,促进游离态Put向Spd和Spm转化,Spd、Spm含量的增加以及(free-Spd free-Spm)/free-Put比值的升高有利于提高植株抗氧化酶活性,增强清除ROS的能力,降低膜脂过氧化的伤害,从而增强植株的低氧胁迫耐性.  相似文献   

14.
Prior to sowing, seeds of bean (Phaseolus vulgaris L.) were treated with 4 mM arginine or 0.1% urea, as nitrogen source. The seeds were then subjected to salinity stress. Arginine and urea treatments stimulated germination of both unstressed and salinity-stressed seeds. It was interesting to observe that the increased germination percentage in response to arginine and urea treatments was associated with increased content of polyamines, particularly putrescine (Put), spermidine (Spd) and spermine (Spm). Growth of the seedlings was also improved by application of arginine and urea, which was also associated with increased content of the polyamines Spd and Spm, while the Put content decreased. Total soluble sugars were much accumulated in response to arginine and urea treatments under salinity stress for cellular osmoregulation. The ratio of K+/Na+ increased in the leaves by application of arginine and urea, indicating a more alleviation to the adverse effects of salinity stress. Changes in proteinogenic amino acids were also investigated.  相似文献   

15.
The effects of polyamines (Putrescine— Put; Spermidine—Spd; and Spermine—Spm) on␣salt tolerance of seedlings of two barley (Hordeum vulgare L.) cultivars (J4, salt-tolerant; KP7, salt-sensitive) were investigated. The results showed that, the salt-tolerant cultivar J4 seedlings accumulated much higher levels of Spd and Spm and lower Put than the salt-sensitive cultivar KP7␣under salt stress. At the same time, the dry weight of KP7 decreased significantly than that of␣J4. After methylglyoxal bis(guanylhydrazone) [MGBG, an inhibitor of S-adenosylmethionine decarboxylase (SAMDC)] treatment, Spd and Spm levels together with the dry weight of both cultivars were reduced, but the salt-caused dry weight reduction in two cultivars could be reversed by the concomitant treatment with Spd. MGBG decreased the activities of tonoplast H+-ATPase and H+-PPase too, but the experiments in vitro indicated that MGBG was not able to affect the above two enzyme activities. However, the polyamines, especially Spd, promoted their activities obviously. These results suggested that the conversion of Put to Spd and Spm and maintenance of higher levels of Spd and Spm were necessary for plant salt tolerance.  相似文献   

16.
采用蛭石栽培,在100mmol·L-1NaCl胁迫下,对耐盐性不同的2个菜用大豆[Glycinemax(L.)Merr.]品种结荚期干物质积累、单株产量及叶片游离态多胺(PAs)水平的变化进行了研究。结果表明:NaCl胁迫显著降低了菜用大豆植株干重及单株产量,但耐盐品种"绿领特早"的降幅低于盐敏感品种"理想高产95-1";与"理想高产95-1"相比,"绿领特早"叶片在整个NaCl胁迫期间均维持了相对较低的H2O2含量、游离态腐胺(Put)含量及较高的游离态亚精胺(Spd)含量,在胁迫6~15d期间维持了相对较高的游离态精胺(Spm)含量、(Spd+Spm)/Put值及较低的Put/PAs值。说明耐盐品种"绿领特早"叶片具有较强的由游离态Put向游离态Spd和Spm转化的能力,维持了较低的游离态Put含量和较高的游离态Spd及Spm含量,进而抑制了活性氧过量积累。  相似文献   

17.
研究了外源一氧化氮(nitric oxide, NO)对盐胁迫下黑麦草幼苗根生长和氧化损伤的影响。结果表明,5~100 μmol·L-1的NO供体硝普钠(sodium nitroprusside, SNP)处理显著减轻100mmol·L-1 NaCl胁迫对黑麦草幼苗根生长的抑制效应,其中50 μmol·L-1的SNP效果最明显,150 μmol·L-1以上的SNP处理则抑制根的生长。50 μmol·L-1 SNP处理提高了100 mmol·L-1 NaCl胁迫下黑麦草幼苗根组织中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)及液泡膜上H+-ATP酶(H+-ATPase)和H+焦磷酸酶(H+-PPase)的活性,使谷胱甘肽(GSH)、抗坏血酸(ASA)和脯氨酸含量及K+/Na+、(Spd+Spm)/Put比值和根干物质积累量增加,超氧阴离子(O-2)、H2O2和丙二醛(MDA)含量降低,而1mmol·L-1NO清除剂PTIO和1 μmol·L-1 NaNO2处理(对照)的效果则不明显。由此推断,NO通过提高根组织的抗氧化和渗透调节能力,促进根系对K+的选择性吸收及Put向Spd和Spm的转化,降低Na+的吸收并加强在液泡中的区隔化缓解盐胁迫对黑麦草幼苗根生长的抑制和膜脂过氧化损伤。  相似文献   

18.
In order to gain information on the putative involvement of polyamines (PAs) in the response of rice cells to salinity, mature embryo-derived calli issued from the salt-sensitive cultivar I Kong Pao were exposed for 3 months to the simultaneous presence of NaCl (0, 150 and 300 mM) and exogenous polyamines (putrescine (Put): 1 and 10 mM; spermidine (Spd): 1 and 10 mM; spermine (Spm): 1 mM). Callus growth, endogenous PAs, Na+, K+ and Cl concentrations were quantified and analysed in relation to cell viability based on 2,3,5-triphenytetrazolium chloride (TTC) reduction. All exogenous PAs were efficiently absorbed from the external medium. Exogenous Put 1 mM clearly stimulated growth of salt-stressed calli in relation to a decrease in both Na+ and Cl accumulation. In contrast, Spd 10 mM and Spm 1 mM exacerbated the deleterious impact of NaCl on callus growth and induced a decrease in K+ concentration. While Put helped in the maintenance of cell viability, Spd 10 mM and Spm 1 mM decreased cell viability, mainly in relation to an inhibition of the alternative respiratory pathway. It is proposed that Put may assume positive functions in salt stress resistance in rice.  相似文献   

19.
对经逐代耐盐性筛选的栽培和野生大豆杂交组合(‘Jackson’בBB52’)F4代‘JB185’株系及其亲本幼苗以不同浓度NaCl和等渗(-0.53 MPa)PEG-6000、NaCl、钠盐(无Cl-)和氯盐(无Na )溶液处理6d。结果表明:(1)随NaCl浓度的提高,3种遗传材料幼苗叶片相对电解质渗漏率和MDA含量均呈上升趋势,叶绿素含量除‘BB52’和‘JB185’在NaCl 50mmol/L处理时显著上升外,其余处理呈下降趋势,‘JB185’变化介于两亲本之间。(2)不同离子胁迫下,它们叶片相对电解质渗漏率和MDA含量较对照多表现增加趋势,其中‘BB52’和‘JB185’在钠盐(无Cl-)处理下的变化明显大于氯盐(无Na )处理。叶片中游离态和束缚态Put、Spd和Spm含量都较对照明显提高,但‘BB52’和‘JB185’在钠盐(无Cl-)处理下游离态(Spd Spm)/Put比值和束缚态多胺总量为3种盐处理中最低。表明‘JB185’与野生大豆‘BB52’种群一样对Na 敏感而对Cl-表现较强的耐性。  相似文献   

20.
Exogenous polyamines enhance copper tolerance of Nymphoides peltatum   总被引:2,自引:0,他引:2  
Wang X  Shi G  Xu Q  Hu J 《Journal of plant physiology》2007,164(8):1062-1070
The protective effects of polyamines (PAs) against copper (Cu) toxicity were investigated in the leaves of Nymphoides peltatum. Cu treatment increased the putrescine (Put) level and lowered spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put ratio in leaves. Exogenous application of Spd or Spm markedly reversed these Cu-induced effects for all three PAs and partially restored the (Spd+Spm)/Put ratio in leaves. It also significantly enhanced the level of proline, retarded the loss of soluble protein, decreased the rate of O2*- generation and H2O2 content, and prevented Cu-induced lipid peroxidation. Furthermore, exogenous Spd and Spm reduced the accumulation of Cu and effectively maintained the balance of nutrient elements in plant leaves under Cu stress. These results suggest that exogenous application of Spd or Spm can enhance the tolerance of N. peltatum to Cu by increasing the levels of endogenous Spd and Spm as well as the (Spd+Spm)/Put ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号