首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the tropical rainforests of northern Australia, we investigated the effects of habitat fragmentation and ecological parameters on the prevalence of blood-borne parasites (Plasmodium and Haemoproteus) in bird communities. Using mist-nets on forest edges and interiors, we sampled bird communities across six study sites: 3 large fragments (20–85 ha) and 3 continuous-forest sites. From 335 mist-net captures, we recorded 28 bird species and screened 299 bird samples with PCR to amplify and detect target DNA. Of the 28 bird species sampled, 19 were infected with Plasmodium and/or Haemoproteus and 9 species were without infection. Over one third of screened birds (99 individuals) were positive for Haemoproteus and/or Plasmodium. In forest fragments, bird capture rates were significantly higher than in continuous forests, but bird species richness did not differ. Unexpectedly, we found that the prevalence of the dominant haemosporidian infection, Haemoproteus, was significantly higher in continuous forest than in habitat fragments. Further, we found that ecological traits such as diet, foraging height, habitat specialisation and distributional ranges were significantly associated with blood-borne infections.  相似文献   

2.
3.
四川山鹧鸪Arborophila rufipectus是我国特有珍稀鸟类,国家Ⅰ级重点保护野生动物,世界自然保护联盟濒危物种。应用3S技术制作其栖息地分布和保护区位置图层,并对栖息地破碎化情况和受保护状况进行分析。结果表明,无论现实栖息地还是潜在栖息地,破碎化程度都高;部分栖息地斑块相互邻接,具备连通的可能性;分布区内初步形成的保护区网络还需完善。文末提出了景观保护的建议。  相似文献   

4.
Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km2 of forest habitat was found to be only 21,290 km2. After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (F ST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status to corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost.  相似文献   

5.
Although habitat fragmentation is one of the greatest threats to biodiversity worldwide, virtually no attention has been paid to the quantification of error in fragmentation statistics. Landscape pattern indices (LPIs), such as mean patch size and number of patches, are routinely used to quantify fragmentation and are often calculated using remote-sensing imagery that has been classified into different land-cover classes. No classified map is ever completely correct, so we asked if different maps with similar misclassification rates could result in widely different errors in pattern indices. We simulated landscapes with varying proportions of habitat and clumpiness (autocorrelation) and then simulated classification errors on the same maps. We simulated higher misclassification at patch edges (as is often observed), and then used a smoothing algorithm routinely used on images to correct salt-and-pepper classification error. We determined how well classification errors (and smoothing) corresponded to errors seen in four pattern indices. Maps with low misclassification rates often yielded errors in LPIs of much larger magnitude and substantial variability. Although smoothing usually improved classification error, it sometimes increased LPI error and reversed the direction of error in LPIs introduced by misclassification. Our results show that classification error is not always a good predictor of errors in LPIs, and some types of image postprocessing (for example, smoothing) might result in the underestimation of habitat fragmentation. Furthermore, our results suggest that there is potential for large errors in nearly every landscape pattern analysis ever published, because virtually none quantify the errors in LPIs themselves.  相似文献   

6.
G Hu  J Wu  KJ Feeley  G Xu  M Yu 《PloS one》2012,7(8):e43894
Few studies have focused explicitly on the later stages of the fragmentation process, or "late-stage fragmentation", during which habitat area and patch number decrease simultaneously. This lack of attention is despite the fact that many of the anthropogenically fragmented habitats around the world are, or soon will be, in late-stage fragmentation. Understanding the ecological processes and patterns that occur in late-stage fragmentation is critical to protect the species richness in these fragments. We investigated plant species composition on 152 islands in the Thousand Island Lake, China. A random sampling method was used to create simulated fragmented landscapes with different total habitat areas and numbers of patches mimicking the process of late-stage fragmentation. The response of the landscape-scale species-area relationship (LSAR) to fragmentation per se was investigated, and the contribution of inter-specific differences in the responses to late-stage fragmentation was tested. We found that the loss of species at small areas was compensated for by the effects of fragmentation per se, i.e., there were weak area effects on species richness in landscapes due to many patches with irregular shapes and high variation in size. The study also illustrated the importance of inter-specific differences for responses to fragmentation in that the LSARs of rare and common species were differently influenced by the effects of fragmentation per se. In conclusion, our analyses at the landscape scale demonstrate the significant influences of fragmentation per se on area effects and the importance of inter-specific differences for responses to fragmentation in late-stage fragmentation. These findings add to our understanding of the effects of habitat fragmentation on species diversity.  相似文献   

7.
The loss and fragmentation of habitat is a major threat to the continued survival of many species. We argue that, by including spatial processes in restoration management plans, the effects of habitat loss and fragmentation can be offset. Yet few management plans take into account spatial effects of habitat conservation/restoration despite the importance of spatial dynamics in species conservation and recovery plans. Tilman et al. (1997) found a “restoration lag” in simulations of species restoration when randomly selecting habitat for restoration. Other studies have suggested that the placement of restored habitat can overcome effects of habitat loss and fragmentation. Here we report the findings of simulations that examine different regional management strategies, focusing on habitat selection. We find that nonrandom restoration practices such as restoring only habitat that is adjacent to those occupied by the target species can dramatically reduce or negate any restoration lag. In fact, we find that the increase in patch occupancy of the landscape can be greater than two-fold in the adjacent versus the random scenarios after only two restoration events, and this increase can be as great as six-fold during the early restoration phase. Many restoration efforts have limitations on both funds and available sites for restoration, necessitating high potential success on any restoration efforts. The incorporation of spatial analyses in restoration management may drastically improve a species' chance of recovery. Therefore, general principles that incorporate spatial processes and sensible management are needed to guide specific restoration efforts.  相似文献   

8.
Habitat Fragmentation and Burying Beetle Abundance and Success   总被引:4,自引:2,他引:2  
Four species of burying beetle (Nicrophorus marginatus F., N. tomentosus Weber, N. orbicollis Say and N. defodiens Mannerheim) are attracted to small, fresh mouse carcasses in northern Michigan. The number of burying beetles and their success (burial of a carcass) were greater in woodlands than in edge or field habitats. Species diversity was least in open fields as assessed by two different indices of diversity. Nicrophorus marginatus was the only species captured in large fields (<25ha). This species was never trapped in small fields (>5ha) suggesting that a minimum habitat size might be necessary to maintain local populations. In contrast to previous studies which employed pitfall traps baited with a large quantity of carrion, N. tomentosus was caught exclusively in woodlands at single mouse carcasses. In Connecticut woodlands, burying beetle success, assayed as the proportion of carcasses buried and held for 7 days, was significantly greater in larger as compared to smaller woodlands. The limited success of burying beetles in smaller woodlands was due, in part, to a higher rate of scavenging by vertebrates.  相似文献   

9.
Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF) during urbanization. The objectives of this study were two-fold: 1) to quantify the different forms of the HLHF relationship during urbanization using multiple landscape metrics, and 2) to test the validity of the HLHF relations reported in the literature. Our analysis was based on a long-term urbanization dataset (1800–2000) of 16 large cities from around the world. Habitat area was represented as the percentage of non-built-up area in the landscape, while habitat fragmentation was measured using several landscape metrics. Our results show that the relationship between habitat loss and habitat fragmentation during urbanization is commonly monotonic—linear, exponential, or logarithmic, indicating that the degree of habitat fragmentation per se increases with habitat loss in general. We compared our results with 14 hypothesized HLHF relationships based on simulated landscapes found in the literature, and found that four of them were consistent with those of urbanization, whereas the other ten were not. Also, we identified six new HLHF relationships when fragmentation was measured by total core area, normalized total core area, patch density, edge density and landscape shape index, respectively. In addition, our study demonstrated that the “space-for-time” approach, frequently used in ecology and geography, generated specious HLHF relationships, suggesting that this approach is largely inappropriate for analyses of urban landscapes that are highly heterogeneous in space and unusually contingent in dynamics. Our results show both generalities and idiosyncrasies of the HLHF relationship, providing new insights for assessing ecological effects of urbanization.  相似文献   

10.
The presence of multiple interacting threats to biodiversity and the increasing rate of species extinction make it critical to prioritize management efforts on species and communities that maximize conservation success. We implemented a multi-step approach that coupled vulnerability assessments evaluating threats to Florida taxa such as climate change, sea-level rise, and habitat fragmentation with in-depth literature surveys of taxon-specific ecological traits. The vulnerability, adaptive capacity, and ecological traits of 12 threatened and endangered subspecies were compared to non-listed subspecies of the same parent species. Overall, the threatened and endangered subspecies showed high vulnerability and low adaptive capacity, in particular to sea level rise and habitat fragmentation. They also exhibited larger home ranges and greater dispersal limitation compared to non-endangered subspecies, which may inhibit their ability to track changing climate in fragmented landscapes. There was evidence for lower reproductive capacity in some of the threatened or endangered taxa, but not for most. Taxa located in the Florida Keys or in other low coastal areas were most vulnerable to sea level rise, and also showed low levels of adaptive capacity, indicating they may have a lower probability of conservation success. Our analysis of at-risk subspecies and closely related non-endangered subspecies demonstrates that ecological traits help to explain observed differences in vulnerability and adaptive capacity. This study points to the importance of assessing the relative contributions of multiple threats and evaluating conservation value at the species (or subspecies) level when resources are limited and several factors affect conservation success.  相似文献   

11.
The yellowhead, a forest-dwelling passerine endemic to the South Island of New Zealand, has declined in both abundance and range since the arrival of European settlers last century. In the last 30 years it has all but disappeared from the northern half of the South Island but remains widespread in the south. One possible explanation is that the yellowhead has declined in abundance throughout its range, disappearing from less suitable habitats in which it was never very abundant. To test this hypothesis a habitat suitability index was constructed and northern and southern forests compared. Yellowheads appear to be tall forest specialists and are most common in tall red beech dominated forests at low altitude on flat valley floors. No evidence was found that forests in the northern South Island are any less suitable for yellowheads than those in the south. Other explanations for the decline of yellowheads in the north of their range are discussed.  相似文献   

12.

Background

The metacommunity framework is crucial to the study of functional relations along environmental gradients. Changes in resource grain associated with increasing habitat fragmentation should generate uncoupled responses of interacting species with contrasted dispersal abilities.

Methodology/Principal Findings

Here we tested whether the intensity of parasitism was modified by increasing habitat fragmentation in the well know predator-prey system linking the parasitoid Cotesia glomerata (Hymenoptera: Braconidae) to its main host Pieris brassicae (Lepidoptera: Pieridae). We collected information on herbivorous abundance and parasitism rate along an urbanization gradient from the periphery to the centre of Paris. We showed that butterfly densities were not influenced by habitat fragmentation, whereas parasitism rate sharply decreased along this gradient.

Conclusions/Significance

Our results provide novel insights into the mechanisms underlying the persistence of species in highly fragmented areas. They suggest that differential dispersal abilities could alter functional relationships between prey and predator, notably by a lack of natural predators.  相似文献   

13.
论自然保护与资源开发的策略   总被引:7,自引:0,他引:7  
物种保护的根本途径是保护其生境,生境的完整性遭到破坏则物种将趋于灭绝[1,2]。不少国家的政府及非政府组织正投入巨资设置保护区试图将至少部分生物多样性资源加以永久保存[3],但这些目标的达到往往是基于如下假设:即保护区将不受干扰、原封不动的加以保存并与经济活动及周围环境难以达成任何形式的妥协。然而越来越多的证据表明,在全球范围遭受人类干扰的背景下无论是保护区内还是保护区外的生境均将趋于退化,因此现行建立保护区的模式并不能有效阻止生物多样性灾难性的损失[4]。特别对于发展中国家,人口、资源、环境的…  相似文献   

14.
Abstract Lynx (Lynx canadensis) occur in the northern counties of Washington state, USA; however, current distribution and status of lynx in Washington is poorly understood. During winters 2002–2004 we snow-tracked lynx for 155 km within a 211-km2 area in northern Washington, to develop a model of lynx-habitat relationships that we could use to assess their potential distribution and status in the state. We recorded movements and behaviors of lynx with a Global Positioning System and overlaid digitized lynx trails on various habitat layers using a Geographic Information System. Based on univariate analyses, lynx preferred Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests, with moderate canopy and understory cover, and elevations ranging from 1,525 m to 1,829 m but avoided Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) forests, openings, recent burns, open canopy and understory cover, and steep slopes. A map of suitable lynx habitat based on a logistic regression model built using these candidate variables revealed that habitats at elevations >1,400 m where lynx historically occurred in Washington are intersected and fragmented by landscape features and forest conditions that are generally avoided by lynx. Our habitat suitability map predicts 3,800 km2 of lynx habitat in Washington that could support 87 lynx, far fewer than previous estimates. Since 1985, natural fires have burned >1,000 km2 of forested habitat in Okanogan County, the only region in Washington where lynx occurrence has been documented during that period. Loss of suitable habitat from natural and human-caused disturbances, and the lack of verifiable evidence of lynx occurrence in historic lynx range, suggests that fragmented landscape conditions may have impeded recolonization of these areas by lynx. Consequently, translocations may be necessary to ensure lynx persistence in Washington. We suggest that managers assess the potential for translocation by first identifying the scale and distribution of potential foraging habitats for lynx based on our or similar habitat models, survey various habitat conditions to obtain reliable estimates of snowshoe hare densities, and identify a genetically compatible source population of lynx. If habitat and source populations are adequate, reintroducing lynx to areas of their historic range may be an appropriate conservation strategy.  相似文献   

15.
Levins's unstructured metapopulation model predicts that the equilibrium fraction of empty habitat patches is a constant function of the fractionhof suitable patches in the landscape and that this constant equals the threshold value for metapopulation persistence. Levins's model thus suggests that the minimum amount of suitable habitat necessary for metapopulation persistence can be estimated from the fraction of empty patches at steady state. In this paper we construct several more realistic structured metapopulation models that include variation in patch quality and the rescue effect. These models predict both positive and negative correlations between the fractions of suitable patches and empty patches. The type of correlation depends in an intricate manner on the strength of the rescue effect and on the quality distribution of the patches to be destroyed. Empty patches can be considered as the resource limiting metapopulation growth. Our results demonstrate that the correlation between the fractions of suitable patches and empty patches is positive if and only if the average value of the resource decreases as the number of patches increases.  相似文献   

16.
Upland salt marsh vegetation is particularly prone to habitat fragmentation and nutrient run-off due to coastal development and nearby agriculture. By examining how communities of sap-feeding insects respond to natural variation in plant-patch size and an experimental nutrient addition we explored how species with particular life history traits (e.g. dispersal ability and over-wintering style) might be used to indicate the effects of habitat fragmentation (patch area) and nitrogen subsidies on food webs. Sap-feeders that were superior dispersers or over-wintered in concealed microhabitats persisted well in small patch sizes. In contrast, species that were both immobile and over-wintered in exposed stages were more sensitive to decreasing patch size. Furthermore, mobile sap-feeders colonized and established populations on nitrogen-subsidized patches more rapidly than less mobile taxa. Thus, patterns in community composition (mobile vs. sedentary sap-feeders) can be used as key indicators of both habitat fragmentation and allochthanous nitrogen subsidies. Both patch size and nutrient subsidy altered trophic structure with a higher predator to herbivore ratio occurring in small compared to large patches and in control compared to nitrogen-subsidized habitats where herbivore outbreaks occurred. Our data suggest that conserving large habitat patches and minimizing nitrogen input is critical for maintaining sap-feeder diversity and preserving food-web structure.  相似文献   

17.
Through four spatially explicit models, we investigate how habitat fragmentation affects cyclic predator–prey population dynamics. We use a Partial Differential Equation (PDE) framework to describe the dispersal of predators and prey in a heterogeneous landscape made of high quality and low quality habitat patches, subject to increasing fragmentation through habitat separation and/or habitat loss. Our results show that habitat fragmentation decreases the amplitude of the predator–prey population cycles while average population density is not as strongly affected in general. Beyond these simple trends however, the four models show differing responses to fragmentation, indicating that when making predictions about population survival and persistence in the face of habitat fragmentation, the choice of model is important. Our results may inform conservation efforts in fragmented habitats for cyclic species such as the snowshoe hare and Canada lynx. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorised users.  相似文献   

18.
袁敬  林箐 《生物信息学》2018,25(5):12-20
乡村景观特征主要表现为乡村景观要素的形态、空间特点,以及它们之间的相互关系。多元化乡村景观特征具有文化、景观与生态等价值。工业化、城镇化导致传统乡村景观衰败及消失,并引发景观特征减少、多样性降低。乡村景观特征的保护与更新是乡村景观可持续发展的关键。本文对乡村景观规划建设中乡村景观特征的保护与更新进行探讨,包括内容、范畴以及具体措施和技术要点,以期对我国乡村景观的可持续发展以及乡村规划体系建设有所启示。  相似文献   

19.
20.
Species distribution and endangerment can be assessed by habitat-suitability modelling. This study addresses methodical aspects of habitat suitability modelling and includes an application example in actual species conservation and landscape planning. Models using species presence-absence data are preferable to presence-only models. In contrast to species presence data, absences are rarely recorded. Therefore, many studies generate pseudo-absence data for modelling. However, in this study model quality was higher with null samples collected in the field. Next to species data the choice of landscape data is crucial for suitability modelling. Landscape data with high resolution and ecological relevance for the study species improve model reliability and quality for small elusive mammals like Muscardinus avellanarius. For large scale assessment of species distribution, models with low-detailed data are sufficient. For regional site-specific conservation issues like a conflict-free site for new wind turbines, high-detailed regional models are needed. Even though the overlap with optimally suitable habitat for M. avellanarius was low, the installation of wind plants can pose a threat due to habitat loss and fragmentation. To conclude, modellers should clearly state the purpose of their models and choose the according level of detail for species and environmental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号