首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integration of optimal foraging and optimal oviposition theories suggests that predator females should adjust patch leaving to own and progeny prey needs to maximize current and future reproductive success. We tested this hypothesis in the predatory mite Phytoseiulus persimilis and its patchily distributed prey, the two-spotted spider mite Tetranychus urticae. In three separate experiments we assessed (1) the minimum number of prey needed to complete juvenile development, (2) the minimum number of prey needed to produce an egg, and (3) the ratio between eggs laid and spider mites left when a gravid P. persimilis female leaves a patch. Experiments (1) and (2) were the pre-requirements to assess the fitness costs associated with staying or leaving a prey patch. Immature P. persimilis needed at least 7 and on average 14±3.6 (SD) T. urticae eggs to reach adulthood. Gravid females needed at least 5 and on average 8.5±3.1 (SD) T. urticae eggs to produce an egg. Most females left the initial patch before spider mite extinction, leaving prey for progeny to develop to adulthood. Females placed in a low density patch left 5.6±6.1 (SD) eggs per egg laid, whereas those placed in a high density patch left 15.8±13.7 (SD) eggs per egg laid. The three experiments in concert suggest that gravid P. persimilis females are able to balance the trade off between optimal foraging and optimal oviposition and adjust patch-leaving to own and progeny prey needs.  相似文献   

2.
Predation and oviposition by three predacious insects [ Scolothrips takahashii Priesner (Thysanoptera: Thripidae), Stethorus japonicus H. Kamiya (Coleoptera: Coccinellidae), and Oligota kashmirica benefica Naomi (Coleoptera: Staphylinidae)] were examined using egg patches of three spider mite species [ Amphitetranychus viennensis (Zacher), Tetranychus urticae Koch, and Panonychus mori Yokoyama (all Acari: Tetranychidae)] that are pest species on Japanese pear [ Pyrus serotina Rehder (Rosaceae)]. Scolothrips takahashii females consumed more prey and laid more eggs in A. viennensis and T. urticae egg patches than in P. mori egg patches. Females also left P. mori egg patches sooner than they left other egg patches even at high prey density. Predation and oviposition of S. takahashii in a prey patch were greatly enhanced by the complicated webs produced by A. viennensis . Stethorus japonicus females consumed significantly more prey and laid more eggs in A. viennensis egg patches than in P. mori egg patches, with intermediate values in T. urticae egg patches, reflecting the quality of each spider mite species as prey. Oligota kashmirica benefica females consumed more prey and laid more eggs in A. viennensis and T. urticae egg patches than in P. mori egg patches, particularly at high prey density. However, predation and oviposition by O. kashmirica benefica increased greatly with increasing prey density, even in P. mori egg patches, indicating that prey density was the most important factor in predation and oviposition by this species. These results are discussed in relation to the potential effect of each predator on the suppression of different spider mite species on Japanese pear.  相似文献   

3.
In egg‐laying animals with no post‐oviposition parental care, between‐ or within‐patch oviposition site selection can determine offspring survival. However, despite the accumulation of evidence supporting the substantial impact predators have on oviposition site selection, few studies have examined whether oviposition site shift within patches (“micro‐oviposition shift”) reduces predation risk to offspring. The benefits of prey micro‐oviposition shift are underestimated in environments where predators cannot disperse from prey patches. In this study, we examined micro‐oviposition shift by the herbivorous mite Tetranychus kanzawai in response to the predatory mite, Neoseiulus womersleyi, by testing its effects on predator patch exploitation in situations where predatory mites were free to disperse from prey patches. Adult T. kanzawai females construct three‐dimensional webs on leaf surfaces and usually lay eggs under the webs; however, females that have experienced predation risks, shift oviposition sites onto the webs even in the absence of current predation risks. We compared the predation of eggs on webs deposited by predator‐experienced females with those on leaf surfaces. Predatory mites left prey patches with more eggs unpredated when higher proportions of prey eggs were located on webs, and egg survival on webs was much higher than that on leaf surfaces. These results indicate that a micro‐oviposition shift by predator‐experienced T. kanzawai protects offspring from predation, suggesting adaptive learning and subsociality in this species. Conversely, fecundity and longevity of predator‐experienced T. kanzawai females were not reduced compared to those of predator‐naïve females; we could not detect any costs associated with the learned micro‐oviposition shift. Moreover, the previously experienced predation risks did not promote between‐patch dispersal of T. kanzawai females against subsequently encountered predators. Based on these results, the relationships of between‐patch oviposition site selection and micro‐oviposition shift are discussed.  相似文献   

4.
Adult ladybirds are likely to encounter various species of prey when foraging for oviposition sites. Optimal oviposition theory predicts that females should lay eggs in those sites that are the most suitable for offspring development. Therefore, factors that directly affect offspring mortality, such as the presence of predators and food, are expected to play an important role in the assessment of patch profitability by ladybird predators. Using a Y‐tube olfactometer, we tested whether the predatory ladybird Cycloneda sanguinea L. (Coleoptera: Coccinellidae) can use volatile cues to assess patch profitability and avoid predator‐rich patches. We assessed the foraging behaviour of C. sanguinea in response to odours associated with tomato plants infested with a superior prey, Macrosiphum euphorbiae Thomas (Homoptera: Aphididae), and with an inferior prey, Tetranychus evansi Baker and Pritchard (Acari: Tetranychidae), in the presence or absence of the heterospecific predator Eriopis connexa Mulsant (Coleoptera: Coccinellidae). Females of C. sanguinea significantly preferred plants infested by M. euphorbiae to plants infested by T. evansi and avoided odours emanating from plants on which E. connexa females were present. Our results show that C. sanguinea use volatile cues to assess patch profitability and to avoid patches with heterospecific competitors or intraguild predators.  相似文献   

5.
The effects and persistence of oviposition-deterring semiochemical cues from conspecific and heterospecific larval tracks on the oviposition rate of Aphidecta obliterata (Linnaeus) females were investigated. In addition, the effects of varying aphid prey density were considered and also whether any resulting response originated from differential nutritional status of females and/or due to aphid odour stimuli. The existence of oviposition responses to conspecific egg chemicals was also considered. Gravid A. obliterata females were deterred from oviposition by conspecific larval tracks and the effect was density dependent. Females actively avoided searching in these contaminated areas. Tracks induced a significant effect on oviposition for up to three days. Heterospecific tracks of the coccinellid Adalia bipunctata (Fabricius) or the chrysopid Chrysoperla carnea (Stephens) did not induce any oviposition response in A. obliterata females. Increasing aphid density induced increased oviposition rate in A. obliterata females. Nutritional status of females was an important factor in the relationship between aphid density and oviposition rate, but aphid associated cues (odours) were not. There was an inhibitory effect of extracts of conspecific egg-surface chemicals on oviposition by A. obliterata females. In the field, cannibalism, competition and limited food availability represent the major threats to egg and larval survival. Patch quality assessment mechanisms enable females to lay eggs at sites where offspring survival is maximized. Oviposition-deterring semiochemicals tend to promote more even distribution of predators over prey patches.  相似文献   

6.
The number of mature eggs remaining in the ovaries and the time left for oviposition determine the reproductive decisions of the hyperdiverse guild of insects that require discrete and potentially limiting resources for oviposition (such as seeds, fruits or other insects). A female may run out of eggs before all available oviposition sites are used (egg limitation), or die before using all of her eggs (time limitation). Females are predicted to change clutch size depending on whether eggs or time is the limiting resource. We extend this framework and ask whether the same constraints influence a strategy in which females modify eggs into protective shields. In response to egg parasitism cues, female seed beetles (Mimosestes amicus) lay eggs in vertical groups of 2–4, modifying the top 1–3 eggs into shields in order to protect the bottom egg from attack by parasitoids. We made contrasting predictions of how egg and time limitation would influence egg size and the incidence and level of egg protection. By varying access to seed pods, we manipulated the number of remaining eggs a female had at the time she received a parasitism cue. Although egg size was not affected, our results confirm that egg‐limited females protected fewer eggs and time‐limited females protected more eggs. Female body size explained the number of eggs in a stack rather than host deprivation or the timing of parasitoid exposure. Our results clearly show that host availability relative to female age influences the incidence of egg protection in M. amicus. Furthermore, our study represents a novel use of life history theory to explain patterns in an unusual but compelling defensive behaviour.  相似文献   

7.
To prevent predation on their eggs, prey often avoid patches occupied by predators. As a result, they need to delay oviposition until they reach predator-free patches. Because many species allocate energy to egg production in a continuous fashion, it is not clear what kind of mechanism prey use to delay oviposition. We used females of the phytoseiid mite Neoseiulus cucumeris to study these mechanisms. Females were placed in patches with pollen, a food source they use for egg production, and they were exposed to another phytoseiid mite, Iphiseius degenerans, which is an intraguild predator of N. cucumeris juveniles. We found that the oviposition of N. cucumeris females on patches with the predator was lower than on patches without the predator. Cues left by the intraguild predator were not sufficient to elicit such behaviour. Females of N. cucumeris reduced oviposition when exposed to the predator by retaining the egg inside their body, resulting in a lower developmental rate once these eggs were laid. Hence, females are capable of retaining eggs, but the development of these eggs continues inside the mother’s body. In this way, females gain some time to search for less risky oviposition sites.  相似文献   

8.
Abstract. In some insects, the finding of oviposition substrate triggers the uptake into oocytes of yolk proteins that are stored in the fat body during post‐embryonic development. The main host of the bean weevil Zabrotes subfasciatus (Coleoptera; Chrysomelidae; Bruchinae; Amblycerini), in which larval resources are the sole source for future egg maturation, is Phaseolus vulgaris. Despite not feeding as adults, females of this species are able to lay eggs after encountering host seeds but it is not known how females react to changes in the availability of bean seeds. In the present study, the behaviour of Z. subfasciatus facing two very different environments for oviposition is investigated, as well as how this influences offspring fitness. The results obtained show that females of Z. subfasciatus react to variations in the availability of seeds belonging to the same host species by adjusting egg size and number. Females on low bean seed density lay larger and fewer eggs than those on high bean seed density, demonstrating a trade‐off between these reproductive traits. Moreover, females can adjust egg size to changing levels of host availability during the first 4 days of their oviposition period. Although no difference in offspring weight is found, those from small eggs (low competition environment) result in larger adults. No response to selection on these traits after rearing beetles on the same host for 40 generations is observed. This unresponsiveness may indicate that beetle populations behave according to their reaction norm that already allows rapid adaptation to a varying amount of host‐seed availability and better exploitation of the environments of this widespread stored‐seed pest.  相似文献   

9.
Many parasitic and endophagous insect species are capable of discriminating among the quality of their hosts. However, there is no appropriate way to quantify their discrimination performance. In this study, we quantified how oviposition of the cowpea seed beetle, Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae), was affected by the relative contributions of both egg number and host size discrimination. The effect of egg density and resource heterogeneity on these discrimination performances was also explored. Egg‐distribution predictions were made by combining time‐dependent available resource fitness (egg discrimination) and host weight factors (size discrimination). The χ2 test was then used for goodness‐of‐fit testing. The effects of both egg and size discrimination on oviposition in environments with different levels of resource heterogeneity were compared. It was found that host size, rather than the number of eggs on the host, plays a larger role in the egg‐laying decision for most individual seed beetles, especially when egg density is high. Host size discrimination behavior was reinforced when the beetles experienced increasing resource heterogeneity, but the performance might reach a plateau. This is the first quantitative evaluation of the effect of host discrimination on egg‐laying decisions of seed beetles.  相似文献   

10.
The effects of patch quality on the foraging behaviour of an anthocorid predator Orius sauteri (Poppius) were compared between sexes. Prior experience in patches was also studied to determine whether this was a factor affecting oviposition decisions. Patch quality affected patch residence time differently for the two sexes; females stayed much longer in a patch with prey (60 Thrips palmi larvae) than a patch without prey, while males did not remain in any patch for extended periods. Most of the females remained in or moved to patches with prey, whereas males dispersed, irrespective of patch quality. Both females released in patches with prey and females released in patches without prey deposited more eggs per hour in patches with prey than in patches without prey. Females released in patches without prey laid eggs in patches with prey at higher rates than did females released in patches with prey. Causes for the sex difference in patch residence time and allocation are discussed in relation to optimal foraging theory. The significance of selective oviposition and the role of experience in oviposition decisions within heterogeneous environments are also discussed.  相似文献   

11.
Most terrestrial plants are associated with arbuscular mycorrhizal fungi but research on the effects of arbuscular mycorrhizal symbiosis on aboveground plant‐associated organisms is scarcely expanded to tri‐trophic systems. The arbuscular mycorrhizal fungus Glomus mosseae Nicol. & Gerd. enhances fitness of the two‐spotted spider mite Tetranychus urticae Koch and its natural enemy, the predatory mite Phytoseiulus persimilis Athias‐Henriot, via changes in host plant and prey quality, respectively. In the present study, it is hypothesized that gravid P. persimilis are able to recognize arbuscular mycorrhiza‐enhanced prey quality and behave accordingly. In two experiments, on leaf arenas and in cages, P. persimilis is given a choice between prey patches deriving from mycorrhizal and non‐mycorrhizal bean plants (Phaseolus vulgaris L.) as feeding and oviposition sites. The use of cages allows the manipulation of distinct patch components acting as possible cues to guide predator foraging and oviposition behaviours, such as eggs produced and traces (webbing and faeces) left by the spider mite females. Both experiments show that P. persimilis preferentially resides close to prey fed on mycorrhizal plants. The cage experiment reveals that P. persimilis uses direct prey‐related cues, mainly derived from eggs, to discern prey quality and preferentially oviposits close to prey from mycorrhizal plants. This is the first study to document that predators recognize arbuscular mycorrhiza‐induced changes in herbivorous prey quality via direct prey‐related cues.  相似文献   

12.
We studied egg production and the occurrence of adaptive superparasitism in Anaphes nitens, an egg parasitoid of the Eucalyptus snout beetle Gonipterus scutellatus. First, we determined whether A. nitens females were synovigenic or pro‐ovigenic. Newly emerged females were allowed to lay eggs alone during 3 days on six fresh egg capsules. A first group of females (n = 25) were killed by freezing and the remaining females (n = 21) were maintained during two extra days with food, but without hosts. Their fecundity was measured by dissection of host eggs and females’ ovarioles. We found that the second group of females increased their fecundity by about 20%, suggesting they were weakly synovigenic. To test for the occurrence of adaptive superparasitism in relation to competitors’ density, we compared the oviposition behaviour of females kept alone, in pairs, or in groups of four during patch visit. Results indicated that the females superparasited significantly more often in this last treatment. Synovigeny and the ability to modulate the use of superparasitism could be mentioned as important attributes that allow A. nitens to efficiently control the pest population.  相似文献   

13.
Abstract

Several factors were examined to determine their effect on the reproduction and sex ratio in the predacious mite Amblyseius deleoni (Muma and Denmark), in the laboratory. The factors investigated included multiple matings, duration of copulation, capacity of male for mating in excess of females and age of mating females and males. The factors included also, the host plant leaf texture, food deprivation during immature and adult stages, and prey (Tetranychus urticae Koch) density. The results indicated that females of A. deleoni require multiple matings to maximize their reproductive potential, also when copulation was allowed for increasing periods of time, there was a gradual increase in total egg production and oviposition period. A male showed a high reproductive ability for more than 15 days and was able to mate more than once in excess of females. Age of females has an influence on fecundity and sex ratio; old females decreased egg production and produced proportionally more male progeny compared with young females. Similarly, the highest number of eggs deposited per female A. deleoni was reported, when female mated with a young male (0-day old). In addition, males of A. deleoni (at any age) were able to inseminate the females. Results from host plant leaf texture indicated that guava leaf gave the highest reproduction rate, while the fig leaf gave the least female fecundity. Neither the reproductive rate nor the sex ratio of the progeny of females crossed by normal or experimental males had been influenced by the food deprivation during immature stages. A significant lower fecundity was recorded on female's A. deleoni when exposed to different food deprivation programmes during adult stage. The number of eggs laid by the predator female increased with increasing prey density of T. urtice to a maximum of 2.04 eggs deposited per day at a prey density of 30 protonymphs of T. urticae as a prey. As the level of prey density was increased, there was a shift in sex ratio towards an increased proportion of females.  相似文献   

14.
According to foraging theory, female parasitoids should alter their host choice in response to cues that indicate a limitation of resources. We tested whether females of the polyembryonic parasitoid Ageniaspis fuscicollis (Hymenoptera: Encyrtidae), which attack egg batches of small ermine moths (Lepidoptera: Yponomeutidae), would alter their host acceptance pattern in response to different pre‐patch experience. We kept females of the parasitoid prior to a patch visit under different conditions, which should indicate different levels of competition for hosts. With increased competition as pre‐patch experience, females laid more eggs per host egg and self‐superparasitized more often, and the resultant egg distributions showed a trend from more regular distributions to increasingly Poisson and aggregated distributions. Consequently, females with a pre‐patch experience that would indicate low competition for hosts had the most even egg distributions. We conclude that pre‐patch experience of competitors may lead to a significant change of mutual interference patterns in egg‐laying A. fuscicollis wasps.  相似文献   

15.
Abstract:  Life history parameters tend to differ between aphidophagous and coccidophagous ladybird beetles. It seems that the nature of prey, in particular the abundance, number and size of the colonies and their spatial distribution, may have been selected for the evolution of the life histories in these two groups of coccinellids, leading the aphidophagous ladybird beetles to develop at a fast pace and the coccidophagous beetles at a slower pace. To study the abundance, number and size of the colonies and the spatial distribution of aphid and coccid species, 100 sampling plots regularly spaced along four parallel transects were surveyed in the summer of 2004. At each sampling plot, species abundance, and the number and size of colonies of aphid and coccid species were recorded. Iwao's patchiness regression was used to assess the spatial distribution of aphids and coccids. From this study, it was found that coccids are much rarer than aphids but formed more colonies. Whereas aphids display a stonger tendency to crowding, aphid colonies are randomly distributed in space while coccid groups are aggregated. So, it seems that the abundance and spatial distribution of prey distribution may be factors selecting for the evolution of different life histories among aphidophagous and coccidophagous ladybird beetles.  相似文献   

16.
Reproductive opportunities in insects that deposit their eggs in discrete resource patches are frequently limited because the availability of oviposition substrates is often spatially and temporally restricted. Such environmental variability leads individuals to confront time‐ or egg‐limitation constraints. Additionally, species with different oviposition strategies (i.e. single egg layers vs clutch layers) commonly deal with different structural and ecological characteristics of larval host plants. To test the hypothesis that oviposition strategies such as laying eggs singly or in batches (clutches) are related to these constraints (i.e. egg vs time limitation), we compared the lifetime oviposition patterns of two closely related sympatric species of Anastrepha (Diptera: Tephritidae) with different oviposition strategies. We exposed five cohorts of A. obliqua and A. ludens females, over the course of their adult lifetimes, to three conditions of “habitat quality” (measured as host density per cage): unpredictable habitat quality (host density varied randomly from day to day between 1, 5, 15, 30 and 60 hosts/cage), low habitat quality (fixed density of one host/cage) and high habitat quality (fixed density of 60 hosts/cage).
Responses to host density conditions were strikingly different in the two species. (1) Frequency of host visits and oviposition events increased in A. obliqua but not in A. ludens when host densities increased. (2) Anastrepha ludens females accepted low quality hosts (i.e. fruits on which eggs had already been laid and were therefore partially covered with host marking pheromone) significantly more often than A. obliqua females did. (3) Females of A. obliqua adjusted their oviposition activity to variations in host density, whereas A. ludens females exhibited a constant oviposition pattern (i.e. did not respond to variations in host density). Based on the above, it is likely that in A. obliqua oviposition is governed by egg‐limitation and in A. ludens by time‐limitation constraints. We discuss the relationship between the oviposition strategies of each fly species and the fruiting phenology and density of their native host plants. We also address the possible influence of oogenesis modality and parasitism by braconid wasps in shaping oviposition behaviour in these insects.  相似文献   

17.
To understand better the effects of age on host selection through conspecific egg detection by Anthocharis scolymus females, field observations were performed at a graveyard where the insect population was isolated and the host plant was limited to the cruciferous plant, Turritis glabra. We chased females and recorded their oviposition behaviors and the conditions of plants which females approached. Older females tended to avoid ovipositing on egg-loaded host plants and selectively laid eggs on nonloaded host plants. This result was not confounded by other factors such as seasonality, air temperature, plant height, plant phenological stage, surrounding vegetation, host plant density, and extent of plant damage. We discuss the possibility that females make an oviposition decision on how to lay their limited number of eggs during their remaining lifetime.  相似文献   

18.
Encalada AC  Peckarsky BL 《Oecologia》2006,148(3):526-537
Selective oviposition can have important consequences for recruitment limitation and population dynamics of organisms with complex life cycles. Temporal and spatial variation in oviposition may be driven by environmental or behavioral constraints. The goals of this study were to: (1) develop an empirical model of the substrate characteristics that best explain observed patterns of oviposition by Baetis bicaudatus (Ephemeroptera), whose females lay eggs under rocks protruding from high-elevation streams in western Colorado; and (2) test experimentally selective oviposition of mayfly females. We surveyed the number and physical characteristics of potential oviposition sites, and counted the number and density of egg masses in different streams of one watershed throughout two consecutive flight seasons. Results of surveys showed that variability in the proportion of protruding rocks with egg masses and the density of egg masses per rock were explained primarily by seasonal and annual variation in hydrology, and variation in geomorphology among streams. Moreover, surveys and experiments showed that females preferred to oviposit under relatively large rocks located in places with high splash associated with fast current, which may provide visual, mechanical or both cues to females. Experiments also showed that high densities of egg masses under certain rocks were caused by rock characteristics rather than behavioral aggregation of ovipositing females. While aggregations of egg masses provided no survival advantage, rocks selected by females had lower probabilities of desiccating during egg incubation. Our data suggest that even when protruding rocks are abundant, not all rocks are used as oviposition sites by females, due to female selectivity and to differences in rock availability within seasons, years, or streams depending on variation in climate and hydrogeomorphology. Therefore, specialized oviposition behavior combined with variation in availability of quality oviposition substrata has the potential to limit recruitment of this species.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
Abstract.  1. Herbivory can induce resistance in a plant and the induced phenotype may be disfavoured by subsequent herbivores. Yet, as the distance between plants in a population increases, limited mobility may make a herbivore more likely to feed and oviposit on host plants in its immediate surroundings.
2. The present study tested whether a herbivore's preference and distribution across plants with different induced phenotypes was influenced by the spatial distribution of plants. A fragmented population of Solanum dulcamara plants was created. This consisted of discrete, spatially separated patches with different histories of damage, either herbivory from adult flea beetles ( Psylliodes affinis ), tortoise beetles ( Plagiometriona clavata ), or mechanical damage. Each patch was separated by 7 m and consisted of 12 plants that were spaced 30 cm apart. Then a fixed number of adult tortoise beetles were introduced to each patch, and movement and oviposition within and between spatially separate homogeneous patches (receiving one type of damage) were compared with movement and oviposition within heterogeneous patches (containing all three types of damage) over the growing season.
3. Flea beetle and tortoise beetle herbivory consistently induced different phytochemical responses in S. dulcamara (polyphenol oxidase and peroxidase), and adult tortoise beetles avoided oviposition on the flea beetle induced plants within heterogeneous patches. However, between homogeneous patches, plant phenotype did not influence oviposition. Colonisation by naturally occurring flea beetle adults followed a similar pattern.
4. These results suggest that the heterogeneity of plant phenotypes can influence herbivore choice and distribution at small but not large spatial scales.  相似文献   

20.
We examined the effect of prey (Tetranychus urticae) egg density on leaving rate of the predatory mite, Phytoseiulus persimilis, from leaf disks using predators with different feeding experiences and levels of external volatile cues related to their prey. Predators stayed longer on disks with prey eggs than on those without prey eggs. However, at each prey egg density predators stayed longer in the absence of prey-related volatiles from an external source. Starved predators stayed longer in a prey patch than those that had not experienced starvation. At each prey density, starved P. persimilis consumed a greater proportion of prey eggs than satiated predators. The total prey consumption of starved predators appears to be related to their longer residence time on source disks compared to satiated predators and also the per capita consumption rate was greater for starved predators compared to satiated predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号