首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims Sarcocornia comprises about 28 species of perennial succulent halophytes distributed worldwide, mainly in saline environments of warm-temperate and subtropical regions. The genus is characterized by strongly reduced leaves and flowers, which cause taxonomic difficulties; however, species in the genus show high diversity in growth form, with a mat-forming habit found in coastal salt marshes of all continents. Sarcocornia forms a monophyletic lineage with Salicornia whose species are all annual, yet the relationship between the two genera is poorly understood. This study is aimed at clarifying the phylogenetic relationship between Sarcocornia and Salicornia, interpreting biogeographical and ecological patterns in Sarcocornia, and gaining insights into putative parallel evolution of habit as an adaptation to environmental factors.Methods A comprehensively sampled and dated phylogeny of Sarcocornia is presented based on nuclear ribosomal DNA (external transcribed spacer) and chloroplast DNA (atpB-rbcL, rpl32-trnL) sequences; representative samples of Salicornia were also included in the analyses. To infer biogeographical patterns, an ancestral area reconstruction was conducted.Key Results The Sarcocornia/Salicornia lineage arose during the Mid-Miocene from Eurasian ancestors and diversified into four subclades: the Salicornia clade, the American Sarcocornia clade, the Eurasian Sarcocornia clade and the South African/Australian Sarcocornia clade. Sarcocornia is supported as paraphyletic, with Salicornia nested within Sarcocornia being sister to the American/Eurasian Sarcocornia clade. The American and the South African/Australian Sarcocornia clade as well as the Salicornia clade were reconstructed to be of Eurasian origin. The prostrate, mat-forming habit arose multiple times in Sarcocornia.Conclusions Sarcocornia diversified in salt-laden environments worldwide, repeatedly evolving superficially similar prostrate, mat-forming habits that seem advantageous in stressed environments with prolonged flooding, high tidal movement and frost. Some of these prostrate-habit types might be considered as ecotypes (e.g. S. pacifica or S. pillansii) while others represent good ecospecies (e.g. S. perennis, S. decumbens, S. capensis), hence representing different stages of speciation.  相似文献   

2.
3.
Saline agriculture and the crop cultivation of halophytes represent an alternative for the reclamation of salinized soils and for the management of irrigation water. Halotolerant plant growth promoting bacteria with biocontrol effect, as an alternative to commercial fungicides, may contribute to improve crop productivity while mitigating saline stress effects. The objective of this work was to isolate autochthonous rhizobacteria with biocontrol features, to be used as germination enhancers and plant‐growth promoting agents in the crop cultivation of Salicornia ramosissima. A set of isolates obtained from the rhizosphere of S. ramosissima was characterised in terms of Gram, motility, salt tolerance and biocontrol traits (hydrogen cyanide production, antifungal activity and production of extracellular lipases and proteases). One Gram‐positive motile isolate that tested positive for all biocontrol traits was identified by 16S rRNA gene sequencing as Bacillus aryabhattai. The inoculation of S. ramosissima seeds with B. aryabhattai SP1016‐20 reduced the negative effect of salinity on the germination efficiency. At the highest tested salinity (30 g/L NaCl) the final germination efficiency of inoculated seeds doubled in relation to non‐inoculated controls. Although the mechanisms involved in the biocontrol effect were not defined in the current work, the results highlight the potential of Bacillus aryabhattai SP1016‐20 as a plant‐growth promoting agent for the crop cultivation of Salicornia and contribute to the strengthening of the scientific basis of biosaline agriculture and plant growth promoting rhizobacteria‐assisted crop cultivation of halophytes in saline soils and estuarine sediments.  相似文献   

4.
Macroalgae in estuarine and coastal waters, in contrast to vascular salt marsh plants, have previously been utilised as biomonitors of sediment-held metals. The colonising halophyte Salicornia spp., however, occurs in both mudflats alongside macroalgae, as well as in association with salt marsh vascular plants. The present research aims to determine the relationships between fluctuations in sediment-held metals and those in Salicornia spp. over the course of a growing season. Samples of the species and corresponding underlying sediment were collected from the metal mine-polluted Restronguet Creek of the Fal Estuary, Cornwall on a monthly basis between March and November, 2000. Oven-dried sediment and vegetation samples were analysed for total Fe, Cu, Zn and Mn. Significant correlations with both the roots and aerial portion of the plant were found with sediment Cu and Zn concentrations. Significant relationships with either Mn or Fe were not observed. Thus, Salicornia spp. would appear to be a suitable tool for biomonitoring Zn and, particularly, Cu. Hyperaccumulation of Zn in the aerial portion during initial growth also indicates that Salicornia spp. may be useful for alleviating metal contamination through phytoextraction, whilst Cu in the roots is proposed as having potential for phytostabilization.  相似文献   

5.
Efficient utilization of saline land for food cultivation can increase agricultural productivity and rural income. To obtain information on the salt tolerance/susceptibility of wild chicory (Cichorium intybus L.), the influence of salinity (0–260 mM NaCl) on chicory seed germination and that of two salinity levels of irrigation water (100 and 200 mM NaCl) on plant growth, antioxidative enzyme activity, and accumulation of proline and malondialdehyde (MDA) were investigated. The trials were performed outdoors, in pots placed under a protective glass covering, for two consecutive years. Seeds showed a high capacity to germinate in saline conditions. The use of 100 mM NaCl solution resulted in 81 % germination, whereas seed germinability decreased below 40 % using salt concentrations above 200 mM NaCl. Wild chicory showed tolerance to medium salinity (100 mM NaCl), whereas a drastic reduction in biomass was observed when 200 mM NaCl solution was used for irrigation. MDA, present in higher amounts in leaves than in roots, decreased in both tissues under increasing salinity. Proline content increased remarkably with the level of salt stress, more so in roots than in leaves. In salt stress conditions, the activity of antioxidant enzymes (APX, CAT, POD, SOD) was enhanced. The electrophoretic patterns of the studied enzymes showed that the salinity of irrigation water affected only the intensity of bands, but did not activate new isoforms. Our results suggest that wild chicory is able to grow in soil with moderate salinity by activating antioxidative responses both in roots and leaves.  相似文献   

6.
【目的】了解盐渍土野大豆根瘤菌的多样性,筛选具有耐盐促生作用的菌株,为栽培大豆耐盐菌剂的开发提供菌种资源。【方法】采用传统培养方法从滨海盐渍土野大豆中分离根瘤菌,评价菌株的促生特性,并验证其对野大豆和栽培大豆的促生效果。【结果】从野大豆根和根瘤样品中分离出87株根瘤菌,主要为中华根瘤菌属(Sinorhizobium)、根瘤菌属(Rhizobium)和慢生根瘤菌属(Bradyrhizobium)。测定了24株代表性菌株的促生特性,发现有16株根瘤菌具有产吲哚-3-乙酸(indole-3-acetic acid, IAA)能力,6株能够产生1-氨基环丙烷-1-羧酸(1-amino-cyclopropane-1- carboxylic, ACC)脱氨酶,16株具有溶磷活性,6株能够产生铁载体。根据以上促生特性,选择了11株优良根瘤菌进行野大豆促生和结瘤能力评价,发现美洲中华根瘤菌(Sinorhizobium americanus) DL3的性能优于其他菌株。最后,通过盆栽试验检测了菌株DL3对野大豆和栽培大豆耐盐能力的影响,发现菌株DL3在盐胁迫下能促进野大豆和大豆的生长,同时,降低了叶片脯氨酸水平,缓解了植物的盐胁迫程度。【结论】菌株DL3在提高植物耐盐性方面具有一定的作用,对实现大豆的盐碱地种植具有重要的理论意义和实践价值。  相似文献   

7.
Above-canopy sprinkler irrigation with saline water favours the absorption of salts by wetted leaves and this can cause a yield reduction additional to that which occurs in salt-affected soils. Outdoor pot experiments with both sprinkler and drip irrigation systems were conducted to determine foliar ion accumulation and performance of maize and barley plants exposed to four treatments: nonsaline control (C), salt applied only to the soil (S), salt applied only to the foliage (F) and salt applied to both the soil and to the foliage (F+S). The EC of the saline solution employed for maize in 1993 was 4.2 dS m–1 (30 mM NaCl and 2.8 mM CaCl2) and for barley in 1994, 9.6 dS m–1 (47 mM NaCl and 23.5 mM CaCl2). The soil surface of all pots was covered so that in the F treatment the soil was not salinized by the saline sprinkling and drip irrigation supplied nutrients in either fresh (treatments C and F) or saline water (treatments S and F+S).Saline sprinkling increased leaf sap Na+ concentrations much more than did soil salinity, especially in maize, even though the saline sprinkling was given only two or three times per week for 30 min, whereas the roots of plants grown in saline soil were continuously exposed to salinity. By contrast, leaf sap Cl concentrations were increased similarly by saline sprinkling and soil salinity in maize, and more by saline sprinkling than saline soil in barley. It is concluded that barley leaves, and to a greater extent maize leaves, lack the ability to selectively exclude Na+ when sprinkler irrigated with saline water. Moreover, maize leaves selectively absorbed Na+ over Cl whereas barley leaves showed no selectivity. When foliar and root absorption processes were operating together (F+S treatment) maize and barley leaves accumulated 11–14% less Na+ and Cl than the sum of individual absorption processes (treatment F plus treatment S) indicating a slight interaction between the absorption processes. Vegetative biomass at maturity and cumulative plant water use were significantly reduced by saline sprinkling. In maize, reductions in biomass and plant water use relative to the control were of similar magnitude for plants exposed only to saline sprinkling, or only to soil salinity; whereas in barley, saline sprinkling was more detrimental than was soil salinity. We suggest that crops that are salt tolerant because they possess root systems which efficiently restrict Na+ and Cl transport to the shoot, may not exhibit the same tolerance in sprinkler systems which wet the foliage with saline water. ei]T J Flowers  相似文献   

8.
To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.  相似文献   

9.

A phylogenetic analysis was performed based on ITS DNA sequences of fourteen samples from different sources of six species of Salicornia, the three allied genera Arthrocnemum, Sarcocornia and Halocnemum of the same tribe Salicornieae, and other genera of the subfamily Salicornioideae used in previous studies. Bassia hirsuta, Camphorosma monspeliaca (subfamily Chenopodioideae) and four species of Suaeda (subf. Suaedoideae) were chosen as outgroups. Results show that the annual genus Salicornia is a sister group to the perennial genera Sarcocornia, Arthrocnemum and Halocnemum. Moreover, the phylogenetic analysis based on ITS results distinguished two groups of Salicornia species which fitted with ploidy level: one group consisted of diploid species, and the second of tetraploid ones. Sarcocornia and Arthrocnemum are shown to be closely related, even though the species investigated here exhibited an evident distance between their ITS sequences. On the basis of our results, these two genera should be united. Bienertia (already separated as Bienertieae) was confirmed as probable outgroup to the subf. Salicornioideae, while Kalidium (subf. Salicornioideae, tribe Halopeplideae) was an outgroup to the rest of the Salicornioideae (tribe Salicornieae). The group Allenrolfea plus Halocnemum was the most basal of the tribe Salicornieae amongst those investigated in this study. The two samples of Halocnemum strobilaceum used in this work displayed numerous changes (transitions and transversions) in their respective sequences, probably related to their morphological and chorological differentiation. On the basis of our analysis, the most probable basal chromosome number for Salicornieae appears to be 2n = 18. The same number would also be the base number for the annual genus Salicornia and the perennial Arthrocnemum ( + Sarcocornia), with polyploidy arising independently in the two groups.  相似文献   

10.
The halophyte Salicornia bigelovii Torr. shows optimal growthand Na+ accumulation in 200 mM NaCl and reduced growth underlower salinity conditions. The ability to accumulate and compartmentalizeNa+ may result, in part, from stimulation of the H+ -ATPaseson the plasma membrane (PM-ATPase) and vacuolar membranes (V-ATPase).To determine if these two primary transport systems are involvedin salt tolerance, shoot fresh weight (FW) and activity of thePM- and V-ATPases from shoots in Salicornia grown in 5 and 200mM NaCI were compared. Higher PM-ATPase activity (60%) and FW(60%) were observed in plants grown in 200 mM NaCI and thesestimulations in growth and enzyme activity were specific forNa+ and not observed with Na+ added in vitro. V-ATPase activitywas significantly stimulated in vivo and in vitro (26% and 46%,respectively) after exposure to 200 mM NaCl, and stimulationwas Na+ -specific. Immunoblots indicated that the increasesin activity of the H+ -ATPases from plants grown in 200 mM NaCIwas not due to increases in protein expression. These studiessuggest that the H+-ATPases in Salicornia are important in salttolerance and provide a biochemical framework for understandingmechanisms of salt tolerance in plants. Key words: Salicornia, H+-ATPases, salt tolerance  相似文献   

11.
Background As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land.Scope Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered.  相似文献   

12.
The effect of saline stress on physiological and morphological parameters in Callistemon citrinus plants was studied to evaluate their adaptability to irrigation with saline water. C. citrinus plants, grown under greenhouse conditions, were subjected to two irrigation treatments lasting 56 weeks: control (0.8 dS·m?1) and saline (4 dS·m?1). The use of saline water in C. citrinus plants decreased aerial growth, increased the root/shoot ratio and improved the root system (increased root diameter and root density), but flowering and leaf colour were not affected. Salinity caused a decrease in stomatal conductance and evapotranspiration, which may prevent toxic levels being reached in the shoot. Net photosynthesis was reduced in plants subjected to salinity, although this response was evident much later than the decrease in stomatal conductance. Stem water potential was a good indicator of salt stress in C. citrinus. The relative salt tolerance of Callistemon was related to storage of higher levels of Na+ and Cl? in the roots compared with the leaves, especially in the case of Na+, which could have helped to maintain the quality of plants. The results show that saline water (around 4 dS·m?1) could be used for growing C. citrinus commercially. However, the cumulative effect of irrigating with saline water for 11 months was a decrease in photosynthesis and intrinsic water use efficiency, meaning that the interaction of the salinity level and the time of exposure to the salt stress should be considered important in this species.  相似文献   

13.
In the current review we focus on the opportunity to use brackish water in the cultivation of floricultural plants, plants for which, due to their high economic value, growers have traditionally used good quality water for irrigation. Now, even for these crops the use of alternative water sources for irrigating nursery plants is needed because of the limited supplies of fresh water in many countries; understanding how saline water can be used will also enhance sustainable development in floriculture. While salt stress usually reduces plant growth, any such reduction might not be negative for ornamentals, where shoot vigour is sometime undesirable, although on flower crops salt stress can delay flowering or decrease flower quality characteristics. However, a decrease in growth rate is not enough to characterize the salt tolerance of ornamental plants, but traits like tip and marginal leaf burn, as consequence of sodium and chlorine accumulation, have to be considered for their effects on aesthetical value. With this in mind, some halophytes should be considered for floriculture because of their ability to cope with saline environments; their potential to tolerate salt is an important factor in reducing production costs. Consequently, the identification of ornamental halophytes is important for producing a commercially acceptable crop when irrigated with brackish waters. Many aspects of a plant's reaction to salt are genetically determined, so selection of suitable genotypes or breeding for salt tolerance in ornamentals are interesting options. Developing salt-tolerant floricultural crops, together with typical management practices that avoid excessive salinity stress in the root media, will provide the grower with economically and environmentally sound wastewater reuse options.  相似文献   

14.

Background and Aims

Despite concerns about the impact of rising sea levels and storm surge events on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. The aim of this study was to elucidate responses of a glycophyte (white clover, Trifolium repens) to short-duration soil flooding by seawater and recovery following leaching of salts.

Methods

Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient, the impact of short-duration seawater soil flooding (8 or 24 h) on short-term changes in leaf salt ion and organic solute concentrations was examined, together with longer term impacts on plant growth (stolon elongation) and flowering.

Key Results

There was substantial Cl and Na+ accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil.

Conclusions

The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in T. repens. Consequently, it is suggested that selection for tolerant ecotypes is possible should the predicted increase in frequency of storm surge flooding events occur.  相似文献   

15.
Habitats occupied by many halophytes are not only saline, but are also prone to flooding and yet surprisingly few studies have evaluated submergence tolerance in halophytes. Sediment, floodwater, and intra-plant O2 dynamics were evaluated during tidal submergence for the leaf-succulent halophyte Suaeda maritima (L.) Dum. For S. maritima growing in soil just above the mud flat in a UK salt marsh, the soil was only moderately hypoxic just prior to tidal inundation, presumably owing to drainage and O2 entry facilitated by frequent, large cracks. O2 declined to very low levels following high tide. By contrast, mud flat sediment remained waterlogged, lacked cracks, and was anoxic. Plant O2 dynamics were investigated using field-collected plants in sediment blocks transported to a controlled-submergence system in a glasshouse. Submergence during night-time resulted in anoxia within leaves, whereas during day-time O2 was produced by underwater photosynthesis. The thin lateral roots of S. maritima presumably access some O2 from hypoxic sediments, but could also experience transient episodes of severe hypoxia/anoxia, especially as any internal O2 movement from shoots would be small owing to the low gas-filled porosity in roots. Fermentative metabolism to lactate, producing some ATP in the absence of O2, might contribute to tolerance of transient O2 deficits. Lactate was high in root tissues, whereas ethanol production (tissue and incubation medium contents) was low, both in comparison with values reported for other species. Our findings demonstrate the importance of tolerance to transient waterlogging and submergence for the halophyte S. maritima growing in a tidal salt marsh.  相似文献   

16.
17.
秸秆隔层对盐碱土水盐运移及食葵光合特性的影响   总被引:14,自引:0,他引:14  
在内蒙古河套灌区通过微区试验,研究了秸秆深埋(S)、上盖秸秆下埋秸秆(简称上秸下秸,S+S)、上盖地膜下埋秸秆(简称上膜下秸,P+S)和地膜覆盖(对照,CK)4种耕作措施对0-40 cm土层水盐运移及食葵光合特性的影响.结果表明:(1)不同措施对土壤水盐调控的效果与作用时期差异较大.P+S在整个生育期内土壤盐分含量和盐溶质浓度较低,控盐效果显著;S+S仅在苗期能保墒控盐,但控盐效果比P+S差,后期出现水减盐增现象,保墒控盐效果也不佳;S在整个生育期内土壤盐分含量和盐溶质浓度最高,控盐效果最差;CK在整个生育期内土壤水分含量变化不大,而盐分含量较高,控盐效果也不明显.(2)不同措施对土壤水盐运移调控程度的差异,导致食葵光合特性也有明显变化.与CK、S、S+S相比,P+S由于其较低的盐溶质浓度环境,明显改善了其光合特性,在苗期、蕾期和花期能提高净光合速率(Pn)和蒸腾速率(Tr),增加气孔导度(Gs),降低胞间CO2浓度(Ci),从而使其作物长势和干物质积累明显高于其它措施.综合试验结果,P+S是内蒙古河套灌区盐碱地改良中优选的控抑盐耕作措施.  相似文献   

18.
High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic plasticity, which are likely to vary in populations from contrasting environments.  相似文献   

19.
Crop production and management under saline conditions   总被引:1,自引:0,他引:1  
A. Meiri  Z. Plaut 《Plant and Soil》1985,89(1-3):253-271
Summary This review evaluates management practices that may minimize yield reduction under saline conditions according to three strategies: (I) control of root-zone salinity; (II) reduced damage to the crop; (III) reduced damage to individual plants. Plant response to salinity is described by an unchanged yield up to a threshold soil salinity (a), then a linear reduction in relative yield (b), to a maximum soil salinity that corresponds to zero yield (Yo). Strategies I and II do not take into consideration any change in the parameters of the response curve, while strategy III is aimed at modifying them.Control of root zone salinity is obtained by irrigation and leaching. From the review of existing data it is concluded that the effective soil salinity parameter should be taken as the mean electrical conductivity of the saturated paste extract or of the soil solution over time and space. Several irrigation and leaching practices are discussed. It is shown that intermittent leaching is more advantageous than leaching at each irrigation. Specific cultivation and irrigation practices that result in soil salinity reduction adjacent to young seedlings and the use of water of low salinity at specifically sensitive growth stages may be highly beneficial. Recent data do not show that reduced irrigation intervals improve crop response more under saline than under nonsaline irrigation. Alternate use of water of different salt concentrations results in mixing in the soil and the crop responds to the mean water salinity.Reduced damage at the fiel level when soil or irrigation water salinity is too high to maintain full yield of single plants requires a larger crop stand. For row crops reduced inter-row spacing is more effective than reduced intra-row spacing.Reduced damage at the plant level while the salinity tolerance of the plants remains constant shows up in the response curve parameters as larger threshold and slope and constant salinity at zero yield. This is the effect of a reduced atmospheric water demand that results in reduced stress in the plant under given salinity. Management can also change the salt tolerance of the crop. This will show up as higher salinity at zero yield, as well as changes in threshold and slope. Such changes in the response curve were found at different growth stages, under different atmospheric CO2, under different fertilization, and when sprinkler irrigation was compared with drip irrigation.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 1111-E 1984 series.  相似文献   

20.
The latest publications on Sarcocornia taxonomy and phylogeny recognize six taxa in this genus on the Iberian Peninsula: S. perennis, S. fruticosa, S. alpini, S. alpini subsp. carinata, S. hispanica, and S. pruinosa. The present study represents a comprehensive revision of the different taxa in the Sarcocornia genus present in Western Mediterranean Europe by means of morphological, micromorphological and phylogenetic internal transcribed spacer (ITS) analysis. Morphological and micromorphological data were studied from Sarcocornia samples from 113 populations in coastal salt marshes and inland salt pans in Portugal, France, Spain and Italy. Sixteen new ITS sequences were obtained from Mediterranean Sarcocornia species and analysed together with previous reported data. Published karyological, ecological and biogeographical data from Western Mediterranean Europe were also reviewed. The results indicate the presence of a new species, S. lagascae, found growing in coastal Mediterranean areas of the Iberian Peninsula. The species S. fruticosa was found to be absent from the Iberian territories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号