首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Obtaining adequate levels of dietary protein is essential for the physiology of consumers. This presents potential problems for frugivorous birds because fruit is generally low in protein rendering it nutritionally inadequate and potentially explaining the rarity of exclusive frugivory in birds. We addressed this issue by determining the isotope composition (15N/14N) in the whole blood of two mistletoe consumers, that is, painted honeyeater (Grantiella picta, Meliphagidae) and mistletoebird (Dicaeum hirundinaceum, Dicaeidae) during the grey mistletoe (Amyema quandang, Loranthaceae) fruiting peak in a semi‐arid woodland, NSW, Australia. Grey mistletoe fruit pulp and arthropods were isotopically distinct (mean δ15N fruit 4.4‰vs. arthropods 7.1‰), thus readily discriminated using the stable isotope approach. Painted honeyeaters and mistletoebirds formed a single group based on their mean δ15N values and, on average, assimilated approximately half of their nitrogen from mistletoe fruit although individual variation was high. The importance of nitrogen derived from mistletoe fruit did not track its abundance in the environment, suggesting that at least during peak fruiting, this resource is not limiting at this site. Researchers should account for intraspecific variation and take a cautious approach when reconstructing diets using stable isotopes by incorporating individual‐based analyses rather than presenting mean values alone. This is the first study to use the isotope approach to investigate the dietary relationship of mistletoe frugivores and mistletoe fruit and has implications for our understanding of the nutritional ecology of frugivores and its functional relationship to ecosystem processes such as seed dispersal.  相似文献   

2.
槲寄生的生物学特征及鸟类对其种子的传播   总被引:10,自引:1,他引:10       下载免费PDF全文
鲁长虎 《生态学报》2003,23(4):834-839
2001年9月至2002年1月在黑龙江省尚志市帽儿山林场研究了槲寄生(Viscum coloratum)的生物学特征及鸟类对其种子的传播。槲寄生寄主共有9种阔叶树,杨树占比例最大,达73.3%。78.0%的槲寄生个体以杨树为寄主。多数槲寄生着生在杨树主干侧枝(43%)和细侧枝(42%)上,主干上仅l5%。寄主和槲寄生本身都呈聚集分布。槲寄生有两种色型果实,在量度上无明显差异。果实由果皮、果肉和种子构成,种子外面包裹一层胶质层。在帽儿山秋、冬季常见的7种食果实鸟类中,只有太平鸟(Bombycilla garrulus)在野外觅食槲寄生果实,斑鸫(Turdus naumanii)在笼养无其它食物时才食,其余5种鸟类拒食。太平鸟在11月以后觅食槲寄生果实频率增大。除根寄生果实外,太平鸟共可食帽儿山常见l7种肉质果中的12种。太平鸟在吞食果实后,种子外包胶质层随粪便排出,形成“种子线”粘在树枝上,槲寄生种子被传播到适宜的生境,在春天萌根生长。笼养太平鸟时,种子在消化道的滞留时间约11min,这意味着在野外很长的扩散距离。槲寄生和太平鸟之间形成了特定的互利互生系统。  相似文献   

3.
    
Mistletoes are dispersed primarily by frugivorous birds and have highly aggregated distributions at multiple scales. Mistletoe specialist frugivores have been found to intensify infections within infected hosts and stands, and this is considered the most likely mechanism underlying clumped mistletoe distributions at these scales. How these patchy infections first develop and whether seed dispersers also contribute to aggregated mistletoe distributions at landscape and regional scales have not been evaluated. Here we predict the mistletoe seed shadow of a dietary generalist (spiny‐cheeked honeyeater Acanthagenys rufogularis Aves: Meliphagidae), by combining our observations of movements via radio telemetry with previous data on gut passage times to estimate seed dispersal curves for individual birds. There was considerable variation in movements and inferred seed dispersal between individuals, with non‐breeding birds predicted to regularly transport Amyema quandang (Santalales: Loranthaceae) seeds up to 700 m; well beyond the boundaries of an existing mistletoe infection. As the first work to consider explicitly the distance component of mistletoe seed dispersal by dietary generalists, this study poses further questions about the relative seed dispersal roles of dietary generalists and mistletoe specialists. Moreover, our findings highlight considerable intraspecific variation in movement and foraging behaviour, suggesting gender and reproductive status of birds should be considered explicitly when quantifying seed dispersal services.  相似文献   

4.
李慢如  张玲 《广西植物》2019,39(9):1252-1260
桑寄生植物作为关键种和关键性食物资源在生态系统中扮演着重要角色,其鞘花的繁殖物候特征不仅会影响自身的繁殖适合度而且还会影响依赖于其获取食物资源的动物。为了解鞘花的繁殖物候特征及其影响因素,探究其与寄主植物和种子散布者之间的相互作用关系。该研究以西双版纳地区分布的鞘花为对象,通过定期观测鞘花和其寄主植物木荷的繁殖物候,测量它们的生物学特性和温湿度等环境因子,并分析鞘花在个体水平和种群水平上的繁殖物候特征以及寄主植物和温湿度对其繁殖物候的影响。结果表明:(1)鞘花的开花物候属于集中大量开花模式,整个种群的花期和果期的持续时间分别约为20 d和72 d,花期和果期的同步性指数都较高,6月中旬鞘花果实被取食的数量和速率最大,之后逐渐降低。(2)鞘花的始花期与木荷的始花期相关性较高,花期和果期与木荷的繁殖物候基本重叠。(3)每月开花和果熟的个体数量与同期和前一个月的平均温度和相对湿度的相关关系均不显著。总之,桑寄生植物的繁殖物候特征可能受到较多因素的影响,若想全面了解半寄生植物的繁殖物候特征,就要综合考虑生物和非生物等多种因子的共同作用。  相似文献   

5.
Parasitic plants as facilitators: more Dryad than Dracula?   总被引:1,自引:1,他引:0  
  相似文献   

6.
鸟类栖木在森林植被恢复中的生态意义   总被引:1,自引:0,他引:1       下载免费PDF全文
李新华 《生态学报》2009,29(8):4448-4454
鸟类传播种子对于植物种群自然更新及群落演替具有重要的生态意义,鸟类栖息的树木具有富集种子雨功能,在山体滑坡区及废弃矿区等干扰生境中人工设置鸟类栖木,可以增加鸟类传播的种子雨输入,丰富土壤种子库,尤其食果鸟类可以传播那些处于群落演替中期至后期的乔、灌木树种,能够促进受干扰地区森林植被的演替进程.5·12汶川大地震对地震灾区造成了大面积的山体滑坡和严重的植被破坏,在地震灾区森林植被的生态恢复工作中,一些地区可以采用人工设置鸟类栖木方法,充分利用山体滑坡区周围残余森林的丰富种子源及众多食果鸟类,促进灾区森林植被的自然恢复.  相似文献   

7.
8.
9.
10.
Recent studies of new world parrots repeatedly document, with few exceptions, that parrots are wasteful and destructive predispersal seed predators that are unlikely to contribute towards pollination and seed dispersal. Few detailed studies, however, have assessed the contribution of African parrots to forest ecology by quantifying the potential net benefit of seed and flower predation by parrots for most tree species in their diet. Due to the incidence of pollen on the heads of Meyer’s Parrots when feeding on Leguminosae flowers and the dispersal of viable seeds to the ground during seed predation, we compared destruction rates, when feeding on pods, fruits and flowers, with dispersal rates of viable seeds to the ground and frequency of head contact with reproductive apparatus to estimate net benefit from Meyer’s Parrot feeding activity. Meyer’s Parrots were not implicated in endo‐ or epizoochory, but they dropped uneaten fruit pulp and seeds to the ground during feeding bouts, thus providing ripe, undamaged seeds to secondary seed dispersers. This link with forest recruitment was weak, as all tree species utilized by Meyer’s Parrots either had more significant primary dispersal agents or were primarily wind‐dispersed. In most cases, the negative effect of seed predation outweighed any positive effects in terms of dispersal, whereby almost three times more seeds were consumed or destroyed than were dispersed to the ground. Significantly, only Sclerocarya birrea caffra recorded marginal net dispersal benefit from utilization by Meyer’s Parrots. Due to low relative resource abundance and high destruction rate, feeding activity on Berchemia discolor may be significant enough to influence its spatial distribution and abundance. Utilization of flowers of Kigelia africana and Adansonia digitata by parrots likely had a significant negative impact on pollination. Feeding on Acacia nigrescens flowers, however, was potentially advantageous to their pollination. We conclude that Poicephalus parrots are net consumers of ripe, undamaged seeds and flowers, thus having an overall negative impact on forest recruitment in subtropical Africa.  相似文献   

11.
Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337-552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700-2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants.  相似文献   

12.
    
Most tropical plants produce fleshy fruits that are dispersed primarily by vertebrate frugivores. Behavioral disparities among vertebrate seed dispersers could influence patterns of seed distribution and thus forest structure. This study investigated the relative importance of arboreal seed dispersers and seed predators on the initial stage of forest organization–seed deposition. We asked the following questions: (1) To what degree do arboreal seed dispersers influence the species richness and abundance of the seed rain? and (2) Based on the plant species and strata of the forest for which they provide dispersal services, do arboreal seed dispersers represent similar or distinct functional groups? To answer these questions, seed rain was sampled for 12 months in the Dja Reserve, Cameroon. Seed traps representing five percent of the crown area were erected below the canopies of 90 trees belonging to nine focal tree species: 3 dispersed by monkeys, 3 dispersed by large frugivorous birds, and 3 wind‐dispersed species. Seeds disseminated by arboreal seed dispersers accounted for ca 12 percent of the seeds and 68 percent of the seed species identified in seed traps. Monkeys dispersed more than twice the number of seed species than large frugivorous birds, but birds dispersed more individual seeds. We identified two distinct functional dispersal groups, one composed of large frugivorous birds and one composed of monkeys, drop dispersers, and seed predators. These groups dispersed plants found in different canopy strata and exhibited low overlap in the seed species they disseminated. We conclude it is unlikely that seed dispersal services provided by monkeys could be compensated for by frugivorous birds in the event of their extirpation from Afrotropical forests.  相似文献   

13.
Seasonal tropical forests show rhythms in reproductive activities due to water stress during dry seasons. If both seed dispersal and seed germination occur in the best environmental conditions, mortality will be minimised and forest regeneration will occur. To evaluate whether non-seasonal forests also show rhythms, for 2 years we studied the seed rain and seedling emergence in two sandy coastal forests (flooded and unflooded) in southern Brazil. In each forest, one 100 x 30-m grid was marked and inside it 30 stations comprising two seed traps (0.5 x 0.5 m each) and one plot (2 x 2 m) were established for monthly monitoring of seed rain and a seedling emergence study, respectively. Despite differences in soil moisture and incident light on the understorey, flooded and unflooded forests had similar dispersal and germination patterns. Seed rain was seasonal and bimodal (peaks at the end of the wetter season and in the less wet season) and seedling emergence was seasonal and unimodal (peaking in the wetter season). Approximately 57% of the total species number had seedling emergence 4 or more months after dispersal. Therefore, both seed dormancy and the timing of seed dispersal drive the rhythm of seedling emergence in these forests. The peak in germination occurs in the wetter season, when soil fertility is higher and other phenological events also occur. The strong seasonality in these plant communities, even in this weakly seasonal climate, suggests that factors such as daylength, plant sensitivity to small changes in the environment (e.g. water and nutrient availability) or phylogenetic constraints cause seasonal rhythms in the plants.  相似文献   

14.
Processes of forest regeneration in two unlogged areas and in three areas that were logged nearly 25 years ago were quantified in Kibale National Park, Uganda. For forests to recover from logging, one would predict recruitment and growth processes to be accelerated in logged areas relative to unlogged areas, facilitating increased recruitment of trees into the adult size classes. We examined this prediction first by determining the growth of 4733 trees over a 51 to 56 month period and found that growth rates in the most heavily logged area were consistently slower than in the two unlogged areas. In contrast, the lightly logged forest had similar growth rates to unlogged areas in the small size classes, but trees in the 30 to 50 cm DBH size cohort exhibited elevated growth rates relative to the unlogged areas. Mortality was highest in the heavily logged areas, with many deaths occurring when healthy trees were knocked over by neighboring treefalls. We found no difference in the density or species richness of seedlings in the logged and unlogged forests. The number of seedlings that emerged from the disturbed soil (seed bank+seed rain) and initially seed-free soil (seed rain) was greater in the logged forest than in the unlogged forest. However, sapling density was lower in the heavily logged areas, suggesting that there is a high level of seedling mortality in logged areas. We suggest that the level of canopy opening created during logging, the lack of aggressive colonizing tree species, elephant activity that is concentrated in logged areas, and an aggressive herb community, all combine to delay vegetation recovery in Kibale Forest.  相似文献   

15.
Seed dynamics is an important part of stand dynamics in forest ecosystems. In this paper, 26 gaps were randomly selected to study the influence of gaps on the spatial and temporal patterns of seed rains in a tropical montane rainforest of Hainan Island, South China. Three zones for each gap, including outside gap zone (Non-gap), transitional gap zone (EG-CG), and central gap zone (CG), were designed, and fourseed traps (each lm x lm in size) were placed in each zone. Seed rains were collected by these traps every 10 days from June 2001 to May 2002. Seed rain varied greatly with season and generally exhibited a pattern of unimodal change during the study period: seed abundance and species richness were both greater in the wet season than in the dry season. Gaps significantly influenced the temporal patterns of both species richness and density of seed rains. Gaps had no significant influences on the spatial distribution patterns of seed rain species richness, but significantly affected the spatial distribution pattern of seed rain densities. Among the three different zones of gaps, the outside gap zone generally received more seeds inputs than the two other gap zones.  相似文献   

16.
    
The high degree of isolation of forest “islands” relative to “continental” forested areas creates a naturally fragmented landscape in the savanna ecosystem. Because fragmentation can affect the intensity and quality of biological interactions (e.g., seed dispersal) we examined the abundance and species richness of seed rain produced by birds and bats in three different parts of forest islands (center, edge, and exterior) located at the Estación Biológica del Beni, Bolivia. Despite the fact that we found higher species density of seeds in the seed rain at the center of forest islands, when comparing species richness corrected for observed differences in density, species richness was higher at the edge of islands. The three parts of the islands did not differ in total number of seeds. Three genera (Byrsonima, Ficus, and Piper) contributed the most seeds to the seed rain. We found differences in the abundance of dispersed seeds probably because of the variation related with the disturbance line, where the savanna matrix interacts with the forest islands. Carollia perspicillata, Carollia brevicauda, and Sturnira lilium were the bats that contributed most to seed dispersal within forest islands, and Schistochlamys melanopis and Tyranneutes stolzmanni were the most important birds. The movement of seeds produced by bats and birds within forest islands of the savanna is crucial to assure the continuity of ecological process and dynamics of these forest islands.  相似文献   

17.
广西靖西西南桦天然林种子雨的时空动态   总被引:2,自引:0,他引:2       下载免费PDF全文
以一片西南桦(Betula alnoides)天然林和一个西南桦独立单株为研究对象, 通过收集散种期内与林分或母树不同距离的种子以及测定风速和风向, 研究了西南桦群落和个体水平上种子雨的时空动态及其与风速和风向的关系。结果表明: 群落水平上, 西南桦种子散布的初始期、高峰期、消退期分别历时11天、32天和40天, 而个体水平上则为9天、25天和26天。高峰期内群落和个体水平的散种量分别占其总量的83.1%和68.7%, 而且白天的种子雨密度高于夜间; 西南桦个体白天种子雨密度最大的时段为12:00-16:00, 与此时段内风速较高有关。在个体水平上, 距离母树0-30 m范围内散落的种子占总散种量的79.6%; 而在群落水平上, 距离林缘0-45 m范围内集中了总散种量的81.2%。西南桦种子散布具有方向性, 无论个体还是群落水平上不同方向间种子雨密度差异极显著(p < 0.01), 与散种期内的主要风向有关; 而且种子雨密度与风速亦呈极显著正相关关系。研究结果将有助于揭示西南桦天然更新动态和更新机制, 亦为开展西南桦人工促进天然更新提供理论依据。  相似文献   

18.
19.
    
The effects of dispersal pattern (seeds in small clumps vs. seeds scattered in pairs) and distance to the nearest Carapa procera (Meliaceae; a tree that produces seeds preferred by terrestrial vertebrates) on survival of seeds and seedlings were examined for the animal–dispersed tree species Virola michelii (Myristicaceae) in a mature forest‘at Paracou, French Guiana, in 1992 and 1993. We assessed the putative role of ground–dwelling mammalian herbivores, rodents, and ungulates that filter the seed shadow, acting either as dispersers or predators and thus modifying the original pattern of seed dispersal made by frugivores. We measured the effects of simulated seed burial by rodents using marked seeds and quantified the effect of protecting seeds and seedlings from ground–dwelling vertebrates on seedling germination and survival with fence exclosures in 1992. Dispersal pattern had short–term but no long–term effects on the proportion of V. michelii seeds that survived one year later as seedlings. In the short term, within six weeks, clumped seeds survived better than scattered seeds in both years. Marked seeds that were removed from their site of dispersal were eaten; rodents only rarely buried seeds of V. michelii, and seed burial reduced seed and seedling survivorship. The combined effect of the factors year and Carapa proximity significantly affected seed survival within six weeks. Although six–week seed survival was greater in 1993 than in 1992, seedling establishment was lower in 1993 than in 1992 following a lower rainfall regime during the key period of seed germination (February). One–year seed and seedling survivorship was similar between treatments and years. Seed survival and seedling establishment in V. michelii was dependent on vertebrates in the short term and on climate in the long term. Overall, seed and seedling survivorship depended on a combination of these factors.  相似文献   

20.
张健     郝占庆     李步杭     叶吉    王绪高   姚晓琳   《生态学报》2008,28(6):2445-2445~2454
为了解阔叶红松(Pinus koraiensis)林的种子雨组成及其在时间和空间上的动态变化,在长白山阔叶红松林25 hm2样地内,设置了150个种子收集器,收集掉落于种子收集器中的果实、种子等.所有收集到的样品分别鉴定其种类并分为成熟种实、未成熟种实、花序和果实或种子碎片及其附属物4类,计算各类别的数量,而后分别烘干秤重.从2005年6月到2006年11月,共收集到隶属11科12属20种的种实及其生殖器官残体.累计收集到121291粒种实,其中成熟种实23147粒,仅占所有种实总个体数的19.1%.种实数最多的树种是紫椴(Tilia amurensis)和水曲柳(Fraxinus mandshurica),两个树种种实的个体数占总个体数的90%.对2006年5月~11月种子雨季节动态的分析发现:种实在7月中旬至10月下旬数量极大,但主要由未成熟种实组成;在10月中旬出现成熟种实散落高峰,但未成熟种实仍占一定的比例.按每个收集器收集到的成熟种实数统计,成熟种实数量在100~200之间的收集器数量最多.按每个收集器收集到的树种数统计,收集器中最多收到的树种数为7,树种数为3和4的收集器个数最多.对6个主要树种成熟种实所在收集器的空间分布进行分析发现,紫椴和水曲柳的成熟种实在整个样地都有分布,春榆(Ulmus japonica)、糠椴(T. mandshurica)、色木槭(Acer mono)和假色槭(A. pseudo-sieboldianum)则只在样地的局部区域收集到成熟种实.成熟种实的空间分布与母树的空间分布大都表现出明显的相关性,表明这些树种的成熟种实并没有扩散到离母树较远的距离.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号