首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Many recombinant proteins (rPRTs) have a high bioactivity and some of them may eventually be classified as drugs beneficial to human health, recombinant human protein drugs (rPDs). rPDs are a high-technology product with all the associated economic benefits, therefore the liquid chromatography (LC) of rPRT is different from that of proteins isolated in laboratory scale for purely research purposes. The design of a purification scheme for an rPRT depends on the intended function of the purified rPRT, as a pure sample for research in small scale, or as a product for industrial production. This review paper mainly deals with the latter instance, producing rPD at a large scale. Pharmaceutical economics is considered not only for each step of purification, but also the whole production process. This strategy restricts the content of this review paper to the factors affecting the optimization source, the character of rPRT in up-stream technology and the purification of the rPRT in down-stream production. In the latter instance, the purification step is required to be as efficient as possible and LC is the core of the refined purification method, which is either a single LC method or combination of LC methods, sometimes, it may be a combination of LC and other non-LC separation methods comprising an optimized purification technology. Here some typical examples of rPRT purification at the large scale, recent developments, such as protein folding liquid chromatography, short column chromatography, and new packing material and column techniques are introduced.  相似文献   

2.
Obtaining enough membrane protein in native or native-like status is still a challenge in membrane protein structure biology. Maltose binding protein (MBP) has been widely used as a fusion partner in improving membrane protein production. In the present work, a systematic assessment on the application of mature MBP (mMBP) for membrane protein overexpression and purification was performed on 42 membrane proteins, most of which showed no or poor expression level in membrane fraction fused with an N-terminal Histag. It was found that most of the small membrane proteins were overexpressed in the native membrane of Escherichia coli when using mMBP. In addition, the proteolysis of the fusions were performed on the membrane without solubilization with detergents, leading to the development of an efficient protocol to directly purify the target membrane proteins from the membrane fraction through a one-step affinity chromatography. Our results indicated that mMBP is an excellent fusion partner for overexpression, membrane targeting and purification of small membrane proteins. The present expression and purification method may be a good solution for the large scale preparation of small membrane proteins in structural and functional studies.  相似文献   

3.
In this report, we describe a flexible, efficient and rapid protein purification strategy for the isolation and cleavage of glutathione-S-transferase (GST) fusion proteins. The purification and on-column cleavage strategy was developed to work for the purification of difficult proteins and for target proteins where efficient fusion-tag cleavage is essential for downstream processes, such as structural and functional studies. To test and demonstrate the flexibility of this method, seven diverse unrelated target proteins were assayed. A purification technique is described that can be applied to a wide range of both soluble and membrane inserted recombinant target proteins of differing function, structure and chemical nature. This strategy is performed in a single chromatographic step applying an on-column cleavage method, yielding "native" proteins in the 200 microg to 40 mg/l scale of 95-98% purity.  相似文献   

4.
A gentle method for concentrating very dilute protein solutions is described. The high capacity of aminohexylagarose in adsorbing different proteins is utilized to handle small or large amounts of protein with practically no losses in material or activity. To concentrate very dilute protein solutions as they occur during purification procedures e. g. of enzymes, a one-step non-inactivating nethod is needed that may easily be integrated into the purification programm.

In the course of the purification of a labile enzyme (1) we developed a simple chromatographic method which seems to work for a large variety of proteins. The procedure is applicable to very dilute protein solutions, to small samples as well as to large scale preparations, and it is relatively inexpensive. It appears to be a very gentle method since in all cases tested no loss of enzymic activity could be observed.  相似文献   

5.
Aqueous two-phase systems provide a rapid, easily scalable method for separation of soluble proteins from insoluble materials and other undesired proteins. The method can be operated in continuous mode. It is particularly useful for animal proteins, as it overcomes difficulties of other methods in removing bulk insoluble material, while at the same time providing purification with respect to total soluble protein. This article describes the development of methods for aqueous two-phase extraction and purification of animal proteins, at both laboratory and pilot scale. The strengths, weaknesses, and possible future prospects for the method are discussed.  相似文献   

6.
We have developed and tested a simple and efficient protein purification method for biophysical screening of proteins and protein fragments by nuclear magnetic resonance (NMR) and optical methods, such as circular dichroism spectroscopy. The method constitutes an extension of previously described protocols for gene expression and protein solubility screening [M. Hammarstr?m et al., (2002), Protein Science 11, 313]. Using the present purification scheme it is possible to take several target proteins, produced as fusion proteins, from cell pellet to NMR spectrum and obtain a judgment on the suitability for further structural or biophysical studies in less than 1 day. The method is independent of individual protein properties as long as the target protein can be produced in soluble form with a fusion partner. Identical procedures for cell culturing, lysis, affinity chromatography, protease cleavage, and NMR sample preparation then initially require only optimization for different fusion partner and protease combinations. The purification method can be automated, scaled up or down, and extended to a traditional purification scheme. We have tested the method on several small human proteins produced in Escherichia coli and find that the method allows for detection of structured proteins and unfolded or molten globule-like proteins.  相似文献   

7.
We have developed a pooled ORF expression technology, POET, that uses recombinational cloning and proteomic methods (two-dimensional gel electrophoresis and mass spectrometry) to identify ORFs that when expressed are likely to yield high levels of soluble, purified protein. Because the method works on pools of ORFs, the procedures needed to subclone, express, purify, and assay protein expression for hundreds of clones are greatly simplified. Small scale expression and purification of 12 positive clones identified by POET from a pool of 688 Caenorhabditis elegans ORFs expressed in Escherichia coli yielded on average 6 times as much protein as 12 negative clones. Larger scale expression and purification of six of the positive clones yielded 47-374 mg of purified protein/liter. Using POET, pools of ORFs can be constructed, and the pools of the resulting proteins can be analyzed and manipulated to rapidly acquire information about the attributes of hundreds of proteins simultaneously.  相似文献   

8.
We present a new method for selecting peptide ligands that are useful for protein purification, protein targeting and exploring protein-ligand interactions, and which requires no prior protein purification or derivatization. In the Bead blot, a complex mixture containing the target protein, for example, plasma, is incubated with a combinatorial library of peptide ligands synthesized on beads. The proteins are fractionated and purified on their respective ligands and the beads with their bound proteins are immobilized in a gel. The proteins are eluted from the ligands by capillary action and captured on a membrane so that their position on the membrane corresponds to the position of the beads in the gel. The protein is detected on the membrane, generating spots on an autoradiography film, the spots on the film are aligned with the beads in the gel, and the beads that bound the protein are recovered. The ligand on the bead(s) can be sequenced and synthesized at large scale for protein purification. The Bead blot can be completed in several hours with overnight pause steps if desired. On average, 5 prospective ligands are selected per 50,000 beads screened using this method. Unlike other ligand identification methods, the target protein does not have to be purified or labeled, and the Bead blot allows ligands for multiple proteins to be selected in a single experiment.  相似文献   

9.
Kumar A  Ward P  Katre UV  Mohanty S 《Biopolymers》2012,97(7):499-507
Asparagine-linked glycosylation is an essential and highly conserved protein modification reaction. In eukaryotes, oligosaccharyl transferase (OT), a multi-subunit membrane-associated enzyme complex, catalyzes this reaction in newly synthesized proteins. In Saccharomyces cerevisiae, OT consists of nine nonidentical membrane proteins. Ost4p, the smallest subunit, bridges the catalytic subunit Stt3p with Ost3p. Mutation of transmembrane residues 18-24 in Ost4p has negative effect on OT activity, disrupts the Stt3p-Ost4p-Ost3p complex, results in temperature-sensitive phenotype, and hypoglycosylation. Heterologous expression and purification of integral membrane proteins are the bottleneck in membrane protein research. The authors report the cloning, successful overexpression and purification of recombinant Ost4p with a novel but simple method producing milligram quantities of pure protein. GB1 protein was found to be the most suitable tag for the large scale production of Ost4p. The cleavage of Ost4p conveniently leaves GB1 protein in solution eliminating further purification. The precipitated pure Ost4p is reconstituted in appropriate membrane mimetic. The recombinant protein is highly helical as indicated by the far-UV CD spectrum. The well-dispersed heteronuclear single quantum coherence spectrum indicates that this minimembrane protein is well-folded. The successful production of pure recombinant Ost4p with a novel yet simple method may have important ramification for the production of other membrane proteins.  相似文献   

10.
We present the directed immobilization of recombinant antibody fragments as ligands for general immunoaffinity chromatography methods. It is based on fusion proteins of scFv fragments with several chitin-binding domains which can be immobilized directly from a crude bacterial lysate on inexpensive chitin beads for the purification of proteins without any gradient or detector. It has been used with a positive pressure manifold, allowing the parallel processing of 24 different samples on a milligram scale, as convenient as plasmid isolation. The method is demonstrated with several anti-protein antibodies. In addition, methods are presented of using an anti-His tag antibody either alone or directly coupled to IMAC to obtain very pure protein. As those methods are scalable, they should prove very useful in the parallel purification of natural and recombinant proteins on small scales (for proteomics), medium scales (for crystallography and NMR), and very large scales (for therapeutic proteins).  相似文献   

11.
Tian L  Sun SS 《PloS one》2011,6(8):e24183

Background

Plant bioreactor offers an efficient and economical system for large-scale production of recombinant proteins. However, high cost and difficulty in scaling-up of downstream purification of the target protein, particularly the common involvement of affinity chromatography and protease in the purification process, has hampered its industrial scale application, therefore a cost-effective and easily scale-up purification method is highly desirable for further development of plant bioreactor.

Methodology/Principal Findings

To tackle this problem, we investigated the ELP-intein coupling system for purification of recombinant proteins expressed in transgenic plants using a plant lectin (PAL) with anti-tumor bioactivity as example target protein and rice seeds as production platform. Results showed that ELP-intein-PAL (EiP) fusion protein formed novel irregular ER-derived protein bodies in endosperm cells by retention of endogenous prolamins. The fusion protein was partially self-cleaved in vivo, but only self-cleaved PAL protein was detected in total seed protein sample and deposited in protein storage vacuoles (PSV). The in vivo uncleaved EiP protein was accumulated up to 2–4.2% of the total seed protein. The target PAL protein could be purified by the ELP-intein system efficiently without using complicated instruments and expensive chemicals, and the yield of pure PAL protein by the current method was up to 1.1 mg/g total seed protein.

Conclusion/Significance

This study successfully demonstrated the purification of an example recombinant protein from rice seeds by the ELP-intein system. The whole purification procedure can be easily scaled up for industrial production, providing the first evidence on applying the ELP-intein coupling system to achieve cost-effective purification of recombinant proteins expressed in plant bioreactors and its possible application in industry.  相似文献   

12.
This article describes a simple and potentially scalable microfiltration method for purification of recombinant proteins. This method is based on the fact that when an elastin-like polypeptide (ELP) is fused to a target protein, the inverse phase transition behavior of the ELP tag is imparted to the fusion protein. Triggering the phase transition of a solution of the ELP fusion protein by an increase in temperature, or isothermally by an increase in salt concentration, results in the formation of micron-sized aggregates of the ELP fusion protein. In this article, it is shown that these aggregates are efficiently retained by a microfiltration membrane, while contaminating E. coli proteins passed through the membrane upon washing. Upon reversing the phase transition by flow of Milli-Q water, soluble, pure, and functionally active protein is eluted from the membrane. Proof-of principle of this approach was demonstrated by purifying a fusion of thioredoxin with ELP (Trx-ELP) with greater than 95% recovery of protein and with greater than 95% purity (as estimated from SDS-PAGE gels). The simplicity of this method is demonstrated for laboratory scale purification by purifying Trx-ELP from cell lysate using a syringe and a disposable microfiltration cartridge. The potential scalability of this purification as an automated, continuous industrial-scale process is also demonstrated using a continuous stirred cell equipped with a microfiltration membrane.  相似文献   

13.
The intein-mediated purification system has the potential to significantly reduce the recovery costs of industrial recombinant proteins. The ability of inteins to catalyze a controllable peptide bond cleavage reaction can be used to separate a recombinant protein from its affinity tag during affinity purification. Inteins have been combined with a chitin-binding domain to serve as a self-cleaving affinity tag, facilitating highly selective capture of the fusion protein on an inexpensive substrate--chitin (IMPACT) system, New England Biolabs, Beverly, MA). This purification system has been used successfully at a lab scale in low cell density cultures, but has not been examined comprehensively under high-cell density conditions in defined medium. In this study, the intein-mediated purification of three commercially relevant proteins expressed under high-cell density conditions in E. coli was studied. Additionally, losses during the purification process were quantified. The data indicate that the intein fusion proteins expressed under high cell density fermentations were stable in vivo after induction for a significant duration, and the intein fusion proteins could undergo thiol or pH and temperature initiated cleavage reaction in vitro. Thus, the intein-mediated protein purification system potentially could be employed for the production of recombinant proteins at the industrial-scale.  相似文献   

14.
Various methods are used to enrich or purify a protein of interest from other proteins and components in a crude cell lysate or other sample. One of the most powerful methods is affinity purification, also called affinity chromatography, whereby the proteins of interest are purified by virtue of their specific binding properties to an immobilized ligand. Affinity purification is becoming more widely used for exploring post-translation modifications and protein-protein interactions, especially with a view toward developing new general tag systems and strategies of chemical derivatization on peptides for affinity selection. Our work was aimed to immobilize proteins or ligands for affinity purification of antibodies, fusion-tagged proteins and other proteins and peptides. Selected proteins or peptides are efficiently extracted and enriched using chemically derivatized walls of a fused silica capillary column. In this paper, we present an open tubular capillary, where the inner wall of a fused silica capillary was derivatized by covalent binding of modified polystyrene latex particles. The capillaries were derivatized with iminodiacetic acid and loaded with Fe3+ or Ni2+ for the purification and enrichment of phosphopeptides or His-tagged proteins, respectively. The latex coated capillaries have been successfully applied to enrich phosphopeptides from beta-casein tryptic digest and ovalbumin tryptic digest at a micro volume scale with recoveries ranging from 92 to 95%. The capillaries have been eluted under conditions compatible with MALDI-MS without any prior desalting step. In another approach, concanavalin A (Con A) or Protein G were immobilized on the epoxy modified latex on the inner wall of the fused silica capillary for the purification of glycoproteins and immunoglobulin, respectively. The design of the capillary and the protocols used for purification permits the direct detection of eluted proteins and peptides with gel electrophoresis or with mass spectrometry. The elution volumes are passed as discrete segments of few microliters over the inner surface of the open-tube capillary, achieving enrichment factors of more than 20-fold from starting samples.  相似文献   

15.
This work combines two well-established technologies to generate a breakthrough in protein production and purification. The first is the production of polyhydroxybutyrate (PHB) granules in engineered strains of Escherichia coli. The second is a recently developed group of self-cleaving affinity tags based on protein splicing elements known as inteins. By combining these technologies with a PHB-specific binding protein, a self-contained protein expression and purification system has been developed. In this system, the PHB-binding protein effectively acts as an affinity tag for desired product proteins. The tagged product proteins are expressed in E. coli strains that also produce intracellular PHB granules, where they bind to the granules via the PHB-binding tag. The granules and attached proteins can then be easily recovered following cell lysis by simple mechanical means. Once purified, the product protein is self-cleaved from the granules and released into solution in a substantially purified form. This system has been successfully used at laboratory scale to purify several active test proteins at reasonable yield. By allowing the bacterial cells to effectively produce both the affinity resin and tagged target protein, the cost associated with the purification of recombinant proteins could be greatly reduced. It is expected that this combination of improved economics and simplicity will constitute a significant breakthrough in both large-scale production of purified proteins and enzymes and high-throughput proteomics studies of peptide libraries.  相似文献   

16.
Thermally responsive elastin like polypeptides (ELPs) can be used to purify proteins from Escherichia coli culture when proteins are expressed as a fusion with an ELP. Nonchromatographic purification of ELP fusion proteins, termed inverse transition cycling (ITC), exploits the reversible soluble-insoluble phase transition behavior imparted by the ELP tag. Here, we quantitatively compare the expression and purification of ELP and oligohistidine fusions of chloramphenicol acetyltransferase (CAT), blue fluorescent protein (BFP), thioredoxin (Trx), and calmodulin (CalM) from both a 4-h culture with chemical induction of the plasmid-borne fusion protein gene and a 24-h culture without chemical induction. The total protein content and functional activity were quantified at each ITC purification step. For CAT, BFP, and Trx, the 24-h noninduction culture of ELP fusion proteins results in a sevenfold increase in the yield of each fusion protein compared to that obtained by the 4-h-induced culture, and the calculated target protein yield is similar to that of their equivalent oligohistidine fusion. For these proteins, ITC purification of fusion proteins also results in approximately 75% recovery of active fusion protein, similar to affinity chromatography. Compared to chromatographic purification, however, ITC is inexpensive, requires no specialized equipment or reagents, and because ITC is a batch purification process, it is easily scaled up to accommodate larger culture volumes or scaled down and multiplexed for high-throughput, microscale purification; thus, potentially impacting both high-throughput protein expression and purification for proteomics and large scale, cost-effective industrial bioprocessing of pharmaceutically relevant proteins.  相似文献   

17.
Purifying proteins from recombinant sources is often difficult, time-consuming, and costly. We have recently instituted a series of improvements in our protein purification pipeline that allows much more accurate choice of expression host and conditions and purification protocols. The key elements are parallel cloning, small scale parallel expression and lysate preparation, and small scale parallel protein purification. Compared to analyzing expression data only, results from multiple small scale protein purifications predict success at scale-up with greatly improved reliability. Using these new procedures we purified eight of nine proteins from xenotropic murine leukemia virus-related virus (XMRV) on the first attempt at large scale.  相似文献   

18.
19.
Escherichia coli is a widely used host for the heterologous expression of proteins of therapeutic and commercial interest. The scale and speed at which it can be cultured can result in the rapid generation of large quantities of product. However, to achieve low costs of production a simple and robust purification process is also required. The general factors that impact on the cost of a purification process are the scale at which a process can be performed, the cost of the purification matrix, and the number and complexity of the chromatographic steps employed. Purification of Fab' fragments of antibodies from the periplasm of E. coli using ion exchange chromatography can result in the co-purification of E. coli host proteins having similar functional pI: such as the periplasmic phosphate binding protein, PhoS/PstS. In such circumstances, an additional chromatographic step is required to separate Fab' from PhoS. Here, we change the functional pI of the chromosomally encoded PhoS/PstS to effect its non-purification with Fab' fragments, enabling the removal of an entire chromatographic step. This exemplifies the strategy of the modification of host proteins with the aim of simplifying the production of heterologous proteins.  相似文献   

20.
The separation of membrane protein complexes can be divided into two categories. One category, which is operated on a relatively large scale, aims to purify the membrane protein complex from membrane fractions while retaining its native form, mainly to characterize its nature. The other category aims to analyze the constituents of the membrane protein complex, usually on a small scale. Both of these face the difficulty of isolating the membrane protein complex without interference originating from the hydrophobic nature of membrane proteins or from the close association with membrane lipids. To overcome this difficulty, many methods have been employed. Crystallized membrane protein complexes are the most successful example of the former category. In these purification methods, special efforts are made in the steps prior to the column chromatography to enrich the target membrane protein complexes. Although there are specific aspects for each complex, the most popular method for isolating these membrane protein complexes is anion-exchange column chromatography, especially using weak anion-exchange columns. Another remarkable trend is metal affinity column chromatography, which purifies the membrane protein complex as an intact complex in one step. Such protein complexes contain subunit proteins which are genetically engineered so as to include multiple-histidine tags at carboxyl- or amino-termini. The key to these successes for multi-subunit complex isolation is the idea of keeping the expression at its physiological level, rather than overexpression. On the other hand, affinity purification using the Fv fragment, in which a Strep tag is genetically introduced, is ideal because this method does not introduce any change to the target protein. These purification methods supported by affinity interaction can be applied to minor membrane protein complexes in the membrane system. Isoelectric focusing (IEF) and blue native (BN) electrophoresis have also been employed to prepare membrane protein complexes. Generally, a combination of two or more chromatographic and/or electrophoretic methods is conducted to separate membrane protein complexes. IEF or BN electrophoresis followed by 2nd dimension electrophoresis serve as useful tools for analytical demand. However, some problems still exist in the 2D electrophoresis using IEF. To resolve such problems, many attempts have been made, e.g. introduction of new chaotropes, surfactants, reductants or supporting matrices. This review will focus in particular on two topics: the preparative methods that achieved purification of membrane protein complexes in the native (intact) form, and the analytical methods oriented to resolve the membrane proteins. The characteristics of these purification and analytical methods will be discussed along with plausible future developments taking into account the nature of membrane protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号