首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A system is described consisting of a mode-locked Ar ion laser and time-resolved photon-counting electronics. The system is capable of measuring fluorescence lifetimes in the subnanosecond time domain. The Ar ion laser is suitable for the excitation of flavins, since the available laser wavelengths encompass the first absorption band of the yellow chromophore. Due to the high radiation density and the short pulse, both the time and wavelength resolution of the fluorescence of very weakly emitting compounds can be measured. Experiments have been described for flavin models exhibiting single and multiple modes of decay. In these examples lifetimes were determined both from deconvolved decay curves and from direct analysis of the tail of the curve, where no interference of the exciting pulse is encountered. Both determinations showed very good agreement. Due to the highly polarized laser light the decay of the emission anisotropy could be measured directly after the exciting pulse. In principle, fast rotational motions might be detected. An anisotropy measurement conducted with a flavoprotein with a noncovalently attached FAD is presented.  相似文献   

2.
Through the comprehensive analysis of the genomic DNA sequence of human chromosome 22, we identified a novel gene of 702 kb encoding a big protein of 2481 amino acid residues, and named it as TPRBK (TPR containing big gene cloned at Keio). A novel protein TPRBK possesses 25 units of the TPR motif, which has been known to associate with a diverse range of biological functions. Orthologous genes of human TPRBK were found widely in animal species, from insecta to mammal, but not found in plants, fungi and nematoda. Northern blotting and RT-PCR analyses revealed that TPRBK gene is expressed ubiquitously in the human and mouse fetal tissues and various cell lines of human, monkey and mouse. Immunofluorescent staining of the synchronized monkey COS-7 cells with several relevant antibodies indicated that TPRBK changes its subcellular localization during the cell cycle: at interphase TPRBK locates on the centrosomes, during mitosis it translocates from spindle poles to mitotic spindles then to spindle midzone, and through a period of cytokinesis it stays on the midbody. Co-immunoprecipitation assay and immunofluorescent staining with adequate antibodies revealed that TPRBK binds to Aurora B, and those proteins together translocate throughout mitosis and cytokinesis. Treatments of cells with two drugs (Blebbistatin and Y-27632), that are known to inhibit the contractility of actin–myosin, disturbed the proper intracellular localization of TPRBK. Moreover, the knockdown of TPRBK expression by small interfering RNA (siRNA) suppressed the bundling of spindle midzone microtubules and disrupted the midbody formation, arresting the cells at G2 + M phase. These observations indicated that a novel big protein TPRBK is essential for the formation and integrity of the midbody, hence we postulated that TPRBK plays a critical role in the progress of mitosis and cytokinesis during mammalian cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号