首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
电离辐射诱导基因的研究进展   总被引:1,自引:0,他引:1  
电离辐射诱导基因是一类受电离辐射调控表达的基因,其表达随辐射条件和所处生理环境的不同呈现复杂多变的特征。电离辐射诱导基因参与细胞内各种代谢途径,在细胞周期调控、细胞生长调节、细胞凋亡、DNA损伤修复中发挥着重要的作用。介绍了电离辐射诱导基因的种类、功能,及其引起的生物效应的分子机制及应用。  相似文献   

3.
《CMAJ》1962,86(12):540
  相似文献   

4.
5.
John R. Brown  Anita A. Jarvis 《CMAJ》1963,88(18):939-942
The increasing awareness of the medical profession and the general public of the dangers associated with ionizing radiation necessitates a thorough understanding by the physician of the uses and dangers of this hazard. In addition to their application in the fields of diagnosis and therapeutic radiology, x-rays and radioisotopes are increasingly used in research laboratories and in various industries. The effects of low levels of ionizing radiation are still uncertain and it is possible that there is a “threshold” dose at which cellular damage is evident. With the increased number of atmospheric nuclear tests the concentrations of strontium-90, cesium-137, and the shorter lived isotopes such as iodine-131 in food will increase. The present levels of these isotopes do not merit concern and their early efficient removal will assure continued low fallout levels in our major food supplies.  相似文献   

6.
To further an improved understanding of the mechanisms used by bacterial cells to survive extreme exposure to ionizing radiation (IR), we broadly screened nonessential Escherichia coli genes for those involved in IR resistance by using transposon-directed insertion sequencing (TraDIS). Forty-six genes were identified, most of which become essential upon heavy IR exposure. Most of these were subjected to direct validation. The results reinforced the notion that survival after high doses of ionizing radiation does not depend on a single mechanism or process, but instead is multifaceted. Many identified genes affect either DNA repair or the cellular response to oxidative damage. However, contributions by genes involved in cell wall structure/function, cell division, and intermediary metabolism were also evident. About half of the identified genes have not previously been associated with IR resistance or recovery from IR exposure, including eight genes of unknown function.  相似文献   

7.
8.
Integrin Signalling and the Cellular Response to Ionizing Radiation   总被引:2,自引:0,他引:2  
Cell survival and cycling in mammalian cells are both greatly affected by ionizing radiation and are both strictly controlled by integrated integrin-mediated adhesion to extracellular matrix (ECM) proteins and by binding of growth factors to their cognate receptors. Recent emerging findings show a diverse panel of integrin-dependent signals that are channelled into the regulation and modification of the cellular response to ionizing radiation. Cell adhesion-mediated radioresistance and alteration of DNA damage-induced cell cycle arrest in cells attached to the ECM can be linked to focal adhesion protein signalling. This review summarizes the latest radiobiological and radiooncological findings about integrins and their signal transduction pathways.  相似文献   

9.
10.
Milton H. Brown 《CMAJ》1962,87(22):1183-1186
Ionizing radiation has a deleterious effect on the immunity mechanism, particularly when large but sublethal doses are applied over a short period of time. The hematopoietic system is extremely sensitive, and a fall in the lymphocytes is one of the most characteristic manifestations. The normal balance of the microflora of the intestinal and respiratory tracts is disturbed, which results in a bacteremia and may lead to death of the host. Active immunity is seriously interfered with if the irradiation occurs shortly before the injection of an antigen. There is also reduced resistance to pathogenic micro-organisms, which may lead to fatal infections. Prolonged irradiation at low levels does not seem to affect immunity adversely. Active immunization should be carried out well in advance of exposure to radiation, and supportive treatment commenced immediately after exposure to large doses.  相似文献   

11.
12.
13.
R. B. Trewin 《CMAJ》1964,90(1):20-23
Ionizing radiation, first as x-rays, later in natural form, was discovered in Europe in the late 1890''s. Immediate practical uses were found for these discoveries, particularly in medicine. Unfortunately, because of the crude early equipment and ignorance of the harmful effects of radiation, many people were injured, some fatally. Because of these experiences, committees and regulatory bodies were set up to study the problem. These have built up an impressive fund of knowledge useful in radiation protection.With the recent development of the peaceful uses of atomic energy, sources of radioactivity have appeared cheaply and in abundance. A rapidly growing number are finding industrial application. Because of their potential risk to humans, the industrial physician must acquire new knowledge and skills so that he may give proper guidance in this new realm of preventive medicine.The Radiation Protection Program of one such industry, the Hydro-Electric Power Commission of Ontario, is summarized.  相似文献   

14.
15.
16.
THE model proposed by Alper1 for lethal radiation damage to cells is based on inferential evidence that there are two important sites of damage by ionizing radiation. At one site, damage referred to as type “N” is associated with a low oxygen enhancement ratio (OER) and is probably to nucleic acid, while at the other site, type “O” damage is associated with a considerably higher oxygen enhancement value and is to a non-nucleic acid target. The model demands that the two values of OER are respectively less and greater than that observed for the overall lethal effect. More recently2 Alper reviewed further inferential evidence3 that cell membranes are the site of type O damage, though there may be subsequent interaction with the lesions following energy deposition in DNA4.  相似文献   

17.
The response of the brain to irradiation is complex, involving a multitude of stress inducible pathways that regulate neurotransmission within a dynamic microenvironment. While significant past work has detailed the consequences of CNS radiotherapy following relatively high doses (≥ 45 Gy), few studies have been conducted at much lower doses (≤ 2 Gy), where the response of the CNS (like many other tissues) may differ substantially from that expected from linear extrapolations of high dose data. Low dose exposure could elicit radioadaptive modulation of critical CNS processes such as neurogenesis, that provide cellular input into hippocampal circuits known to impact learning and memory. Here we show that mice deficient for chemokine signaling through genetic disruption of the CCR2 receptor exhibit a neuroprotective phenotype. Compared to wild type (WT) animals, CCR2 deficiency spared reductions in hippocampal neural progenitor cell survival and stabilized neurogenesis following exposure to low dose irradiation. While radiation-induced changes in microglia levels were not found in WT or CCR2 deficient animals, the number of Iba1+ cells did differ between each genotype at the higher dosing paradigms, suggesting that blockade of this signaling axis could moderate the neuroinflammatory response. Interestingly, changes in proinflammatory gene expression were limited in WT animals, while irradiation caused significant elevations in these markers that were attenuated significantly after radioadaptive dosing paradigms in CCR2 deficient mice. These data point to the importance of chemokine signaling under low dose paradigms, findings of potential significance to those exposed to ionizing radiation under a variety of occupational and/or medical scenarios.  相似文献   

18.
IRM-2近交系小鼠对电离辐射抗性的研究   总被引:16,自引:1,他引:15  
目的观察IRM-2小鼠对电离辐射的耐受性.方法分析测定了IRM-2小鼠对137Csγ射线的LD50及经4.0Gy137Csγ射线照射后不同时间外周血白细胞、骨髓有核细胞总数、骨髓细胞DNA含量和脾结节的变化,并与亲代小鼠ICR和615进行了比较.结果用不同剂量的137Csγ射线照射后,IRM-2小鼠对γ射线的LD50比ICR和615小鼠分别高1.73~1.57Gy和1.44Gy;外周血白细胞数和骨髓有核细胞总数、骨髓细胞DNA含量下降的幅度小且恢复得快;CFU-S的增加也较ICR和615小鼠明显.结论IRM-2小鼠比一般的纯系和杂交品系小鼠具有更强的辐射抗性.  相似文献   

19.
The aim of this study was to investigate the ionizing radiation effects, in the form of an electron beam, on itraconazole (ITR) in the solid phase. It was found that the ITR, under the influence of a standard 25 kGy dose of radiation used for the sterilization of drug substances, decomposed at 0.4%. Moreover, a gentle change of colour and a decrease in melting point does not exceed pharmacopoeial standards causing that ITR can be sterilized by radiation method. The use of high 400 kGy radiation doses resulted in a 6.5% decomposition of the ITR and eight radiodegradation products were found. However, with the exception of differential scanning calorimetry (DSC), the X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible (UV-vis) methods showed no changes in the form and the morphology of the crystals. The structures of all those compounds were investigated. It was confirmed that the ITR decomposition takes place by dehalogenation (one of Cl atom elimination), the oxidation in isobutyl residue (beside the triazole ring) and C-O bond rupture.KEY WORDS: antifungal azole, DSC, itraconazole, product radiolysis, radiation sterilization  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号