首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The California Floristic Province (CFP) is considered a global biodiversity hotspot because of its confluence of high species diversity across a wide range of threatened habitats. To understand how biodiversity hotspots such as the CFP maintain and generate diversity, we conducted a phylogeographic analysis of the flightless darkling beetle, Nyctoporis carinata, using multiple genetic markers. Analyses of both nuclear and mitochondrial loci revealed an east–west genetic break through the Transverse Ranges and high genetic diversity and isolation of the southern Sierra Nevada Mountains. Overall, the results obtained suggest that this species has a deep evolutionary history whose current distribution resulted from migration out of a glacial refugium in the southern Sierra Nevada via the Transverse Ranges. This finding is discussed in light of similar genetic patterns found in other taxa to develop a foundation for understanding the biodiversity patterns of this dynamic area. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 424–444.  相似文献   

2.

Aim

Many studies have investigated the phylogeographic history of species on the Baja California Peninsula, and they often show one or more genetic breaks that are spatially concordant among many taxa. These phylogeographic breaks are commonly attributed to vicariance as a result of geological or climatic changes, followed by secondary contact when barriers are no longer present. We use restriction‐site associated DNA sequence data and a phylogeographic model selection approach to explicitly test the secondary contact hypothesis in the red diamond rattlesnake, Crotalus ruber.

Location

Baja California and Southern California.

Methods

We used phylogenetic and population clustering approaches to identify population structure. We then used coalescent methods to simultaneously estimate population parameters and test the fit of phylogeographic models to the data. We used ecological niche models to infer suitable habitat for C. ruber at the Last Glacial Maximum (LGM).

Results

Crotalus ruber is composed of distinct northern and southern populations with a boundary near the town of Loreto in Baja California Sur. A model of isolation followed by secondary contact provides the best fit to the data, with both divergence and contact occurring in the Pleistocene. We also identify a genomic signature of northern range expansion in the northern population, consistent with LGM niche models showing that the northern‐most portion of the range of C. ruber was not suitable habitat during the LGM.

Main conclusions

We provide the first explicitly model‐based test of the secondary contact model in Baja California and show that populations of C. ruber were isolated before coming back into contact near Loreto, a region that shows phylogeographic breaks for other taxa. Given the timing of divergence and contact, we suggest that climatic fluctuations have driven the observed phylogeographic structure observed in C. ruber and that they may have driven similar patterns in other taxa.  相似文献   

3.
We used variation in a portion of the mitochondrial DNA control region to examine phylogeography of Tamiasciurus hudsonicus, a boreal-adapted small mammal in the central Rocky Mountain region. AMOVA revealed that 65.66% of genetic diversity was attributable to variation within populations, 16.93% to variation among populations on different mountain ranges, and 17.41% to variation among populations within mountain ranges. Nested clade analysis revealed two major clades that likely diverged in allopatry during the Pleistocene: a southern clade from southern Colorado and a northern clade comprising northern Colorado, Wyoming, eastern Utah, and eastern Idaho. Historically restricted gene flow as a result of geographic barriers was indicated between populations on opposite sides of the Green River and Wyoming Basin and among populations in eastern Wyoming. In some instances genetic structure indicated isolation by distance.  相似文献   

4.
Patiria miniata, a broadcast‐spawning sea star species with high dispersal potential, has a geographic range in the intertidal zone of the northeast Pacific Ocean from Alaska to California that is characterized by a large range gap in Washington and Oregon. We analyzed spatial genetic variation across the P. miniata range using multilocus sequence data (mtDNA, nuclear introns) and multilocus genotype data (microsatellites). We found a strong phylogeographic break at Queen Charlotte Sound in British Columbia that was not in the location predicted by the geographical distribution of the populations. However, this population genetic discontinuity does correspond to previously described phylogeographic breaks in other species. Northern populations from Alaska and Haida Gwaii were strongly differentiated from all southern populations from Vancouver Island and California. Populations from Vancouver Island and California were undifferentiated with evidence of high gene flow or very recent separation across the range disjunction between them. The surprising and discordant spatial distribution of populations and alleles suggests that historical vicariance (possibly caused by glaciations) and contemporary dispersal barriers (possibly caused by oceanographic conditions) both shape population genetic structure in this species.  相似文献   

5.
The Transverse Ranges in southern California have been identified as having a prominent phylogeographic role. Numerous studies have identified distinct north-south and/or east-west lineage breaks involving the Transverse Ranges. However, in evaluating their findings, most authors have regarded this complex system somewhat simplistically. In this study we more deeply investigate these breaks using two approaches: first we examine the phylogeographic history of Sepedophilus castaneus (Coleoptera: Staphylinidae) and then implement a comparative phylogeography approach applying Brooks parsimony analysis to the topologies of nine additional taxa. Phylogenetic analysis, nested clade analysis, and AMOVAs for S. castaneus agree that there is a major lineage break between the eastern and western Transverse Ranges, localized between the Sierra Pelona and the San Gabriel Mountains. The comparative phylogeographic analysis supports a generally strong concordance of area relationships with geographic proximity. It is notable, however, that the Transverse Ranges as a group do not show phylogenetic cohesion, but rather they are split into three main regions: an eastern region (San Gabriel, San Bernardino, and San Jacinto Mountains), a central region (central Transverse Ranges and Sierra Pelona) that is often grouped with the Tehachapi and Sierra Nevada populations, and a western region (northwestern Transverse Ranges and Santa Ynez Mountains) that is consistently grouped with coast range areas to the north. The lineage break between east and west Transverse Ranges is attributable to the presence of a marine embayment in what is now the Santa Clara River valley 5-2.5 million years ago.  相似文献   

6.
Lineage, or true ‘species’, trees may differ from gene trees because of stochastic processes in molecular evolution leading to gene‐tree heterogeneity. Problems with inferring species trees because of excessive incomplete lineage sorting may be exacerbated in lineages with rapid diversification or recent divergences necessitating the use of multiple loci and individuals. Many recent multilocus studies that investigate divergence times identify lineage splitting to be more recent than single‐locus studies, forcing the revision of biogeographic scenarios driving divergence. Here, we use 21 nuclear loci from regional populations to re‐evaluate hypotheses identified in an mtDNA phylogeographic study of the Brown Creeper (Certhia americana), as well as identify processes driving divergence. Nuclear phylogeographic analyses identified hierarchical genetic structure, supporting a basal split at approximately 32°N latitude, splitting northern and southern populations, with mixed patterns of genealogical concordance and discordance between data sets within the major lineages. Coalescent‐based analyses identify isolation, with little to no gene flow, as the primary driver of divergence between lineages. Recent isolation appears to have caused genetic bottlenecks in populations in the Sierra Madre Oriental and coastal mountain ranges of California, which may be targets for conservation concerns.  相似文献   

7.
The Mexican highlands are areas of high biological complexity where taxa of Nearctic and Neotropical origin and different population histories are found. To gain a more detailed view of the evolution of the biota in these regions, it is necessary to evaluate the effects of historical tectonic and climate events on species. Here, we analyzed the phylogeographic structure, historical demographic processes, and the contemporary period, Last Glacial Maximum (LGM) and Last Interglacial (LIG) ecological niche models of Quercus castanea, to infer the historical population dynamics of this oak distributed in the Mexican highlands. A total of 36 populations of Q. castanea were genotyped with seven chloroplast microsatellite loci in four recognized biogeographic provinces of Mexico: the Sierra Madre Occidental (western mountain range), the Central Plateau, the Trans‐Mexican Volcanic Belt (TMVB, mountain range crossing central Mexico from west to east) and the Sierra Madre del Sur (SMS, southern mountain range). We obtained standard statistics of genetic diversity and structure and tested for signals of historical demographic expansions. A total of 90 haplotypes were identified, and 29 of these haplotypes were restricted to single populations. The within‐population genetic diversity was high (mean hS = 0.72), and among‐population genetic differentiation showed a strong phylogeographic structure (NST = 0.630 > GST = 0.266; p < .001). Signals of demographic expansion were identified in the TMVB and the SMS. The ecological niche models suggested a considerable percentage of stable distribution area for the species during the LGM and connectivity between the TMVB and the SMS. High genetic diversity, strong phylogeographic structure, and ecological niche models suggest in situ permanence of Q. castanea populations with large effective population sizes. The complex geological and climatic histories of the TMVB help to explain the origin and maintenance of a large proportion of the genetic diversity in this oak species.  相似文献   

8.
The Baja California killifish, Fundulus lima, is found in six desert oases of the southern Baja California Peninsula, Mexico. The recent introduction of exotic fishes, particularly redbelly tilapia, have impacted the ecology of Fundulus lima such that it is now endangered. Plans of relocating F. lima to bodies of freshwater that are free of exotics have been proposed, however little is know about the genetic identity of the current populations. In this study, we examined the mitochondrial control region of F. lima samples from 4 oases, and in addition, compared these samples to their sister species, the California killifish F.␣parvipinnis. Using a combination of phylogenetic and coalescent approaches, we were able to determine that the two subspecies of the California killifish, F. p.␣brevis, and F. p. parvipinnis, and F. lima form an unresolved trichotomy that diverged between 200,000 years and 400,000 years ago. The one F. lima individual that we were able to collect in the southernmost oasis grouped with the southern subspecies of the California killifish, F. parvipinnis brevis. In contrast, we found that the 3 northern oases grouped together in a “Fundulus lima” clade. Each oasis is genetically distinct, yet there is no evidence of a␣marked genetic bottleneck in any populations (Haplotype diversity between 0.5 and 0.8). Future relocation plans will therefore need to be done cautiously to preserve the genetic identity of the original populations.  相似文献   

9.
Species ranges that span different geographic landscapes frequently contain cryptic species‐ or population‐level structure. Identifying these possible diversification factors can often be accomplished under a comparative phylogeographic framework. However, comparisons suffer if previous studies are limited to a particular group or habitat type. In California, a complex landscape has led to several phylogeographic breaks, primarily in terrestrial species. However, two sister taxa of freshwater fish, riffle sculpin (Cottus gulosus) and Pit sculpin (Cottus pitensis), display ranges based on morphological identifications that do not coincide with these breaks. Using a comprehensive sampling and nuclear, mitochondrial and microsatellite markers, we hypothesized that proposed species ranges are erroneous based on potential hybridization/gene flow between species. Results identified a phylogeographic signature consistent with this hypothesis, with breaks at the Coast Range Mountains and Sacramento/San Joaquin River confluence. Coastal locations of C. gulosus represent a unique lineage, and ‘true’ C. gulosus were limited to the San Joaquin basin, both regions under strong anthropogenic influence and potential conservation targets. C. pitensis limits extended historically throughout the Sacramento/Pit River basin but currently are restricted to the Pit River. Interestingly, locations in the Sacramento River contained low levels of ancestral hybridization and gene flow from C. gulosus but now appear to be a distinct population. The remaining population structure was strongly correlated with Sierra Nevada presence (high) or absence (low). This study stresses the importance of testing phylogeographic breaks across multiple taxa/habitats before conservation decisions are made, but also the potential impact of different geographic landscapes on evolutionary diversification.  相似文献   

10.
The tidewater goby, Eucyclogobius newberryi, inhabits discrete, seasonally closed estuaries and lagoons along approximately 1500 km of California coastline. This species is euryhaline but has no explicit marine stage, yet population extirpation and recolonization data suggest tidewater gobies disperse intermittently via the sea. Analyses of mitochondrial control region and cytochrome b sequences demonstrate a deep evolutionary bifurcation in the vicinity of Los Angeles that separates southern California populations from all more northerly populations. Shallower phylogeographic breaks, in the vicinities of Seacliff, Point Buchon, Big Sur, and Point Arena segregate the northerly populations into five groups in three geographic clusters: the Point Conception and Ventura groups between Los Angeles and Point Buchon, a lone Estero Bay group from central California, and San Francisco and Cape Mendocino groups from northern California. The phylogenetic relationships between and patterns of molecular diversity within the six groups are consistent with repeated, and sometimes rapid, northward and southward range expansions out of central California caused by Quaternary climate change. Plio-Pleistocene tectonism, Quaternary coastal geography and hydrography, and historical human activities probably also influenced the modern geographic and genetic structure of E. newberryi. The phylogeography of E. newberryi is concordant with phylogeographic patterns in several other coastal California taxa, suggesting common extrinsic factors have had similar effects on different species. However, there is no evidence of a phylogeographic break coincident with a biogeographic boundary at Point Conception.  相似文献   

11.
Scattered patches of Polylepis forest that occur within the 3,000–4,500 m altitudinal belt of the Andean Cordillera from Venezuela to Argentina have been hypothesized to be remnants of once continuous forests whose range became fragmented through anthropogenic activities that probably preceded the Spanish conquest. Allozyme variation of Polylepis pauta from 12 forest populations in three adjacent watersheds in Northeastern Ecuador was investigated to assess whether observed patterns of gene diversity were consistent with a more continuous historical range of the species and to evaluate the populations’ potential for restoration. Genetic diversity and polymorphism in P. pauta populations were higher than mean values for most wind pollinated and dispersed temperate and tropical tree species with regional distributions. Genetic differentiation among watersheds was lower than among populations within each watershed. Isolation by distance was not evident and several populations from different watersheds were more genetically similar than populations from the same watershed. Larger forest patches with broader altitudinal ranges had more alleles. Forest patches on steeper slopes and at higher elevations supported populations with less genetic diversity; this might have resulted from the predominance of vegetative reproduction in these landslide prone areas. The amount of genetic diversity maintained by P. pauta, coupled with low genetic differentiation among populations within and among watersheds, is consistent with a more continuous historical range of the species in Northeastern Ecuador and point to the Oyacachi basin as having the highest levels of genetic diversity.  相似文献   

12.
Atlantic spiny lobsters support major fisheries in northeastern Brazilian waters and in the Caribbean Sea. To avoid reduction in diversity and elimination of distinct stocks, understanding their population dynamics, including structuring of populations and genetic diversity, is critical. We here explore the potential of using the hypervariable domain in the control region of the mitochondrial DNA as a genetic marker to characterize population subdivision in spiny lobsters, using Panulirus argus as the species model. The primers designed on the neighboring conserved genes have amplified the entire control region (approx. 780 bases) of P. argus and other closely related species. Average nucleotide and haplotype diversity within P. argus were found to be high, and population structuring was hypothesized. The data suggest a division of P. argus into genetically different phylogeographic groups. The hypervariable domain seems to be useful for determining genetic differentiation of geographically distinct stocks of P. argus and other Atlantic spiny lobsters.  相似文献   

13.
The endangered mountain zebra (Equus zebra) is endemic to the semi-arid inhospitable mountainous escarpments of southern Africa. The species is divided taxonomically into two geographically separated subspecies, each with differing recent population histories. In Namibia, Hartmann’s mountain zebra (E. z. hartmannae) is common and occurs in large free-ranging populations, whereas in South Africa, prolonged hunting and habitat destruction over the last 300 years has decimated populations of the Cape mountain zebra (E. z. zebra). In this study, we investigate the consequences of these divergent demographic histories for population genetic diversity and structure. We also examine the phylogeographic relationship between the two taxonomic groups. Genetic information was obtained at 15 microsatellite loci for 291 individuals from a total of 10 populations as well as 445 bp of the mitochondrial control region sequence data from 77 individuals. Both model-based and standard analytical approaches were used to examine the data. Both types of marker returned levels of diversity and structure that were consistent with population history. Low genetic variation within individual Cape mountain zebra populations, the characteristic indicator of population fragmentation and drift, was offset by moderate variation in the entire E. z. zebra sample. This implies that higher levels of diversity still exist within the Cape mountain zebra gene pool. A management strategy that entailed the mixing of aboriginal populations is therefore advocated in order to halt the further loss of Cape mountain zebra genetic diversity. Allele frequencies in Hartmann’s mountain zebra were relatively resilient to demographic fluctuations. Due to the high incidence of mitochondrial haplotype sharing between populations, the hypothesis that Cape and Hartmann’s mountain zebra mitochondrial lineages were reciprocally monophyletic was not supported. However, the presence of private alleles at nuclear loci rendered the two subspecies genetically distinct evolutionary significant units.  相似文献   

14.
Documenting and preserving the genetic diversity of populations, which conditions their long‐term survival, have become a major issue in conservation biology. The loss of diversity often documented in declining populations is usually assumed to result from human disturbances; however, historical biogeographic events, otherwise known to strongly impact diversity, are rarely considered in this context. We apply a multilocus phylogeographic study to investigate the late‐Quaternary history of a tree frog (Hyla arborea) with declining populations in the northern and western part of its distribution range. Mitochondrial and nuclear polymorphisms reveal high genetic diversity in the Balkan Peninsula, with a spatial structure moulded by the last glaciations. While two of the main refugial lineages remained limited to the Balkans (Adriatic coast, southern Balkans), a third one expanded to recolonize Northern and Western Europe, loosing much of its diversity in the process. Our findings show that mobile and a priori homogeneous taxa may also display substructure within glacial refugia (‘refugia within refugia’) and emphasize the importance of the Balkans as a major European biodiversity centre. Moreover, the distribution of diversity roughly coincides with regional conservation situations, consistent with the idea that historically impoverished genetic diversity may interact with anthropogenic disturbances, and increase the vulnerability of populations. Phylogeographic models seem important to fully appreciate the risks of local declines and inform conservation strategies.  相似文献   

15.
In the Sonoran Desert of North America, populations of the desert tortoise (Gopherus agassizii) occur in rocky foothills throughout southwestern Arizona and northwestern Mexico. Although tortoise populations appear to be isolated from each other by low desert valleys, individuals occasionally move long distances between populations. Increasingly, these movements are hindered by habitat fragmentation due to anthropogenic landscape changes. We used molecular techniques and radiotelemetry to examine movement patterns of desert tortoises in southern Arizona. We collected blood samples from 170 individuals in nine mountain ranges and analyzed variability in seven microsatellite loci to determine genetic differentiation among populations. Gene flow estimates between populations indicate that populations exchanged individuals historically at a rate greater than one migrant per generation, and positive correlation between genetic and geographic distance of population pairs suggests that the limiting factor for gene flow among populations is isolation by distance. Life history traits of the desert tortoise, a long-lived species with delayed sexual maturity, may severely constrain the ability of small populations to respond to disturbances that increase adult mortality. Historic gene flow estimates among populations suggests that recovery of declining populations may rely heavily on the immigration of new individuals from adjacent mountain ranges. Management strategies compatible with the evolutionary history of gene flow among disjunct populations will help ensure the long-term persistence of Sonoran desert tortoise populations.  相似文献   

16.
Tumbleweeds (Salsola species, section Kali) are road side and rangeland pest plants throughout the 48 contiguous states in the US. Three described tumbleweed species and two undescribed Salsola taxa occur in California. The known species are Russian thistle, Salsola tragus, introduced from Eurasia in the 1800s, Russian barbwire thistle, S. paulsenii, which grows in the desert regions of California, and is also native to Eurasia, and the recently identified S. kali subspecies austroafricana, possibly native to South Africa. Our goals were to investigate karyology, genome size, and molecular genetic affinities of the described species and the other taxa within their ranges in California using recently developed microsatellite loci, dominant nuclear DNA markers (RAPD and ISSR), and DNA sequence data. Chromosome counts and genome size assessments made with flow cytometry were compared. These analyses indicated that one undescribed taxon is a new allopolyploid hybrid between S. tragus and S. kali subspecies austroafricana, and the other undescribed taxon appears to be a complex hybrid involving all three described species. The invasion potentials for the hybrid taxa are unknown. Tumbleweeds are the focus of biological controls efforts but the identification of suitable agents for the hybrid taxa may be problematic because of the large amount of genetic variability encompassed within this evolving Salsola complex.  相似文献   

17.
Ameiva chrysolaema is distributed across the island of Hispaniola in the West Indies. The species is restricted to dry lowlands between major mountain ranges and along the southern and eastern coasts. Phylogenetic and phylogeographic analyses of mtDNA sequence variation from 14 sampling localities identify at least three independent evolutionary lineages, separated from one another by major mountain ranges. Nested clade phylogeographic analysis (NCPA) suggests a complex history of population fragmentation, consistent with geological evidence of seawater incursions into the Azua and Enriquillo basins during the Pliocene/Pleistocene (approximately 1.6 mya). Significantly negative Fu's F(S) values and parameters of mismatch distributions suggest that formerly fragmented populations have recently expanded their ranges. Significantly large average population clade distances (APCD) for two sampling localities in the Azua basin suggest secondary contact at these localities of previously separated populations. The distribution of haplotypes among polymorphic populations of A. chrysolaema suggests that variation in dorsal pattern represents a polymorphism within evolutionary lineages. Ameiva leberi is ecologically indistinguishable from and syntopic with A. chrysolaema. Genetic data suggest that A. leberi is a junior synonym of A. chrysolaema.  相似文献   

18.
Variation in mitochondrial DNA (mtDNA) was used together with comparative cytogenetics to examine the evolutionary history and taxonomic status of an African hystricomorphous rodent, the springhare Pedetes capensis. The mtDNA phylogeographic structure showed that the majority of the southern African populations (P. c. capensis) are characterized by unique but closely related maternal lineages. Based on restriction endonuclease fragment analysis, the east African populations (P. c. surdaster) appear more structured and are distinguished from those in southern Africa by an average sequence divergence of 5.52% (±1.4%). This marked divergence is concordant with results of the cytogenetic study. Specimens from southern Africa have 2n = 38, and those from east Africa 2n = 40. The change in diploid number is due to a single centric fusion. It is suggested that the closure of the Brachystegia or miombo woodland (20,000–10,000 B.P.), which delimits contemporary springhare ranges, may have been too recent to account for the accumulated genetic differences that distinguish these taxa. While rifting and associated habitat changes in east Africa can be invoked to explain genetic structure in this region, the southern African springhare populations, which have a high incidence of locality-specific haplotypes, show a shallow phylogeographic structure, in keeping with a relatively recent range expansion from smaller source populations. Given the magnitude of genetic, morphological, and ethological differences between the two geographic isolates, we believe that there is strong support for the elevation of the east African and southern African springhare populations to full species status, thus supporting earlier taxonomic treatments of this rodent.  相似文献   

19.
Suture zones represent natural forums in which to examine the role of geography and ecology in the speciation process. Here, we conduct a comparative analysis designed to investigate the location of avian phylogeographic breaks and contact zones in the Guiana Shield, northern Amazonia. We use distributional and genetic data from 78 pairs of avian taxa to address whether phylogeographic breaks and contact zones are associated with contemporary landscape features. Using spatially explicit statistical models, we found that phylogeographic breaks and contact zones are not randomly distributed throughout the landscape. In general, geographic breaks cluster along physical barriers (rivers, nonforested habitats, and small mountain ranges), whereas contact zones aggregate where these barriers either break down or are easier to overcome, such as around rivers' headwaters. Our results indicate that although major Amazonian rivers are often key determinants of taxon boundaries, the "riverine barrier effect" is a synergistic consequence of the wide lower reaches of some rivers, coupled with nonriverine landscape features at the headwaters. Our data suggest that ancestral refugia are not necessary to explain current distribution patterns and that pairs of codistributed taxa do not seem to be the result of simultaneous diversification processes.  相似文献   

20.
Cypripedium macranthos var. rebunense is an endangered plant endemic to Rebun Island, Japan. A proper understanding of genetic diversity is needed when conducting conservation programs for rare and endangered species. We therefore examined the genetic diversity of C. macranthos var. rebunense using allozyme markers with a view to future conservation. Our study revealed that C. macranthos var. rebunense has relatively high genetic diversity (P was 0.62, n a and n e were 1.85 and 1.28 respectively, and H o and H e were 0.163 and 0.187, respectively) when compared with other plant taxa. The natural habitats of C. macranthos var. rebunense are geographically separated into northern and the southern populations. Disappearance of alleles and increase in homozygosity expected as a result of the bottleneck effect were observed, particularly in the southern populations composed of a small number of plants. As additional negative effects (inbreeding depression and further genetic drift) due to fragmentation are predicted in these populations, the southern populations may show deterioration of genetic diversity in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号