首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Amitus fuscipennis MacGown & Nebeker (Hym., Platygasteridae) is a parasitoid of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hom., Aleyrodidae) on some crops as bean and snap bean (both Phaseolus vulgaris L.) in Colombia. The searching and oviposition behaviour of A. fuscipennis was studied in the laboratory, using T. vaporariorum as a host on bean leaves. The parasitoid's basic search pathway consisted of walking, encountering the host, and drumming and probing it. While walking, the parasitoid stopped for short periods of time, partly to preen itself. Walking while searching comprised 61% of the adults' time budget and probing hosts represented 16%. After a host nymph was parasitized by A. fuscipennis , the parasitoid remained close by and continued searching for new hosts in the immediate vicinity. Such behaviour suggests area-restricted searching. The parasitoid preferred first instars of T. vaporariorum for oviposition, resulting in long developmental times. Amitus fuscipennis had a high percentage of host acceptance resulting in a high percentage parasitism (60%) of all encountered hosts. Amitus fuscipennis , on average, walked faster before an oviposition (1.4 mm/s) than other whitefly parasitoids. The implications of these findings for the control of T. vaporariorum are discussed.  相似文献   

2.
We developed a dynamic state variable model for studying optimal host‐handling strategies in the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae). We assumed that (a) the function of host feeding is to gain nutrients that can be matured into eggs, (b) oögenesis is continuous and egg load dependent, (c) parasitoid survival is exponentially distributed and (d) parasitoids encounter hosts randomly, are autogenous and have unlimited access to non‐host food sources to obtain energy for maintenance and activity. The most important prediction of the model is that host feeding is maladaptive under field conditions of low host density (0.015 cm?2) and short parasitoid life expectancy (maximum reproductive period of 7 d). Nutrients from the immature stage that can be matured into eggs are sufficient to prevent egg limitation. Both host density and parasitoid life expectancy have a positive effect on the optimal host‐feeding ratio. Parasitoids that make random decisions gain on average only 35% (0.015 hosts cm?2) to 60% (1.5 hosts cm?2) of the lifetime reproductive success of parasitoids that make optimal decisions, independent of their life expectancy. Parameters that have a large impact on lifetime reproductive success and therefore drive natural selection are parasitoid life expectancy and the survival probability of deposited eggs (independent of host density), the number of host encounters per day (when host density is low) and the egg maturation rate and number of host types (when host density is high). Explaining the evolution of host‐feeding behaviour under field conditions requires field data showing that life expectancy in the field is not as short as we assumed, or may require incorporation of variation in host density. Incorporating variation in walking speed, parasitised host types or egg resorption is not expected to provide an explanation for the evolution of host‐feeding behaviour under field conditions.  相似文献   

3.
The foraging behaviour of Encarsia formosa was analyzed using a stochastic simulation model of the parasitoid's behaviour. Parasitoids were allowed to search during a day on a tomato plant infested with immatures of the greenhouse whitefly, Trialeurodes vaporariorum. The model simulates searching, host selection, host handling and patch leaving behaviour, and the physiological state of the parasitoid. The outputs of the model are the number of visited leaflets and the number of hosts encountered, parasitized or killed by host feeding. The simulation results agreed well with observations of parasitoids foraging on tomato plants. The number of encounters and ovipositions on the plant increased with host density according to a type II functional response. At a clustered host distribution over leaflets and low host densities, the most important parameters affecting the number of ovipositions were the leaf area, the parasitoid's walking speed and walking activity, the probability of oviposition after encountering a host, the initial egg load and the ratio of search times on both leaf sides. At high densities, the maximum egg load and the giving-up time on a leaflet since latest host encounter were the most essential parameters.  相似文献   

4.
Anagrus atomus L. is an important egg parasitoid of the green leafhopper Empoasca decipiens Paoli. In this study the ability of the parasitoid to locate and parasitize its host was investigated on four host plants, i.e., broad beans (Vicia faba L.), sweet pepper (Capsicum annuum L.), cucumber (Cucumis sativus L.), and French beans (Phaseolus vulgaris L.). For each plant species, the behavior of the parasitoid was observed on E. decipiens infested and noninfested plants. Searching and oviposition behavior were characterized by drumming, probing, and resting. Parasitoids spent significantly less time on non-infested than infested plants, 274.5 and 875.7 s, respectively, and no probing behavior was observed on non-infested plants. Frequency of resting behavior was significantly greater on non-infested than on infested plants. Total foraging time was significantly longer on infested than on non-infested plants, indicating that A. atomus females can efficiently discriminate between leaves with and without infestation. Parasitism of A. atomus was influenced by parasitoid density, with the highest parasitism rate (64.0%) obtained at a density of 10 A. atomus females/0.1356 m2 but the number of parasitized eggs per female and the searching efficiency decreased with increasing parasitoid density.  相似文献   

5.
Superparasitism as an ESS: to reject or not to reject, that is the question   总被引:1,自引:0,他引:1  
A stochastic model is formulated to determine the optimal strategy for a solitary parasitoid which has discovered an already parasitized host. The model assumes that the parasitoid can count both the number of eggs already present in a host and the number of conspecifics searching in the same patch. The survival probability of an egg is assumed to depend on the total number of eggs in a host. The decision to (super)parasitize depends both on the degree to which the discovered host already is parasitized and on the number of conspecific females searching in the same patch. We consider both the case that egg laying does not involve any costs for the parasitoid and the case that it involves some marginal costs. Uniform behaviour of all the conspecific parasitoids in a patch, i.e. laying one additional egg in all encountered larvae containing a particular number of eggs, appears to be a pure evolutionary stable strategy (ESS). If either the probability that a parasitoid emerges from a host decreases with an increasing degree of parasitism, at least from a particular number of eggs onwards, or if parasitism involves marginal costs, the maximum number of eggs for which it is still profitable to superparasitize a host once more is limited. This number increases with the number of conspecifics searching in the patch. Large marginal costs (i.e. the expected gain of not parasitizing now) decrease the profit of superparasitism. For newly emerged parasitoids the rejection of an already parasitized host is not advantageous as long as the marginal costs of parasitism are small, because the host can never contain an egg of its own.  相似文献   

6.
1. A heterogeneous habitat structure can have a profound impact on foraging carnivorous arthropods. In the present study, we examined which elements of complex vegetation structure influence the searching movement of a parasitoid model organism. 2. Previous field work showed that tall and dense vegetation reduces the parasitism success of the eulophid egg parasitoid Oomyzus galerucivorus while the probability of host egg deposition increased close to plant tips. 3. In laboratory bioassays, dried grass stems were arranged according to the natural situation in different setups. The wasps' walking time on stems increased with increasing stem height and density. High stem density decreased the walking time of the parasitoids on the ground and an increased stem height reduced the propensity to fly to the ground. Connectivity had a minor positive effect on the number of stem contacts, but considerably reduced the number of wasps reaching the upper part of grass stems by two‐thirds. 4. Thus, although enhanced vegetation complexity enhances walking activity of the parasitoids in the vegetation, laying eggs at the tip of long grass stems in dense vegetation can be an adaptive strategy for the host, as it maximises the number of connections between plant parts to cross by parasitoids before reaching the host. The connection points disorient the wasps, which lose time, reverse their direction or fly away.  相似文献   

7.
Foraging ofEncarsia formosa was analyzed using a stochastic simulation model of the parasitoid's behavior. Parasitoids were allowed to search during a fixed time in an experimental arena with immatures of the greenhouse whitefly,Trialeurodes vaporariorum. The model simulates host searching, selection, and handling behavior and the physiological state (egg load) of the parasitoid. The simulated number of hosts encountered, parasitized, or killed by host feeding agreed well with observations on leaf disks. The hypothesis of random host encounter seems to be correct. The number of ovipositions on the leaf at low host densities was strongly affected by the parasitoid's walking speed and walking activity, the probability of oviposition after encountering a host, and the initial egg load. At high densities, the initial and maximum egg load were most important. A strong temperature effect was found at 18°C or below. The number of encounters, ovipositions, and host feedings increased with host density to a maximum of 25, 6.5, and 1.5, respectively, during 2 h at 25°C. The shape of the curves resembled a Holling Type II, which may be the result of the experimental procedure, where a parasitoid was confined to a patch during a fixed time.  相似文献   

8.
1. The number of hosts attacked as a function of host density is considered to be an important characteristic of parasitoid behaviour and is used to estimate key parameters such as handling time and ‘instantaneous rate of discovery’. However, little has been done to validate functional response models by direct observation of parasitoid oviposition behaviour. 2. Tamarixia radiata is the most promising parasitoid for biological control attacking Diaphorina citri. Mass rearing and augmentative release seen as a potential strategy for suppression of D. citri has been documented in abandoned citrus, residential areas, and organic groves. Nevertheless, parasitism rates in culture and in the field are only moderate, leading to questions about oviposition behaviour in response to host density. 3. Behaviours of gravid T. radiata females presented with susceptible host instars were categorised and documented by direct observation for 30 min and by camera recordings made over 12 h. Frequency of searching and antennating increased with host density during the 30 min. Probing rejection rates and search duration increased significantly with host density over 12 h. These factors resulted in significantly lower fecundity than expected, possibly due to host mark‐mediated deterrence within the small searching area. Females took approximately 3.6–4.2 min to probe and parasitise a host regardless of host density and exposure duration. These results were markedly different from the 52.2 min estimated from the functional response equation. 4. Further experiments are required to assess the range and persistence of the putative host‐marking pheromone, and to better understand the relationship between functional response parameters and actual behaviour.  相似文献   

9.
Host searching by egg parasitoids faces a main constraint due to low detectability of cues from host eggs. Therefore egg parasitoids have developed distinctive strategies by exploiting cues that originate from non-target instars of the host and/or from plants. The scelionid Telenomus busseolae is specialized on concealed eggs of Sesamia nonagrioides and other noctuid stemborers. In this paper we show that oviposition by S. nonagrioides induces changes in the cues present on maize leaf surface, which arrest naïve females of T. busseolae. The induction appears to be systemic as the parasitoid also responds to leaves and leaf portions that are not directly affected by ovipositing females. Such oviposition-induced, short-range, plant synomones, acting in sequence with the kairomonal cues from scales left on the plant by the ovipositing host female, significantly increases parasitoid efficiency during host finding. The elicitor of plant response originates from the host female reproductive system, being contained both in the host’s ovarian eggs and in the colleterial gland secretion. Induction starts 24 h after oviposition and lasts at least till 72 h. The ecological role of this oviposition-induced plant synomone in host searching by T. busseolae is discussed.  相似文献   

10.
The foraging behavior ofVenturia canescens, a solitary endoparasitoid of lepidopteran larvae, was investigated in the laboratory. Females with a greater number of mature eggs in their ovarioles and oviducts parasitized a greater number of hosts and won a greater proportion of encounters with other searching females. Wasps which had been exposed to hosts prior to an experimental trial lost a higher proportion ofagonistic encounters with conspecifics than wasps which had no prior exposure to hosts. The behavior of a wasp at the time of the encounter influenced the outcome of the encounter. Wasps involved in active search of the host medium with the ovipositor (probing) were more likely to win encounters than wasps in any other behavioral category. In a situation where the agonistic encounter was between two probing wasps, both contestants were equally likely to win. Results are discussed in the light of the idea that mutual interference arises, in this species, as a result of agonistic encounters between searching females and recent dynamic-programming models which suggest that parasitoid oviposition should be influenced by mature egg load.  相似文献   

11.
Parasitization of a braconid wasp, Apanteles glomeratus, of larvae of a common cabbage butterfly, Pieris rapae crucivora, caused changes in differential haemocyte count (DHC), total haemocyte count (THC), and encapsulative capacity against dead eggs of Apanteles in the fourth and fifth instar host larvae.However, no correlation could be found between the number of Apanteles eggs deposited and THC of the middle fourth instar host larvae or between the number of parasitoid larvae and specific gravity of the haemolymph from the late fifth instar host larvae.From the changes in DHC and in THC of both non-parasitized and parasitized Pieris larvae, an increase in the number of plasmatocytes of non-parasitized Pieris larvae in the early fourth instar period was supposed to be due to transformation of prohaemocytes into plasmatocytes, and a low population of plasmatocytes of parasitized larvae in the comparable period was assumed to be due to a suppression of transformation of prohaemocytes by some factor released from the parasitoid eggs.Failure of the parasitized fourth instar Pieris larvae to encapsulate injected dead eggs of Apanteles indicated that the parasitoid embryos were, in some way, actively inhibiting the encapsulation reactions of the host.The increase in THC of the parasitized fifth instar larvae could not be ascribed to a decrease in the volume of host haemolymph. Rather it could be interpreted by a suppression of adhesive capacity of haemocytes in the host haemocoel to tissue surfaces.Reduced encapsulative capacity of the parasitized fifth instar larvae might be attributed either to a depression of the adhesive activity of plasmatocytes resulting from a depletion of energy source for haemocytes in the host haemolymph by parasitization, or from an active suppression of adhesiveness of the plasmatocytes by secretions from ‘giant cells’ (teratocytes) originated from the parasitoid.  相似文献   

12.
Searching and oviposition behavior and parasitization ability of Anagrus nigriventris Girault (Hymenoptera: Mymaridae), an egg parasitoid of beet leafhopper, Circulifer tenellus (Baker) (Homoptera: Cicadellidae), were examined on five host plant species of beet leafhopper: sugar beet (Beta vulgaris L.), red stem filaree (Erodium cicutarium[L.]), peppergrass (Lepidium nitidum Nuttall), desert plantain (Plantago ovata Forsskal), and London rocket (Sisymbrium irio L.). Beet leafhopper embeds its eggs in the tissues of these plant species. For each plant species, A. nigriventris behavior was examined on plants with and without beet leafhopper eggs. Experimental design was a 5 (plant species) by 2 (host eggs present/absent) factorial. Additionally within each treatment, parasitoid behavior was observed over a 22-h period at five different observation periods: t=0, 3, 6, 9, and 22 h where t=0 h represents initial exposure of the insect with the plant. The behavioral events observed were: `fast walking' (general searching), `slow walking' (intensive searching), ovipositor probing, grooming, feeding, and resting. Significant differences (=0.05) among plant species in time spent on the plant, percentage of host eggs parasitized, and behavioral variables associated with intensive searching and oviposition all indicated that the plant species fell into two groups: `preferred' plants (sugar beet, London rocket, and peppergrass), and `unpreferred' plants (filaree and plantago). These variables also indicated that the parasitoids spent more time on, searched more, probed more, and oviposited more in plants with host eggs than plants without host eggs. Consistent effects of time (over the observation periods from t=0 to t=22 h) generally were detected only in the preferred plant species that had host eggs present. In these cases, intensive searching and probing decreased as time advanced, while variables related to general searching (`fast walking') and abandoning host egg patches (leaving the plant) tended to increase over time.  相似文献   

13.
The effect of mating status and age of the female of Microplitis rufiventris parasitoid on the growth pattern of its teratocytes during the larval development is described as well as the changes in the number of these cells. The growth pattern of teratocytes derived from haploid eggs significantly differed from that of eggs deposited by mated females. Both cell diameter and the number of maturing M. rufiventris teratocytes was fertilization-dependent. Following the parasitization of Spodoptera littoralis larvae with virgin parasitoid females, the host larvae hosted a large number of cells of smaller size at the end of parasitoid development. The opposite effect was seen when the host larvae contained female parasitoid larvae. The age of the female at parasitization had an effect on the maximum cell size attained prior to parasitoid emergence. It seems that there are two factors other than mating which affect the number of teratocytes: degeneration inside the host haemolymph and to some degree accidental ingestion by parasitoid larva.  相似文献   

14.
Abstract. 1. Sex regulation and its relevance to the ecology of a k-selected pupal parasitoid was investigated in Coccygomimus turionellae.
2. The ratio varied with host size, females predominating in large hosts.
3. Egg transfer experiments and comparative mortality rates among the progeny of virgin and inseminated females demonstrated that the phenomenon was due to parental behaviour.
4. The study of the mechanism confirmed Aubert's hypothesis of host size estimation with the addition that the host had to be exposed from the poles and had to contain the proper host kairomones.
5. Host size was highly correlated to parasitoid fecundity via influences on size and longevity but not the number of ovarioles per female or daily egg production.
6. Host encounters are more limiting than egg production and host size had no effect on host acceptance.
7. Sex regulation allows a maximal host encounter rate at the same time that it maximizes the reproductive potential of female progeny.
8. Low host density increased the production of female progeny resulting in more offspring searching for the limited resource. Concealed hosts and a high host density resulted in a shift towards a Fisher 1:1 sex ratio.  相似文献   

15.
The calyx fluid in the lateral oviduct of a gregarious parasitoid, Apanteles glomeratus contained ellipsoid particles of ca. 130 × 200 nm. These calyx fluid particles did not appear to be embedded in a fibrous outer layer on the surface of eggs in the lateral oviduct. They were not observed on the surfaces of the eggs 3 to 4 hr after being deposited into the host haemocoele. Oviposition experiments indicated that the occurrence of haemocytic defence reactions of the late 2nd instar larvae of the Pieris rapae crucivora against 1 st instar larvae of the parasitoid increased with a decreasing number of the parasitoid eggs introduced into a host, and that more than 5 to 9 parasitoid eggs were needed for suppressing the ability of the host to encapsulate its parasitoid larvae immediately after hatching. When eggs with calyx fluid obtained from egg reservoir were injected into the host, they were found to be encapsulated 1 to 2 days after the injection. They could not start their embryonic development. When calyx fluid-free 3-hr-old eggs were injected in a number of more than 5 eggs into a 5th instar larva of Pieris, 58% of 31 eggs injected had normally hatched without evoking encapsulation reactions by the host. Both electron microscopic observations of parasitoid eggs in the host haemocoele and the experimental results suggested that calyx fluid or calyx fluid particles of the parasitoid might not be involved in the encapsulation-inhibiting activity of the parasitoid eggs. Rather it was anticipated that a substance (or substances) might be secreted by the parasitoid eggs into the haemocoele of the host, which suppressed defence reactions of the host.  相似文献   

16.
1 The braconid parasitoid Bracon hylobii Ratz. is one of the few specialist natural enemies of the large pine weevil, Hylobius abietis L., a destructive pest of conifer transplants. An assessment of its role as an agent of biological control requires a detailed knowledge of the allocation of its reproductive effort. 2 Parasitoid females were continuously observed in laboratory culture with individually reared host larvae in bark discs. The outcome of sequential parasitoid–host encounters was recorded by subsequent examination of hosts and by rearing all parasitoids. 3 Parasitoids avoided ovipositing on host larvae < 100 mg fresh weight, even though such larvae represented sufficient biomass for complete parasitoid development. All larger larvae were vulnerable to attack, which leaves a window of vulnerability for parasitoids of about 90% of weevil larval life. 4 Parasitoids presented with a range of host sizes showed no preference above 100 mg for the size of host first attacked, but allocated more eggs and a greater total handling time to larger hosts. 5 Most eggs were deposited on the first host attacked, with progressively fewer allocated to subsequent hosts. However, oviposition experience did not affect the time spent on the next host. 6 From these results it is anticipated that when weevil larval size is reduced by less favourable feeding substrates, fewer parasitoid eggs will be allocated to each but more host larvae will ultimately be attacked. 7 Generation time, host finding, oviposition rate, clutch size, life expectancy and diapause induction are strongly affected by temperature. Life expectancy is substantially shorter for parasitoids deprived of non‐host food supplement. At 15 and 20 °C the number of hosts attacked and the number of eggs deposited decreased with female age. 8 Bracon hylobii is inevitably poorly synchronized with a variable life‐cycle host; it is egg‐limited and can enter diapause at a relatively high field temperature. None of these characteristics suggest that it could stabilize the abundance of its host below an economically acceptable threshold density. However, the reproductive potential of the parasitoid suggests that it could make a significant contribution to larval mortality and suppress adult recruitment, thus complementing other control strategies.  相似文献   

17.
Chelonus inanitus (Braconidae) is a solitary egg-larval parasitoid which lays its eggs into eggs of Spodoptera littoralis (Noctuidae); the parasitoid larva then develops in the haemocoel of the host larva. Host embryonic development lasts approx. 3.5 days while parasitoid embryonic development lasts approx. 16 h. All stages of host eggs can be successfully parasitized, and we show here that either the parasitoid larva or the wasp assures that the larva eventually is located in the host's haemocoel. (1) When freshly laid eggs, up to almost 1-day-old, are parasitized, the parasitoid hatches while still in the yolk and enters the host either after waiting or immediately through the dorsal opening. (2) When 1-2-day-old eggs are parasitized, the host embryo has accomplished final dorsal closure and is covered by an embryonic cuticle when the parasitoid hatches; in this case the parasitoid larva bores with its moving abdominal tip into the host. (3) When 2.5-3.5-day-old eggs are parasitized, the wasp oviposits directly into the haemocoel of the host embryo; from day 2 to 2.5 the embryo is still very small and the wasps, after probing, often restrain from oviposition for a few hours.  相似文献   

18.
The behavioral responses of the parasitoid Psyllaephagus pistaciae, the major biocontrol agent of the common pistachio psylla, Agonoscena pistaciae, to volatiles emanating from its host plant and host honeydew, were examined using a four‐arm airflow olfactometer. In addition, the arrestment behavior of this parasitoid on clean and honeydew‐treated leaves of the pistachio, Pistacia vera, was monitored. The infested pistachio leaves were the most favored source of the volatile attracting the parasitoids. The parasitoid clearly distinguished and responded to infochemicals emitted by psyllid honeydew but at a lower level than to the volatiles from infested host plants. However, the searching time, locomotory behavior, antennal drumming and ovipositor probing were all affected when they encountered honeydew‐contaminated zones on pistachio leaves. These findings suggest that the psyllid honeydew releases kairomones that stimulate the parasitoids to greater searching activity, as well as providing a directional cue. The intensive searching activities in the presence of the volatiles tested were very similar to responses by the parasitoid females when encountering patches treated with psyllid honeydew. Such behavior could retain the parasitoid in a favorable area, thereby increasing the probability of additional host encounters.  相似文献   

19.
M. Kenis 《BioControl》1996,41(2):217-224
Five factors known to affect the sex ratio (% of males) in parasitic Hymenoptera were investigated forCoeloides sordidator, a parasitoid ofPissodes weevils. The host age, the age of ovipositing females, and the host of origin had a significant impact on the sex ratio of offspring. In contrast, the number of ovipositing females had an insignificant effect on sex ratio whereas the effect of host density could not be clearly defined. The sex ratio decreased with host age, probably because, like many other hymenopteran parasitoids, females tend to lay male eggs on small hosts and female eggs on larger hosts in order to maximize the size and fitness of their female offspring. The sex ratio also varied with the age of the mother, younger females laying more male eggs and older females more female eggs. The host of origin also had an influence on sex ratio. The strain fromPissodes castaneus was significantly more male-biased than the strain fromP. validirostris, which corroborates previous observations made on field populations  相似文献   

20.
To characterize the relationship between the leaf surface ofGerbera jamesoniiHooker cultivars and the searching behavior of the parasitoidEncarsia formosaGahan on a leaf, the trichome density and shape were described, and the walking behavior was quantified. Leaf hair density varied from 80 to more than 1000 trichomes/cm2and the hair shape varied from single erect trichomes to tapestries of entangled trichomes above the leaf surface. The walking activity, speed, and pattern of the parasitoid were tested on leaves with different hair density and shape. In spite of the large differences in leaf surface structure, the walking activity was similar and around 75% on most cultivars. The walking speed was between 0.2 and 0.3 mm/s on all cultivars and was not significantly different from the speed on tomato. On hairless sweet pepper leaves the walking speed is much higher (0.73 mm/s), so the hairs onGerberaleaves do hamper parasitoid females and result in a strong reduction of the walking speed, but the variation in hair density and shape onGerberadoes not lead to differences in walking activity, pattern, and speed. It appears that the hairs ofGerberaare less of an obstacle forE. formosathan the stiff, large hairs occurring in a high density on cucumber, where the walking speed of the parasitoid is less than 0.2 mm/s. A rise of temperature of 5°C gave a significantly higher walking speed (0.39 mm/s) ofE. formosafemales on all cultivars tested. The relative straightness of the walking track was high and the same on all cultivars. Consequences of the results of the searching behavior ofE. formosaonG. jamesoniicultivars are discussed with respect to other host plants. As parasitoid walking speeds are the same onGerberaand tomato, and whitefly reproduction is also similar on these two host plants, we conclude that biological control of whiteflies onGerberais a realistic option. This conclusion is confirmed by the strong increase of commercial biological control onGerberawhich occurred during the past 5 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号