首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of status epilepticus on the concentration, synthesis, release, and subcellular localization of acetylcholine, the concentration of choline, and the activity of acetylcholinesterase in rat brain regions were studied. Generalized convulsive status epilepticus was induced by the administration of pilocarpine to lithium-treated rats. The concentration of acetylcholine in the cortex, hippocampus, and striatum decreased prior to the onset of spike activity or status epilepticus. Once status epilepticus began, the concentration of acetylcholine increased over time in the cortex and hippocampus, reaching peak levels that were 461% and 304% of control levels, respectively, after 2 h of seizures. Such high in vivo levels of acetylcholine had not been reported previously following any treatment. During status epilepticus, the concentration of acetylcholine in the striatum returned to control levels after the initial depression, but did not accumulate to high levels as it did in the other two regions. The in vivo cortical efflux of acetylcholine was also increased during the seizures. Choline levels were increased by status epilepticus in all three brain regions. Inhibition of seizures by pretreatment with atropine blocked the increases of acetylcholine and choline. Synaptosomes prepared from the cortex and from the hippocampus of rats with status epilepticus had elevated concentrations of acetylcholine: in the hippocampus the acetylcholine was principally in the cytoplasmic fraction, whereas in the cortex the acetylcholine was elevated in both the cytoplasmic and the vesicular fractions. The extra acetylcholine was in a releasable compartment, since increased K+ in the media or ouabain increased the release of acetylcholine from cortical slices to a greater extent in tissue from seized rats than from controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
OBJECTIVE--To study outcome after lengthy febrile convulsions and status epilepticus in children. DESIGN--Population based birth cohort study. SETTING--The child health and education study (16,004 neonatal survivors born in one week in April 1970). SUBJECTS--Information available for 14,676 children. OUTCOME MEASURES--Clinical information and tests of intellectual performance at five and 10 years after birth. RESULTS--19 children had lengthy febrile convulsions and 18 had status epilepticus. Two children with status epilepticus died (one at 5 years old); neither death was directly due to the status epilepticus. Four of the 19 (21%) developed afebrile seizures after lengthy febrile convulsions compared with 14 of the 17 (82%) survivors after status epilepticus. Measures of intellectual performance were available for 33 of the 35 survivors: 23 were normal and 10 were not normal but eight of them had preceding developmental delay or neurological abnormality. CONCLUSION--The outcome in children after lengthy febrile convulsions and status epilepticus is better than reported from studies of selected groups and seems determined more by the underlying cause than by the seizures themselves.  相似文献   

3.
The present study has been designed to pharmacologically expound the significance of inducible nitric oxide synthase in the pathophysiological progression of seizures using mouse models of chemically induced kindled epilepsy and status epilepticus induced spontaneous recurrent seizures. Pentylenetetrazole (40 mg kg−1) (PTZ) administration every second day for a period of 15 days was used to elicit kindled seizure activity in mice. Severity of kindled seizures was assessed in terms of a composite kindled seizure severity score (KSSS). Pilocarpine (100 mg kg−1) was injected every 20 min until the onset of status epilepticus. A spontaneous recurrent seizure severity score (SRSSS) was recorded as a measure of quantitative assessment of the progressive development of spontaneous recurrent seizures induced after pilocarpine status epilepticus. Sub-acute PTZ administration induced the development of severe form of kindled seizures in mice. Further, pharmacological status epilepticus elicited a progressive evolution of spontaneous recurrent seizures in the animals. However, treatment of aminoguanidine, a relatively selective inhibitor of inducible nitric oxide synthase, markedly and dose dependently suppressed the development of both PTZ induced kindled seizures as well as pilocarpine induced spontaneous recurrent seizures. Therefore inducible nitric oxide synthase may be implicated in the development of seizures.  相似文献   

4.
Status epilepticus is associated with sustained and elevated levels of cytosolic Ca(2+). To elucidate the mechanisms associated with changes of cytosolic Ca(2+) after status epilepticus, this study was initiated to evaluate the effect of pilocarpine-induced status epilepticus on Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in microsomes isolated from rat cortex, because the Ca(2+) uptake mechanism plays a major role in regulating intracellular Ca(2+) levels. The data demonstrated that the initial rate and overall Ca(2+) uptake in microsomes from pilocarpine treated animals were significantly inhibited compared with those in microsomes from saline-treated control animals. It was also shown that the inhibition of Ca(2+) uptake caused by status epilepticus was not an artifact of increased Ca(2+) release from microsomes, selective isolation of damaged microsomes from the homogenate, or decreased Mg(2+)/Ca(2+) ATPase protein in the microsomes. Pretreatment with the NMDA antagonist dizocilpine maleate blocked status epilepticus-induced inhibition of the initial rate and overall Ca(2+) uptake. The data suggest that inhibition of microsomal Mg(2+)/Ca(2+) ATPase Ca(2+) uptake is involved in NMDA-dependent deregulation of cytosolic Ca(2+) homeostasis associated with status epilepticus.  相似文献   

5.
This study focused on the effects of status epilepticus on the activity of calcineurin, a neuronally enriched, calcium-dependent phosphatase. Calcineurin is an important modulator of many neuronal processes, including learning and memory, induction of apoptosis, receptor function and neuronal excitability. Therefore, a status epilepticus-induced alteration of the activity of this important phosphatase would have significant physiological implications. Status epilepticus was induced by pilocarpine injection and allowed to continue for 60 min. Brain region homogenates were then assayed for calcineurin activity by dephosphorylation of p-nitrophenol phosphate. A significant status epilepticus-dependent increase in both basal and Mn(2+)-dependent calcineurin activity was observed in homogenates isolated from the cortex and hippocampus, but not the cerebellum. This increase was resistant to 150 nM okadaic acid, but sensitive to 50 microM okadaic acid. The increase in basal activity was also resistant to 100 microM sodium orthovanadate. Both maximal dephosphorylation rate and substrate affinity were increased following status epilepticus. However, the increase in calcineurin activity was not found to be due to an increase in calcineurin enzyme levels. Finally, increase in calcineurin activity was found to be NMDA-receptor activation dependent. The data demonstrate that status epilepticus resulted in a significant increase in both basal and maximal calcineurin activity.  相似文献   

6.
7.
During the past two decades, substantial progress has been made in the understanding of the clinical features, classification, pathophysiology, central nervous system consequences, and treatment of status epilepticus. The most commonly used drug regimens have advantages and disadvantages, and, in this review, I recommend a protocol for the treatment of status epilepticus. An important concept in the approach to patients in generalized tonic-clonic status epilepticus is that treatment should be administered within a predetermined time frame. Clinical and experimental research indicates that continuous seizure activity for longer than 60 to 90 minutes may result in irreversible brain damage. As our understanding of the basic mechanisms of neuronal function and seizure generation advances, it is expected that more specific and novel approaches to the treatment of status epilepticus will emerge.  相似文献   

8.
Seizures induced by three convulsant treatment produced differential effects on the concentration of acetylcholine in rat brain. Status epilepticus induced by (i) coadministration of lithium and pilocarpine caused massive increases in the concentration of acetylcholine in the cerebral cortex and hippocampus, (ii) a high dose of pilocarpine did not cause an increase of acetylcholine, and (iii) kainate increased acetylcholine, but the magnitude was lower than with the lithium/pilocarpine model. The finding that the acetylcholine concentration increases in two models of status epilepticus in the cortex and hippocampus is in direct contrast with manyin vitro reports in which excessive stimulation causes depletion of acetylcholine. The concentration of choline increased during seizures with all three models. This is likely to be due to calcium- and agonist-induced activation of phospholipase C and/or D activity causing cleavage of choline-containing lipids. The excessive acetylcholine present during status epilepticus induced by lithium and pilocarpine was responsive to pharmacological manipulation. Atropine tended to decrease acetylcholine, similar to its effects in controls. The N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, reduced the excessive concentration of acetylcholine, especially in the cortex. Inhibition of choline uptake by hemicholinium-3 (HC-3) administered icv reduced the acetylcholine concentration in controls and when given to rats during status epilepticus. These results demonstrate that the rat brain concentrations of acetylcholine and choline can increase during status epilepticus. The accumulated acetylcholine was not in a static, inactive compartment, but was actively turning-over and was responsive to drug treatments. Excessive concentrations of acetylcholine and/or choline may play a role in seizure maintenance and in the neuronal damage and lethality associated with status epilepticus.  相似文献   

9.
The role of oxidative stress in pilocarpine-induced status epilepticus was investigated by measuring lipid peroxidation level, nitrite content, GSH concentration, and superoxide dismutase and catalase activities in the hippocampus of Wistar rats. The control group was subcutaneously injected with 0.9% saline. The experimental group received pilocarpine (400 mg.kg(-1), subcutaneous). Both groups were killed 24 h after treatment. After the induction of status epilepticus, there were significant increases (77% and 51%, respectively) in lipid peroxidation and nitrite concentration, but a 55% decrease in GSH content. Catalase activity was augmented 88%, but superoxide dismutase activity remained unaltered. These results show evidence of neuronal damage in the hippocampus due to a decrease in GSH concentration and an increase in lipid peroxidation and nitrite content. GSH and catalase activity are involved in mechanisms responsible for eliminating oxygen free radicals during the establishment of status epilepticus in the hippocampus. In contrast, no correlations between superoxide dismutase and catalase activities were observed. Our results suggest that GSH and catalase activity play an antioxidant role in the hippocampus during status epilepticus.  相似文献   

10.
Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Realtime PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.  相似文献   

11.
The capability of memantine, a noncompetitive antagonist of the NMDA receptors, to prevent impairments of cognitive functions in rats was investigated in the lithium–pilocarpine model of epilepsy. After status epilepticus, rats exhibited impaired exploratory behavior and spatial memory, and a decline of extinction of orienting behavior. Memantine administration prevented these disturbances. Thus, the blockade of the NMDA receptors immediately after status epilepticus allowed prevention of the development of the possible cognitive impairments.  相似文献   

12.
Local field potentials (EEGs) in the medial septal area, amygdala and piriform cortex were recorded in waking guinea pigs in the control and during epileptogenesis in the model of chronic temporal lobe epilepsy (lithium-pilocarpin model of status epilepticus). Analysis of changes in rhythmical activity and interstructural relations was carried out at different stages of epileptogenesis. Increased frequency of rhythmic activity in delta, theta, and alphabands was observed during epileptogenesis. Correlation relations between the activities of the medical septum with the piriform cortex and amygdala clearly decreased to 5 months after development of status epilepticus. Changes in the frequency of oscillations and structural correlations developed in time from two months on and reached a maximum 5 months after the status epilepticus development. It point to intensification of the pathological changes during formation of the epileptic focus. A possible role of the observed EEG changes in the formation of a pathological centre is discussed.  相似文献   

13.
The metabolism of GABA and other amino acids was studied in the substantia nigra, the hippocampus and the parietal cortex of rats following microinjections of GAMMA-vinyl-GABA during status epilepticus induced by lithium and pilocarpine. GABA metabolism showed striking regional variations. In controls, both GABA concentration and rate of GABA synthesis were highest in the substantia nigra and lowest in cortex, as expected. In substantia nigra, status epilepticus resulted in a 2 1/2 fold decline in the rate of GABA synthesis and in a 307% increase in the turnover time of the GABA pool. In hippocampus, the rate of GABA synthesis was not altered significantly, but the turnover time of the GABA pool was 284% of controls, and the size of that pool increased to 208% of controls. By contrast, in cortex, where seizure activity is limited in this model, the rate of GABA synthesis increased to 230% of controls while pool size and turnover time did not change. Aspartate concentration decreased in all three brain regions. These data suggest that the observed reduction of the rate of GABA synthesis in substantia nigra could play a key role in seizure spread in this model of status epilepticus.Special Issue dedicated to Claude Baxter.  相似文献   

14.
The present study has been designed to pharmacologically investigate the effect of Montelukast sodium, a leukotriene D4 receptor antagonist, and 1,2,3,4, tetrahydroisoquinoline, a leukotriene D4 synthetic pathway inhibitor, on the pathophysiological progression of seizures using mouse models of kindled epilepsy and status epilepticus induced spontaneous recurrent seizures. Pentylenetetrazole (40 mg kg−1) (PTZ) administration every second day for a period of 15 d was used to elicit chemically induced kindled seizure activity in mice. In a separate set of groups, fifty consecutive electroshocks were delivered to mice using corneal electrodes with continuously increasing intensity with an inter-shock interval of 40 s. Severity of kindled seizures was assessed in terms of a composite kindled seizure severity score (KSSS). Pilocarpine (100 mg kg−1) was injected every twenty minutes until the onset of status epilepticus. A spontaneous recurrent seizure severity score (SRSSS) was recorded as a measure of quantitative assessment of the progressive development of spontaneous recurrent seizures induced after pilocarpine status epilepticus. Sub-acute PTZ administration and electroshock induced the development of severe form of kindled seizures in mice. Severity of kindled seizures was assessed in terms of a composite kindled seizure severity score. Further, pharmacological status epilepticus elicited a progressive evolution of spontaneous recurrent seizures in the animals. However, Montelukast sodium, a leukotriene D4 receptor antagonist, as well as 1,2,3,4, tetrahydroisoquinoline, a leukotriene D4 synthetic pathway inhibitor, markedly and dose dependently suppressed the development of kindled seizures as well as pilocarpine induced spontaneous recurrent seizures. Therefore, leukotriene D4 may be implicated in the pathogenesis of seizures.  相似文献   

15.
Lithium-pilocarpine status epilepticus (SE) resulted in delayed changes of single cortical interhemisperic (transcallosal) responses in immature rats. Low-frequency stimulation inducing depression and/or potentiation was studied to analyze possible dynamic changes in cortical responses. Status was elicited in 12-day-old (SE12) or 25-day-old (SE25) rats. Control siblings received saline instead of pilocarpine. Interhemispheric responses were elicited by stimulation of the sensorimotor region of the cerebral cortex 3, 6, 9, 13, or 26 days after status. A series of 5 biphasic pulses with intensity equal to twofold threshold were used for stimulation. The interval between pulses was 100, 125, 160, 200 or 300 ms, eight responses were always averaged. Peak amplitude of the first positive, first negative and second positive waves was measured and responses to the second, third, fourth and fifth pulse were compared with the first one. Animals after status epilepticus as well as lithium-paraldehyde controls exhibit a frequency depression at nearly all the intervals studied. An outlined increase of responses in SE rats in comparison with the controls three days after SE stayed just below the level of statistical significance. In addition, animals in the SE12 group exhibited potentiation of responses at this interval after SE. With longer intervals after SE, the relation between SE and control animals changed twice resulting in a tendency to lower amplitude of responses in SE than in control rats 26 days after SE. Rats in the SE25 group exhibited higher responses than controls 13 days after status, but this difference was not present at the longest interval after SE. Low-frequency stimulation did not reveal increased cortical excitability as a long-lasting consequence of status epilepticus induced in immature rats. In addition, the outlined differences between SE and control rats changed with the time after SE.  相似文献   

16.
Mutation in Plaur gene encoding urokinase-type plasminogen activator receptor (uPAR) results in epilepsy and autistic phenotype in mice. In humans, a single nucleotide polymorphism in PLAUR gene represents a risk for autism spectrum disorders. Importantly, the expression of uPAR is elevated in the brain after various epileptogenic insults like traumatic brain injury and status epilepticus. So far, the consequences of altered uPAR expression on brain networks are poorly known. We tested a hypothesis that uPAR regulates post-injury neuronal reorganization and consequent functional outcome, particularly epileptogenesis. Epileptogenesis was induced by intrahippocampal injection of kainate in adult male wild type (Wt) or uPAR knockout (uPAR?/?) mice, and animals were monitored with continuous (24/7) video-electroencephalogram for 30 days. The severity of status epilepticus did not differ between the genotypes. The spontaneous electrographic seizures which developed were, however, longer and their behavioral manifestations were more severe in uPAR?/? than Wt mice. The more severe epilepsy phenotype in uPAR?/? mice was associated with delayed but augmented inflammatory response and more severe neurodegeneration in the hippocampus. Also, the distribution of newly born cells in the dentate gyrus was more scattered, and the recovery of hippocampal blood vessel length from status epilepticus-induced damage was compromised in uPAR?/? mice as compared to Wt mice. Our data demonstrate that a deficiency in uPAR represents a mechanisms which results in the development of a more severe epilepsy phenotype and progressive brain pathology after status epilepticus. We suggest that uPAR represents a rational target for disease-modifying treatments after epileptogenic brain insults.  相似文献   

17.
HS1-associated protein X1 (HAX-1) is a mitochondrial protein which interacts with a diverse group of molecules such as inflammatory cytokines; interleukin-1, hematopoietic lineage specific protein-1 and vimentin. It has been reported that HAX-1 may act as antiapoptotic protein in HeLa- and Jurkat cells after Fas-treatment, irradiation or serum deprivation. This underlines the evidence that HAX-1 might be involved in both receptor- and mitochondria-mediated apoptosis pathways. However, the role of HAX-1 in neuronal death induced by status epilepticus in the immature brain has not been reported. In this study, we performed a status epilepticus in rats and investigated the dynamic changes of HAX-1 expression, HtrA2 distribution and caspase-3 activation in the hippocampus. Western blot and immunohistochemistry analysis revealed that HAX-1 was expressed at very low levels in the hippocampus. Status epilepticus in the immature brain significantly induced increased cytosolic accumulation of HAX-1 in a biphasic manner, induced an upregulation of HtrA2 and enhanced caspase-3 activity in the selectively vulnerable hippocampal CA1-subfield. Taken together, these results suggested that HAX-1 is probably involved in the pathophysiology of cell death induced by epilepsy.  相似文献   

18.
In the present in situ hybridization and immunocytochemical studies in the mouse central nervous system (CNS), a strong expression of spastin mRNA and protein was found in Purkinje cells and dentate nucleus in the cerebellum, in hippocampal principal cells and hilar neurons, in amygdala, substantia nigra, striatum, in the motor nuclei of the cranial nerves and in different layers of the cerebral cortex except piriform and entorhinal cortices where only neurons in layer II were strongly stained. Spastin protein and mRNA were weakly expressed in most of the thalamic nuclei. In selected human brain regions such as the cerebral cortex, cerebellum, hippocampus, amygdala, substania nigra and striatum, similar results were obtained. Electron microscopy showed spastin immunopositive staining in the cytoplasma, dendrites, axon terminals and nucleus. In the mouse pilocarpine model of status epilepticus and subsequent temporal lobe epilepsy, spastin expression disappeared in hilar neurons as early as at 2h during pilocarpine induced status epilepticus, and never recovered. At 7 days and 2 months after pilocarpine induced status epilepticus, spastin expression was down-regulated in granule cells in the dentate gyrus, but induced expression was found in reactive astrocytes. The demonstration of widespread distribution of spastin in functionally different brain regions in the present study may provide neuroanatomical basis to explain why different neurological, psychological disorders and cognitive impairment occur in patients with spastin mutation. Down-regulation or loss of spastin expression in hilar neurons may be related to their degeneration and may therefore initiate epileptogenetic events, leading to temporal lobe epilepsy.  相似文献   

19.
Abstract: Rat cerebrum, prelabeled in vivo by intraventric-ular injection of [1-14C]arachidonic acid, was used to assess cyclooxygenase and lipoxygenase reaction products in total homogenates, cytosol, synaptosomes, and microsomes. Effects of bicuculline-induced status epilepticus on arachi-donic acid metabolism in synaptosomes and microsomes were also measured. Lipoxygenase activity, resulting in the synthesis of hydroxyeicosatetraenoic acids (HETEs), and cyclooxygenase activity, resulting in the synthesis of prostaglandins (PGs), were measured by reverse-phase and normal-phase HPLC with flow scintillation detection. Endogenous lipoxygenase products in synaptosomes were identified by capillary gas chromatography-mass spectrometry. PGs and HETEs were detected in all subcellular fractions. The synaptosomal fraction showed the highest lipoxygenase activity, with 5-HETE, 12-HETE, and leukotriene B4 as the major products. Following bicuculline-induced status epilepticus, endogenous free arachidonic acid and other fatty acids accumulated in synaptosomes, but not in microsomes. Incorporation of [1-l4C]arachidonic acid into synaptosomal and microsomal phospholipids was decreased after bicuculline treatment. Bicuculline-induced status epilepticus resulted in increased synthesis of HETEs in synaptosomes. PG synthesis increased in the microsomal fraction. When [1-14C]arachidonic acid-labeled synaptosomes and microsomes were incubated for 1 h at 37°C the synthesis of eicosa-noids, particularly PGD2, was increased significantly in bi-cuculline-treated rats, as compared with untreated rats. Depolarization (45 mM K+) of synaptosomes induced a loss of [1-14C]arachidonic acid from phosphatidylinositol, and increased the synthesis of PGD2 and HETEs, an effect that was enhanced in bicuculline-treated rats. This study localizes changes in arachidonic acid metabolism and lipoxygenase activity resulting from bicuculline-induced status epilepticus in the brain subcellular fraction enriched in nerve endings.  相似文献   

20.
Brain cooling has pronounced effects on seizures and epileptic activity. The aim of the present study is to evaluate the anticonvulsant effect of brain cooling on the oxidative stress and changes in Na+, K+-ATPase and acetylcholinesterase (AchE) activities during status epilepticus induced by pilocarpine in the hippocampus of adult male rat in comparison with α-lipoic acid. Rats were divided into four groups: control, rats treated with pilocarpine for induction of status epilepticus, rats treated for 3 consecutive days with α-lipoic acid before pilocarpine and rats subjected to whole body cooling for 30 min before pilocarpine. The present findings indicated that pilocarine-induced status epilepticus was accompanied by a state of oxidative stress as clear from the significant increase in lipid peroxidation (MDA) and superoxide dismutase (SOD) and significant decrease in reduced glutathione and nitric oxide (NO) levels and the activities of catalase, AchE and Na+, K+-ATPase. Pretreatment with α-lipoic acid ameliorated the state of oxidative stress and restored AchE to nearly control activity. However, Na+, K+-ATPase activity showed a significant decrease. Rats exposed to cooling for 30 min before the induction of status epilepticus revealed significant increases in MDA and NO levels and SOD activity. AchE returned to control value while the significant decrease in Na+, K+-ATPase persisted. The present data suggest that cooling may have an anticonvulsant effect which may be mediated by the elevated NO level. However, brain cooling may have drastic unwanted insults such as oxidative stress and the decrease in Na+, K+-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号